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1. Introduction and preliminaries

1.1. Since Eilenberg and Moore [EM], the relative homological algebra, especially the

Gorenstein homological algebra, has been developed to an advanced level: the analogues

for projective and injective modules are respectively the Gorenstein projective and the

Gorenstein injective modules, introduced by Enochs and Jenda ([EJ1]); and one considers

the Gorenstein projective and the Gorenstein injective dimensions of modules and com-

plexes (see e.g. [AF], [EJ1], [Y], [EJ2], [C], [AM], [H1], [T], [CFH], [V], [CV]), the existence

of proper Gorenstein projective resolutions ([J], [H1], [AM], [T]), the Gorenstein derived

functors ([H2], [EJ1], [AM], [EJ2]), the Gorensteinness in triangulated categories ([AS],

[B1], [B2]), and the Gorenstein derived categories ([GZ]).

This concept of Gorenstein projective module even goes back to Auslander and Bridger

[AB], where they introduced the G-dimension of finitely generated module M over a two-

sided Noetherian ring; and then Avramov, Martisinkovsky, and Rieten have proved that

M is Goreinstein projective if and only if the G-dimension of M is zero (the remark

following Theorem (4.2.6) in [C]).

There is also an analogoue for free module, namely, the strongly Gorenstein projective

module ([BM]). As observed by Bennis and Mahdou, a module is Gorenstein projective

if and only if it is a direct summand of a strongly Gorenstein projective module ([BM],

Theorem 2.7). This also provides a more operating way to obtain the Gorenstein projec-

tive modules, if one can construct the strongly Gorenstein projective modules effectively.

However, very few is known about this (c.f. [BM], and also [EJ1]).
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The aim of this paper is to give a concrete construction of strongly Gorenstein projective

modules, via the existed construction of upper triangular matrix artin algebras ([ARS],

[R]). We determine all the strongly complete projective resolutions, and all the strongly

Gorenstein projective modules, over upper triangular matrix artin algebras (Theorem

2.2). The feature of this construction is illustrated by Example 2.3, showing that it really

produces new finitely generated strongly Gorenstein projective modules. However, one-

point extensions do not give new strongly Gorenstein projective modules (Corollary 3.3).

1.2. Let R be a ring. All R-modules considered are left and unital. By R-Mod and R-mod

we denote the category of R-modules and the category of finitely generated R-modules,

respectively.

Following Enochs and Jenda ([EJ1]), a R-module M is said to be Gorenstein projective

(or, G-projective for short) in R-Mod (resp. in R-mod) if there is an exact sequence of

projective modules in R-Mod (resp. in R-mod)

P• = · · · −→ P−1 −→ P 0 d0

−→ P 1 −→ P 2 −→ · · ·

with HomΛ(P•, Q) exact for any projective module Q in R-Mod (resp. in R-mod), such

that M ∼= ker d0. Such a P• is called a complete projective resolution of R-Mod (resp. of

R-mod). Following Bennis and Mahdou ([BM]), if P• in R-Mod (resp. in R-mod) is of

the form

· · ·
f

−→ P
f

−→ P
f

−→ P
f

−→ · · · ,

then M is said to be a strongly Gorenstein projective module (or, SG-projective for short)

in R-Mod (resp. in R-mod). Such a complete projective resolution P• of R-Mod (resp.

of R-mod) is said to be strong. There hold the following (see [BM])

{projectives in R-Mod} $ {SG-projectives in R-Mod} $ {G-projectives in R-Mod}

and

{projectives in R-mod} $ {SG-projectives in R-mod} $ {G-projectives in R-mod}.

Denote by R-SGProj (resp. R-SGproj) the full subcategory of SG-projective modules

in R-Mod (resp. in R-mod). Note that R-SGProj (resp. R-SGproj) is closed under taking

arbitrary direct sums (resp. finite direct sums).

The following fact is useful.

Proposition 1.1. For any ring R there holds (R-SGProj) ∩ R-mod = R-SGproj.

Proof. Let X ∈ R-SGproj. Then by definition we have an exact sequence

P• := · · ·
f

−→ P
f

−→ P
f

−→ P
f

−→ · · ·

such that P is finitely generated projective and that HomR(P•, P ′) is exact for any finitely

generated projective R-module P ′. For any projective R-module Q, there exists a projec-

tive R-module Q′ such that Q ⊕ Q′ = R(I) for some index set I (may be infinite). Since

P is finitely generated, it follows that

HomR(P•, Q) ⊕ HomR(P•, Q′) = HomR(P•, R(I)) = HomR(P•, R)(I).
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Since HomR(P•, R) is exact, so is HomR(P•, Q), i.e., X ∈ R-SGProj ∩ R-mod.

Let X ∈ R-SGProj ∩ R-mod. Then we have a strongly complete projective resolution

P• := · · ·
f

−→ P
f

−→ P
f

−→ P
f

−→ · · · with X = Kerf . By the exact sequence 0 −→

X
σ

−→ P
f

−→ X −→ 0 and X ∈ R-mod we know that P is finitely generated. �

In the view of this fact, in this paper all modules considered are finitely generated,

although the most part of Section 2 also works in general.

1.3. From now on, we consider an artin algebra Λ, i.e., Λ is an algebra over a commutative

artin ring R with R in the center of Λ via the canonical embedding, and Λ is finitely

generated as an R-module ([ARS], p.26). If R is a field k, then Λ is exactly a finite-

dimensional k-algebra. For the representation theory of Λ, we refer to Auslander, Reiten

and Smalφ [ARS], and Ringel [R]. In particular, Λ-mod is a Krull-Schmidt category. Thus,

any finitely generated Λ-module has a unique direct decomposition into indecomposable

([ARS], p.33; [R], p.52).

1.4. Let T and U be rings, and M a T -U -bimodule. Consider the upper triangular

matrix ring Λ =

 
T M

0 U

!
, with multiplication given by the one of matrices. We

assume that Λ is an artin algebra throughout this paper: this is exactly the case when

there is a commutative artin ring R such that T and U are artin R-algebras and M is

finitely generated over R which acts centrally on M ([ARS], p.72).

Recall from [ARS] the category MΛ: an object is a pair (

 
X

Y

!
, φ) where X is a T -

module, Y is a U -module, and φ : M⊗U Y −→ X is a T -morphism; and a morphism of MΛ

is a pair

 
f

g

!
: (

 
X

Y

!
, φ) −→ (

 
X ′

Y ′

!
, φ′), where f : X −→ X ′ is a T -morphism,

g : Y −→ Y ′ is a U -morphism, such that fφ = φ′(idM ⊗U g). It is an isomorphism if

and only if so are f and g. Note that F ((

 
X

Y

!
, φ)) = X ⊕ Y induces an equivalence

between MΛ and Λ-mod, where the Λ-action on X ⊕ Y is given by

 
r m

0 s

!
(x, y) :=

(rx + φ(m ⊗U y), sy). For convenience we use the convention

 
X

Y

!
:= (

 
X

Y

!
, φ).

In the following we identify Λ-mod with MΛ. Under this identification, any Λ-module

is written as

 
X

Y

!
with X a T -module, Y a U -module, together with a T -morphism

φ : M ⊗U Y −→ X. Thus the Λ-action is written as
 

r m

0 s

! 
x

y

!
:=

 
rx + φ(m ⊗U y)

sy

!
.

Then the indecomposable projective Λ-modules are exactly either of the form

 
P

0

!

with P an indecomposable projective T -module, or of the form

 
M ⊗U Q

Q

!
with Q an
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indecomposable projective U -module, together with the identity map; the indecomposable

injective Λ-modules are exactly either of the form

 
I

HomT (M, I)

!
with I an indecom-

posable injective T -module, together with the canonical map, or of the form

 
0

J

!
with

J an indecomposable injective U -module; and the simple Λ-modules are exactly either of

the form

 
S

0

!
with S a simple T -module, or of the form

 
0

S′

!
with S′ a simple

U -module. Compare [ARS], p.77; and [R], p.90.

2. SG-projective modules over upper triangular matrix artin algebras

The aim of this section is to determine the strongly complete projective resolutions,

and hence all the SG-projective modules, over an upper triangular matrix artin algebra

Λ =

 
T M

0 U

!
.

2.1. Denote by

X :=

 
P ⊕ (M ⊗U Q)

Q

!
, f :=

0
B@

 
α 0

β idM ⊗ g

!

g

1
CA : X −→ X (1)

with P a projective T -module, Q a projective U -module, and β : P −→ M ⊗U Q a T -

morphism, where the Λ-action on X is given by

 
0

idM⊗U Q

!
: M ⊗U Q −→ P ⊕(M ⊗U Q).

Note that X =

 
P

0

!
⊕

 
M ⊗U Q

Q

!
is a projective Λ-module, and any projective Λ-

module is of this form. It is clear that f : X −→ X is a Λ-morphism. Here P and Q

could be zero.

Consider the following conditions (i) − (v):

(i) · · ·
g

−→ Q
g

−→ Q
g

−→ Q
g

−→ · · · is an exact sequence of projective U -modules;

(ii) T • : · · ·
α

−→ P
α

−→ P
α

−→ P
α

−→ · · · is a complex of projective T -modules, such

that HomT (T •, P ′) is exact for any indecomposable projective T -module P ′;

(iii) βα + (idM ⊗ g)β = 0;

(iv) If α(p) = 0, β(p) + (idM ⊗ g)(x) = 0, then there exists (p′, x′) ∈ P ⊕ (M ⊗U Q)

such that p = α(p′), x = β(p′) + (idM ⊗ g)(x′);

(v) For an arbitrary indecomposable projective U -module Q′, if (s, t) ∈ HomT (P, M⊗U

Q′) ⊕ HomU (Q, Q′) with sα + (idM ⊗ t)β = 0 and tg = 0, then there exists (s′, t′) ∈

HomT (P, M ⊗U Q′) ⊕ HomU (Q,Q′), such that s = s′α + (idM ⊗ t′)β and t = t′g.
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Lemma 2.1. With the notations above, if the conditions (i) − (v) are satisfied, then

P• : · · ·
f

−→ X
f

−→ X
f

−→ X
f

−→ · · · (2)

is a strongly complete Λ-projective resolution; conversely, any strongly complete Λ-projective

resolution is the form (2), where X and f are given in (1), satisfying the conditions (i)−(v).

Proof. First, we prove the sufficiency. It follows from (i) − (iii) that
 

α 0

β idM ⊗ g

! 
α 0

β idM ⊗ g

!
=

 
α2 0

βα + (idM ⊗ g)β idM ⊗ g2

!
= 0.

Note that (iv) implies that

Ker

 
α 0

β idM ⊗ g

!
⊆ Im

 
α 0

β idM ⊗ g

!
;

it follows that Ker

 
α 0

β idM ⊗ g

!
= Im

 
α 0

β idM ⊗ g

!
, and hence by (i) the se-

quence P• is exact.

For any projective T -module P ′, HomΛ(

 
M ⊗U Q

Q

!
,

 
P ′

0

!
) = 0. Since by as-

sumption HomT (T •, P ′) is exact, it follows that HomΛ(P•,

 
P ′

0

!
) is exact.

For any projective U -module Q′ (we may assume that Q′ is indecomposable), we have

HomΛ(

 
P ⊕ (M ⊗U Q)

Q

!
,

 
M ⊗U Q′

Q′

!
) ∼= HomT (P, M ⊗U Q′) ⊕ HomU (Q,Q′).

Put Y := HomT (P, M ⊗U Q′) ⊕ HomU (Q, Q′). By (i) − (iii) we see that the sequence

· · ·
φ

−→ Y
φ

−→ Y
φ

−→ Y
φ

−→ · · ·

is a complex, where

φ(s, t) := (sα + (idM ⊗ t)β, tg)

for (s, t) ∈ HomT (P, M ⊗U Q′) ⊕ HomU (Q, Q′); and by (v) it is exact. This means that

HomΛ(P•,

 
M ⊗U Q′

Q′

!
) is exact. It follows that P• is a strongly complete Λ-projective

resolution.

Secondly, we prove the necessity. Let P• : · · ·
f

−→ X
f

−→ X
f

−→ X
f

−→ · · · be an

arbitrary strongly complete Λ-projective resolution. Then X is of the form

 
P

0

!
⊕

 
M ⊗U Q

Q

!
=

 
P ⊕ (M ⊗U Q)

Q

!
with P a projective T -module and Q a projective

U -module. Write f as
0
B@

 
α γ

β idM ⊗ g

!

g

1
CA :

 
P ⊕ (M ⊗U Q)

Q

!
−→

 
P ⊕ (M ⊗U Q)

Q

!
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with T -morphisms β : P −→ M ⊗U Q and γ : M ⊗U Q −→ P . Since f : X −→ X is a

Λ-morphism it follows that we have the commutative diagram

M ⊗U Q

0

B

@

0

idM⊗Q

1

C

A

//

idM⊗g

��

P ⊕ (M ⊗U Q)

0

B

@

α γ

β idM ⊗ g

1

C

A

��
M ⊗U Q

0

B

@

0

idM⊗Q

1

C

A

// P ⊕ (M ⊗U Q)

and hence γ = 0, i.e., f is given as in (1). By Kerf = Imf we have Kerg = Img, and

Ker

 
α 0

β idM ⊗ g

!
= Im

 
α 0

β idM ⊗ g

!
.

These imply that (i), (iii), (iv) are satisfied, and α2 = 0.

By the exactness of HomΛ(P•,

 
P ′

0

!
) and of HomΛ(P•,

 
M ⊗U Q′

Q′

!
) we see

that HomT (T •, P ′) is exact, and that (v) is satisfied. This completes the proof. �

2.2. Keep the notations T, U,M, Λ. Put

⊥M := { L ∈ T -mod | Exti
T (L, M) = 0, ∀ i ≥ 1};

 
(T -SGproj) ∩ ⊥M

0

!
:= {

 
P

0

!
∈ Λ-mod | P ∈ (T -SGproj) ∩ ⊥M };

 
M ⊗U (U -SGproj)

U - SGproj

!
:= {

 
M ⊗U Q

Q

!
∈ Λ-mod | Q ∈ U -SGproj }

where the Λ-module structure of

 
M ⊗U Q

Q

!
is given by the identity map M ⊗U Q −→

M ⊗U Q.

Theorem 2.2. Let Λ =

 
T M

0 U

!
be an artin algebra, and N a Λ-module. Then N

is a SG-projective Λ-module if and only if one of the following holds:

1) N ∈

 
(T -SGproj) ∩ ⊥M

0

!
;

2) N =

 
M ⊗U L

L

!
∈

 
M ⊗U (U-SGproj)

U-SGproj

!
, where L = Ker g with strongly

complete U-projective resolution · · ·
g

−→ Q
g

−→ Q
g

−→ Q
g

−→ · · · such that Ker(idM ⊗g) =

M ⊗U Ker g.



STRONGLY GORENSTEIN PROJECTIVE MODULES 7

3) N = Kerf =

 
{(p, x) ∈ P ⊕ (M ⊗U Q) | α(p) = 0, β(p) + (idM ⊗ g)(x) = 0}

Kerg

!
,

where

f =

0
B@

 
α 0

β idM ⊗ g

!

g

1
CA :

 
P ⊕ (M ⊗U Q)

Q

!
−→

 
P ⊕ (M ⊗U Q)

Q

!
,

P and Q are respectively arbitrary non-zero projective T -module and U-module, and α :

P −→ P and β : P −→ M ⊗U Q are T -morphisms, satisfying the conditions (i) − (v)

in 2.1.

Remark. 1. A direct sum of a module in 1) and a module in 2) of Theorem 2.2 is of

course again a SG-projective Λ-module: in fact it is in 3). In order to see this, just taking

β = 0 in 3).

We stress that 3) really produces new SG-projective Λ-modules. See 2.3.

2. If MU is flat, then by 2) of Theorem 2.2 each module in

 
M ⊗U (U -SGproj)

U -SGproj

!

is a SG-projective Λ-module. However, this is not true in general. See Example 2.4.

Proof of Theorem 2.2. First, we justify the sufficiency. If N ∈

 
(T -SGproj) ∩ ⊥M

0

!
,

then N = Ker α, where T • : · · ·
α

−→ P
α

−→ P
α

−→ P
α

−→ · · · is a strongly complete T -

projective resolution. Note that N ∈ ⊥M implies that

HomΛ(T •,

 
M ⊗U U

U

!
) ∼= HomT (T •, M ⊗U U) = HomT (T •, M)

is exact. Since HomΛ(T •,

 
M ⊗U Q

Q

!
) ∼= HomT (T •, M ⊗U Q) is a direct summand of

HomΛ(T •, M ⊗U Um) for some m, it follows that HomΛ(T •,

 
M ⊗U Q

Q

!
) is exact for

any projective U -module Q, i.e., T • is also a strongly complete Λ-projective resolution,

and hence N is a SG-projective Λ-module.

Let N =

 
M ⊗U L

L

!
∈

 
M ⊗U (U -SGproj)

U -SGproj

!
, where L = Ker g ∈ U -SGproj

with strongly complete U -projective resolution · · ·
g

−→ Q
g

−→ Q
g

−→ Q
g

−→ · · · such that

Ker(idM ⊗ g) = M ⊗U Ker g. Consider the sequence of projective Λ-modules

P• : · · ·
f

−→

 
M ⊗U Q

Q

!
f

−→

 
M ⊗U Q

Q

!
f

−→

 
M ⊗U Q

Q

!
f

−→ · · ·

with f :=

 
idM ⊗ g

g

!
:

 
M ⊗U Q

Q

!
−→

 
M ⊗U Q

Q

!
. By assumption we have

Ker f =

 
Ker(idM ⊗ g)

Ker g

!
=

 
M ⊗U Ker g

Ker g

!
=

 
M ⊗U Im g

Im g

!
= Im f ;
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since HomΛ(

 
M ⊗U Q

Q

!
,

 
P ′

0

!
) = 0 and

HomΛ(

 
M ⊗U Q

Q

!
,

 
M ⊗U Q′

Q′

!
) ∼= HomU (Q, Q′),

it follows that P• is a strongly complete Λ-projective resolution. Thus N = Ker f is a

SG-projective Λ-module.

The case 3) follows directly from Lemma 2.1.

Secondly, we justify the necessity. If N is a SG-projective Λ-module, then N = Kerf ,

where f is the Λ-map occurred in a strongly complete Λ-projective resolution P•. By

Lemma 2.1 f is of the form (2) where X and f are given in (1), satisfying the conditions

(i) − (v) in 2.1.

If Q = 0 in (1), then β = 0, g = 0, and hence by (ii) and (iv) in 2.1 we know that T •

is a strongly complete T -projective resolution; and by taking Q′ = U in (v) we see that

HomT (T •, M) is exact, which implies N = Kerf ∈ ⊥M . Thus N is of the form 1).

If P = 0 in (1), then α = 0, β = 0. By (i) and (v) we see that · · ·
g

−→ Q
g

−→ Q
g

−→

Q
g

−→ · · · is a strongly complete U -projective resolution; and by (iv) in 2.1 we have

Ker(idM ⊗ g) = M ⊗U Ker g. It follows that

N = Kerf =

 
Ker(idM ⊗ g)

Ker g

!
=

 
M ⊗U Ker g

Ker g

!
∈

 
M ⊗U (U -SGProj)

U -SGProj

!
.

The remaining case is 3). This completes the proof. �

2.3. Note that in the construction of upper triangular matrix artin algebra Λ =

 
T M

0 U

!
,

T -mod is embedded into Λ-mod via the functor FT : T -mod −→ Λ-mod given by FT (X) = 
X

0

!
; and U -mod is embedded into Λ-mod via the functor FU : U -mod −→ Λ-mod

given by FU (Y ) =

 
M ⊗U Y

Y

!
, where the Λ-module structure of

 
M ⊗U Y

Y

!
is

given via idM⊗U Y . Also note that U -mod is embedded into Λ-mod via the functor

GU : U -mod −→ Λ-mod given by FU (Y ) =

 
0

Y

!
. A Λ-module

 
X

Y

!
is said to

be newly produced, or simply new, provided that

 
X

Y

!
/∈ FT (T -mod) ⊕ FU (U -mod) ⊕ GU (U -mod).

In this sense a direct sum of module in 1) and a module in 2) of Theorem 2.2 is not

new. What we want to stress is that 3) of Theorem 2.2 really produces new strongly

Gorenstein projective Λ-modules, as the following example shows. This example also shows

that a upper triangular matrix artin algebra really produces new Gorenstein projective

Λ-modules.
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Example 2.3. Let Λ be the k-algebra given by the quiver

2•

@GFBECD
y
__

a //
1 •

@GFBECD
x__

with relations

x2, y2, ay − xa

(We write the conjunction of paths from right to left). Let T = k[x]/〈x2〉, U = k[y]/〈y2〉,

and T MU = ka ⊕ kxa = ka ⊕ kay with the natural T -U-actions by the conjunction

of paths. Then Λ =

 
T M

0 U

!
, with T M ∼= T T and MU

∼= UU . Write P for

P1 = Λe1 = ke1 ⊕ kx: it is the unique indecomposable projective T -module; and write Q

for U = ke2 ⊕ ky: it is the unique indecomposable projective U-module. Let α : P −→ P

be the T -morphism given by multiplication by x, g : Q −→ Q the U-morphism given by

multiplication by −y, and β : P −→ M the T -morphism given by the right multiplication

by a:

β(e1) = a, β(x) = xa.

Note that idM ⊗ g : M ⊗U Q −→ M ⊗U Q is given by the right multiplication by −y, if

M ⊗U Q is identified with M . Then α, β, g satisfy all the conditions (i)− (v) in 2.1, and

by Lemma 2.1 we get a strongly complete Λ-projective resolution

P• : · · ·
f

−→

 
P ⊕ (M ⊗U Q)

Q

!
f

−→

 
P ⊕ (M ⊗U Q)

Q

!
f

−→

 
P ⊕ (M ⊗U Q)

Q

!
f

−→ · · ·

with

f :=

0
B@

 
α 0

β idM ⊗ g

!

g

1
CA .

By Theorem 2.2 3) we obtain a strongly Gorenstein projective Λ-module

Kerf =

 
{(p, m) ∈ P ⊕ (M ⊗U Q) | α(p) = 0, β(p) + (idM ⊗ g)(m) = 0}

Kerg

!

=

 
{(cx, ca + day) ∈ P ⊕ M | c, d ∈ k}

ky

!
,

whose Λ-module structure is given via the T -morphism

M ⊗U ky −→ {(cx, ca + day) ∈ P ⊕ M | c, d ∈ k} : a ⊗ y 7→ (0, ay), ay ⊗ y 7→ (0, 0).

Observe that there is a T -isomorphism

T ∼= {(cx, ca + day) ∈ P ⊕ M | c, d ∈ k} : e1 7→ (x, a), x 7→ (0, ay).

From these we see that Kerf is a new, strongly, indecomposable Gorenstein projective

Λ-module.
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Let P2 = Λe2 = ke2 ⊕ ky ⊕ ka ⊕ kay = ke2 ⊕ ky ⊕ ka ⊕ kxa. Alternatively, P• can be

written as

· · ·

0

B

@

α 0

β g

1

C

A

−→ P1 ⊕ P2

f=

0

B

@

α 0

β g

1

C

A

−→ P1 ⊕ P2

0

B

@

α 0

β g

1

C

A

−→ P1 ⊕ P2

0

B

@

α 0

β g

1

C

A

−→ · · · .

In this expression we have Kerf = {(cx, ca + day + by) ∈ P1 ⊕ P2 | b, c, d ∈ k}. �

The following example shows that a module in

 
M ⊗U (U -SGproj)

U -SGproj

!
may not be a

SG-projective Λ-module.

Example 2.4. Let Λ be the k-algebra given by the quiver in Example 2.3 with relations

x2, y2, ay, and T MU = ka⊕kxa with the natural T -U-actions given by the conjunction

of paths, where T and U are same as in Example 2.3. Then Λ =

 
T M

0 U

!
with

T M ∼= T T ; MU
∼= S2 ⊕ S2, where S2 is the unique simple U-module (and also the

simple Λ-module corresponding vertex 2). Note that ky ∼= S2 is a SG-projective U-module,

and M ⊗U ky = 0. We claim that

 
M ⊗U ky

ky

!
=

 
0

ky

!
= S2 is not a strongly

Gorenstein Λ-module.

By Theorem 2.2 it suffices to prove that S2 is neither in 2) nor in 3) of Theorem 2.2.

If S2 is in 2) of Theorem 2.2, then we have a strongly complete U-projective resolution

· · ·
g

−→ Q
g

−→ Q
g

−→ Q
g

−→ · · · such that ky = Ker g and Ker(idM ⊗ g) = M ⊗U Ker g.

Then dimk Q = dimk Kerg + dimk Img = 2, and Q = U and g is given by multiplication

by y. Thus we have the desired contradiction

Ker(idM ⊗ g) = Ker 0 = M ⊗U U = M 6= 0 = M ⊗U ky = M ⊗U Ker g.

If S2 is in 3) of Theorem 2.2, then in Theorem 2.2 3) we have ky = Ker g, and by the

same argument above we have Q = U and that g is given by multiplication by y. Using

the same notation in Theorem 2.2 3) we have

S2 = Kerf =

 
{(p, m) ∈ P ⊕ (M ⊗U Q) | α(p) = 0, β(p) + (idM ⊗ g)(m) = 0}

Kerg

!

=

 
{(p, m) ∈ P ⊕ M | α(p) = 0, β(p) = 0}

ky

!
.

Write Kerf =

 
X

ky

!
. Then X 6= 0 since 0 6= m ∈ M , again a contradiction. �

3. SG-projective modules over one-point extensions

This section is to specialize the result in the last section when U is a field. Thus,

throughout this section Λ =

 
T M

0 k

!
, where T is a finite-dimensional k-algebra, k is

a field which is assumed to be algebraically closed, and M is a finite-dimensional T -module.
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3.1. Denote by

X :=

 
P ⊕ M2n

k2n

!
, f :=

0
B@

 
α 0

β eA

!

A

1
CA : X −→ X (3)

with P a projective T -module, where the Λ-module structure of X is given by

 
0

idM2n

!
:

M ⊗k k2n −→ P ⊕ M2n (here we identify M ⊗k k2n with M2n); A : k2n → k2n, and
eA : M2n → M2n are given by the block matrix

0
BBBBBBB@

0 1

0 0

. . .

0 1

0 0

1
CCCCCCCA

. (4)

Note that X =

 
P

0

!
⊕

 
M2n

k2n

!
is a projective Λ-module. It is clear that f : X −→ X

is a Λ-morphism.

Consider the following conditions (i) − (iii):

(i) · · ·
α

−→ P
α

−→ P
α

−→ P
α

−→ · · · is a strongly complete T -projective resolution;

(ii) β2i = −β2i−1α, β2iα = 0, 1 ≤ i ≤ n, where β =

0
BBBB@

β1

β2

...

β2n

1
CCCCA

: P → M2n;

(iii) For any s : P −→ M with sα =
P

1≤i≤n

t2iβ2i−1α for some t2i ∈ k, 1 ≤ i ≤ n,

there exists s′ : P −→ M , such that s = s′α +
P

i
t2iβ2i−1.

Lemma 3.1. With the notations above, if the conditions (i) − (iii) are satisfied, then

P• : · · ·
f

−→ X
f

−→ X
f

−→ X
f

−→ · · ·

is a strongly complete Λ-projective resolution; conversely, any strongly complete Λ-projective

resolution is of this form, where X and f are given in (3) and (4), satisfying the conditions

(i) − (iii).

Proof. First, we prove the sufficiency. It is clear that KerA = ImA. By (ii) we

have βα + eAβ = 0, and hence Im

 
α 0

β eA

!
⊆ ker

 
α 0

β eA

!
. For (p,

0
BBBB@

m1

m2

...

m2n

1
CCCCA

) ∈

Ker

 
α 0

β eA

!
. Then α(p) = 0, β2i(p) = 0, m2i = −β2i−1(p), 1 ≤ i ≤ n. By Kerα =
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Imα we have p′ ∈ P such that p = α(p′). By (ii) we verify that

(p,

0
BBBB@

m1

m2

...

m2n

1
CCCCA

) =

 
α 0

β eA

!
(p′,

0
BBBBBBBBBBBBBB@

0

m1 − β1(p
′)

0

m3 − β3(p
′)

0
...

0

m2n−1 − β2n−1(p
′)

1
CCCCCCCCCCCCCCA

).

It follows that Ker

 
α 0

β eA

!
= Im

 
α 0

β eA

!
, i.e., P• is exact.

Since HomΛ (

 
M2n

k2n

!
,

 
P ′

0

!
) = 0, it follows from (i) that HomΛ(P•,

 
P ′

0

!
)

is exact.

For the exactness of HomΛ(P•,

 
M ⊗k km

km

!
), we only need the exactness in the

case of m = 1. The reason is

 
M ⊗k km

km

!
=

 
M

k

!
⊕ · · · ⊕

 
M

k

!
. Since

HomΛ(

 
P

0

!
,

 
M

k

!
) ∼= HomT (P, M) and HomΛ(

 
M2n

k2n

!
,

 
M

k

!
) ∼= Homk(k2n, k),

it follows that the exactness of HomΛ(P•,

 
M ⊗k km

km

!
) is same as the exactness of

· · · −→ HomT (P, M) ⊕ Homk(k2n, k)
φ

−→ HomT (P, M) ⊕ Homk(k2n, k)
φ

−→ · · · ,

where φ is defined by

φ(s, t) := (sα + etβ, tA)

for (s, t) ∈ HomT (P, M) ⊕ Homk(k2n, k), t = (t1, t2, ..., t2n) : k2n −→ k, here et =

(t1, t2, ..., t2n) : M2n −→ M is given by

0
BBBB@

m1

m2

...

m2n

1
CCCCA

7−→
P

i
timi. By (ii) we have

Imφ ⊆ Kerφ; and (iii) implies that Kerφ ⊆ Imφ. This completes the sufficiency.

Secondly, we prove the necessity. Let P• be a strongly complete Λ-projective resolution.

Then P• is of the form

· · ·
f

−→ X ′ ⊕ Y
f

−→ X ′ ⊕ Y
f

−→ X ′ ⊕ Y
f

−→ · · · (∗)

with X ′ =

 
P

0

!
and Y =

 
M ⊗k kr

kr

!
. Note that P and r could be 0. We identity

M⊗kkr with Mr. Since HomΛ(

 
Mr

kr

!
,

 
P

0

!
) = 0, it follows that f is of the form (3),
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with α ∈ HomT (P, P ), β ∈ HomT (P, Mr), A ∈ Homk(kr, kr) and eA ∈ HomT (Mr, Mr).

Since · · ·
A

−→ kr A
−→ kr A

−→ kr A
−→ · · · is exact, it follows from the Jordan canonical

form of A that r is even, say, r = 2n, and that A is of form (4). By Ker

 
α 0

β eA

!
=

Im

 
α 0

β eA

!
we get (ii) and Kerα = Imα (we omit the details). By the exactness of

HomΛ(P•,

 
P ′

0

!
) we get (i).

By the exactness of HomΛ(P•,

 
M ⊗k k

k

!
) we can get (iii). We omit the details.

This completes the proof. �

3.2. In order to simplify the strongly complete Λ-projective resolution obtained in Lemma

3.1, we note that if a complex is isomorphic to a strongly complete projective resolution,

then this complex itself is also a strongly complete projective resolution with the same

SG-projective module, up to an isomorphism.

Consider the following complex of projective Λ-modules

· · ·
h

−→

 
P ⊕ M2n

k2n

!
h

−→

 
P ⊕ M2n

k2n

!
h

−→

 
P ⊕ M2n

k2n

!
h

−→ · · · (5)

with

h :=

0
B@

 
α 0

0 eA

!

A

1
CA , (6)

where A : k2n → k2n, and eA : M2n → M2n are given by the block matrix (4);

α : P −→ P satisfies the condition (i) and the following condition

(iv) For any s : P −→ M with sα = 0, there exists s′ : P −→ M , such that

s = s′α.

Observe that (iv) is equivalent to (iii) in 3.1.

Theorem 3.2. A sequence P• of Λ-modules is a strongly complete Λ-projective resolution

if and only if it is isomorphic as a complex to a sequence of form (5) with α satisfying (i)

and (iv).

Proof. By Lemma 3.1 any strongly complete Λ-projective resolution is of the form

P• : · · ·
f

−→

 
P ⊕ M2n

k2n

!
f

−→

 
P ⊕ M2n

k2n

!
f

−→

 
P ⊕ M2n

k2n

!
f

−→ · · ·

where f is given in (3) with α and β satisfying the conditions (i) − (iii) in 3.1.
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Put eβ :=

0
BBBBBBBBBBBB@

0

β1

0

β3

...

0

β2n−1

1
CCCCCCCCCCCCA

: P → M2n. Then by condition (ii) in 3.1 we have

eβα + β = eAeβ,

and hence we have the commutative diagram of Λ-morphisms

 
P ⊕ M2n

k2n

!
f=

0

B

B

B

B

B

@

 
α 0

β eA

!

A

1

C

C

C

C

C

A

//

0

B

B

B

B

B

@

 
idP 0
eβ idM2n

!

idk2n

1

C

C

C

C

C

A

��

 
P ⊕ M2n

k2n

!

0

B

B

B

B

B

@

 
idP 0
eβ idM2n

!

idk2n

1

C

C

C

C

C

A

�� 
P ⊕ M2n

k2n

!
h=

0

B

B

B

B

B

@

 
α 0

0 eA

!

A

1

C

C

C

C

C

A

//

 
P ⊕ M2n

k2n

!

Note that

0
B@

 
idP 0
eβ idM2n

!

idk2n

1
CA is an isomorphism.

Conversely, the assertion follows from Lemma 3.1. This completes the proof. �

3.3. Keep the notations as in 2.2. The following result shows in particular that one-point

extensions do not produce new strongly Gorenstein projective modules.

Corollary 3.3. Let Λ =

 
T M

0 k

!
be a finite-dimensional k-algebra with k an alge-

braically closed field, and N a Λ-module. Then N is a SG-projective Λ-module if and only

if N is one of the following form

1) N ∈

 
(T -SGproj) ∩ ⊥M

0

!
;

2) N =

 
Mn

kn

!
, i.e., N is the n copy of the last projective Λ-module

 
M

k

!
, for

any positive integer n;

3) A direct sum of a module in 1) and a module in 2).



STRONGLY GORENSTEIN PROJECTIVE MODULES 15

Proof. By Theorem 3.2 we need to compute Kerh, where

h :=

0
B@

 
α 0

0 eA

!

A

1
CA :

 
P ⊕ M2n

k2n

!
−→

 
P ⊕ M2n

k2n

!
,

P is an arbitrary projective T -module; A : k2n → k2n, and eA : M2n → M2n are given

by the block matrix in (4) (here n could be zero); α : P −→ P satisfy the condition (i)

in 3.1 and (iv) in 3.2. Thus

Kerh =

 
{(p, x) ∈ P ⊕ M2n | α(p) = 0, eA(x) = 0}

KerA

!
.

Write x =

0
BBBB@

m1

m2

...

m2n

1
CCCCA

∈ M2n. Note that KerA = kn ⊆ k2n : more precisely, if we write

k2n = k1 ⊕ k2 ⊕ · · · ⊕ k2n−1 ⊕ k2n with k1 = k2 = · · · = k2n−1 = k2n = k, then

KerA = kn = k1 ⊕ k3 ⊕ · · · ⊕ k2n−1

(it is understood to be zero if n = 0). Then we rewrite Kerh as the following form

Kerh =

0
B@

{(p, x) ∈ P ⊕ M2n | α(p) = 0, eA(x) = 0}

KerA

1
CA

=

0
BBBBBBBBBBBBBBBBB@

{(p,

0
BBBBBBBBBBBB@

m1

0

m3

0
...

m2n−1

0

1
CCCCCCCCCCCCA

∈ P ⊕ M2n | α(p) = 0}

k1 ⊕ k3 ⊕ · · · ⊕ k2n−1

1
CCCCCCCCCCCCCCCCCA

⊆

 
Kerα

0

!
⊕

 
M2n

k2n

!
.

With this expression we immediately see that

Kerh ∼=

 
Kerα

0

!
⊕

 
Mn

kn

!

via the isomorphism

Kerh ∋ (p,

0
BBBBBBBBBBBB@

m1

0

m3

0
...

m2n−1

0

1
CCCCCCCCCCCCA

,

0
BBBB@

c1

c3

...

c2n−1

1
CCCCA

) 7→ (p,

0
BBBB@

m1

m3

...

m2n−1

1
CCCCA

,

0
BBBB@

c1

c3

...

c2n−1

1
CCCCA

) ∈

 
Kerα

0

!
⊕

 
M2n

k2n

!
.
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Now, by (i) we know Kerα ∈ T -SGproj, and by (iv) we know Kerα ∈ ⊥M. This completes

the proof. �
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