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Since Eilenberg and Moore [EM], the relative homological algebra, especially

the Gorenstein homological algebra ([EJ2]), has been developed to an advanced

level. The analogues for the basic notion, such as projective, injective, flat, and

free modules, are respectively the Gorenstein projective, the Gorenstein injective,

the Gorenstein flat, and the strongly Gorenstein projective modules. One consid-

ers the Gorenstein projective dimensions of modules and complexes, the existence

of proper Gorenstein projective resolutions, the Gorenstein derived functors, the

Gorensteinness in triangulated categories, the relation with the Tate cohomology,

and the Gorenstein derived categories, etc.

This concept of Gorenstein projective module even goes back to a work of Aus-

lander and Bridger [AB], where the G-dimension of finitely generated module M

over a two-sided Noetherian ring has been introduced: now it is clear by the work of

Avramov, Martisinkovsky, and Rieten that M is Goreinstein projective if and only

if the G-dimension of M is zero (the remark following Theorem (4.2.6) in [Ch]).

The aim of this lecture note is to choose some main concept, results, and typical

proofs on Gorenstein projective modules. We omit the dual version, i.e., the ones

for Gorenstein injective modules. The main references are [ABu], [AR], [EJ1], [EJ2],

[H1], and [J1].

Throughout, R is an associative ring with identity element. All modules are

left if not specified. Denote by R-Mod the category of R-modules, R-mof the
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category of all finitely generated R-modules, and R-mod the category of all finite-

dimensional R-modules if R is an algebra over field k. Note that if R is a finite-

dimensional k-algebra, then R-mof = R-mod. Denote by R-Proj, or simply, Proj,

the full subcategory of projective R-modules.

In the relative homological algebra, the following concept is fundamental. Let

X be a full subcategory of R-Mod which is closed under isomorphism, and M an

R-module. Recall from [AR] (also [EJ1]) that a right X -approximation (or, F-

precover) of M is an R-homomorphism f : X −→ M with X ∈ X , such that

the induced map HomR(X ′, X) −→ HomR(X ′,M) is surjective for any X ′ ∈ X . If

every module M admits a right X -approximation, then X is called a contravariantly

finite subcategory, or X is a precovering class.

If every module M admits a surjective, right X -approximation, then every

module M has a (left) X -resolution which is Hom(X ,−)-exact. Such a resolu-

tion is called a proper (left) X -resolution of M . Conversely, if every module ad-

mits a proper (left) X -resolution, then every module admits a surjective, right

X -approximation.

Dually, one has the concept of a left X -approximation (or, a X -preenvelope)

of M , a covariantly finite subcategory (or, a preenveloping class), and a coproper

(right) X -resolution of M .

By a HomR(X ,−)-exact sequence E•, we mean that E• itself is exact, and that

HomR(X, E•) remains to be exact for any X ∈ X . Dually, we use the terminology

Hom(−,X )-exact sequence.
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1. Gorenstein projective modules

We recall some basic properties of Gorenstein projective modules.

1.1. A complete projective resolution is a HomR(−,Proj)-exact sequence

(P•, d) = · · · −→ P−1 d−1

−→ P 0 d0

−→ P 1 d1

−→ P 2 −→ · · ·

of projective R-modules. An R-module M is called Gorenstein projective if there

is a complete projective resolution (P•, d) such that M ∼= Imd−1 (Enochs-Jenda

[EJ1], 1995).

Denote by R-GProj, or simply, GProj, the full subcategory of (left) Gorenstein

projective modules.

Remark 1.1. Auslander-Reiten [AR] have considered the following full subcategory

for a full subcategory ω

Xω ={M ∈ R-Mod | ∃ an exact sequence

0 −→ M −→ T 0 d0

−→ T 1 d1

−→ · · · , with T i ∈ ω, Kerdi ∈ ⊥ω, ∀ i ≥ 0}.

Note that if ω = R-Proj, then Xω = R-GProj.

If R is an artin algebra, then the Gorenstein projective R-modules are also re-

ferred as the Cohen-Macaulay modules by some mathematician (see e.g. [Be]).

Facts 1.2. (i) If A is a self-injective algebra, then GProj = A-Mod.

(ii) A projective module is Gorenstein projective.

(iii) If (P•, d) is a complete projective resolution, then all Imdi are Gorenstein

projective; and any truncations

· · · −→ P i −→ Imdi −→ 0, 0 −→ Imdi −→ P i+1 −→ · · ·

and

0 −→ Imdi −→ P i+1 −→ · · · −→ P j −→ Imdj −→ 0, i < j

are Hom(−,Proj)-exact.

(iv) If M is Gorenstein projective, then Exti
R(M,L) = 0, ∀ i > 0, for all

modules L of finite projective dimension.

(v) A module M is Gorenstein projective if and only if M ∈ ⊥(Proj) and M

has a right Proj-resolution which is Hom(−,Proj)-exact; if and only if there exists

an exact sequence

0 −→ M −→ T 0 d0

−→ T 1 d1

−→ · · · , with T i ∈ Proj, Kerdi ∈ ⊥(Proj), ∀ i ≥ 0.
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(vi) For a Gorenstein projective module M , there is a complete projective res-

olution · · · −→ F−1 d−1

−→ F 0 d0

−→ F 1 −→ · · · consisting of free modules, such that

M ∼= Imd−1.

(vii) The projective dimension of a Gorenstein projective module is either zero

or infinite. So, Gorenstein projective modules make sense only to rings of infinite

global dimension.

Proof. (vi) There is a Hom(−,Proj)-exact sequence 0 −→ M −→ P 0 −→ P 1 −→
· · · with each P i projective. Choose projective modules Q0, Q1, · · · , such that F 0 =

P 0⊕Q0, Fn = Pn⊕Qn−1⊕Qn, n > 0, are free. By adding 0 −→ Qi =−→ Qi −→ 0

to the exact sequence in degrees i and i + 1, we obtain a Hom(−,Proj)-exact

sequence of free modules. By connecting a deleted free resolution of M together

with the deleted version of this sequence, we get the desired sequence.

(vii) Let 0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ G −→ 0 be a projective

resolution of a Gorenstein projective R-module M , with n minimal. If n ≥ 1, then

by Extn
R(G, Pn) = 0 we know Hom(Pn−1, Pn) −→ Hom(Pn, Pn) is surjective, which

implies 0 −→ Pn −→ Pn−1 splits. This contradict the minimality of n. �

1.2. A full subcategory X of R-Mod is resolving, if Proj ⊆ X , X is closed under

extensions, the kernels of epimorphisms, and the direct summands.

Theorem 1.3. For any ring R, GProj is resolving, and closed under arbitrary

direct sums.

Proof. In fact, this is a special case of [AR], Proposition 5.1. We include a direct

proof given in [H1]. Easy to see GProj is closed under arbitrary direct sums; and

it is closed under extension by using the corresponding Horseshoe Lemma. Let

0 −→ M1 −→ M −→ M2 −→ 0 be a short exact sequence with M, M2 Gorenstein

projective. Then M1 ∈ ⊥(Proj). Construct a Hom(−,Proj)-exact, right Proj-

resolution of M1 as follows. Let

M = 0 −→ M −→ P 0 −→ P1 −→ · · ·

and

M2 = 0 −→ M2 −→ Q0 −→ Q1 −→ · · ·

be such resolutions of M and M2, respectively. By Hom(−,Proj)-exactness of M,

M −→ M2 induces a chain map M −→ M2, with mapping cone denoted by C.

Then C is exact, and Hom(−,Proj)-exact by using the distinguished triangle and
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the induced long exact sequence. Consider a short exact sequence of complexes

0 // M1
// C // D // 0

0

��

0

��

0

��
0 // M1

//

��

M //

��

M2
// 0

0 // P 0 //

��

M2 ⊕ P 0 //

��

M2
//

��

0

0 // Q0 ⊕ P 1

��

Q0 ⊕ P 1 //

��

0 //

��

0

...
...

...

Since C, D are exact, so is M1. By a direct analysis on each row, we have an exact

sequence of complexes

0 −→ Hom(D, P ) −→ Hom(C, P ) −→ Hom(M1, P ) −→ 0

for every projective P . Since Hom(D, P ) and Hom(C, P ) are exact, so is Hom(M1, P ).

This proves that M1 is Gorenstein projective. It remains to prove GProj is closed

under arbitrary direct summands. Using Eilenberg’s swindle. Let X = Y ⊕ Z ∈
GProj. Put W = Y ⊕ Z ⊕ Y ⊕ Z ⊕ Y ⊕ Z ⊕ · · · . Then W ∈ GProj, and Y ⊕W ∼=
W ∈ GProj. Consider the split exact sequence 0 −→ Y −→ Y ⊕W −→ W −→ 0.

Then Y ∈ GProj since we have proved that GProj is closed under the kernel of

epimorphisms. �

1.3. Finitely generated Gorenstein projective modules.

The full subcategory of finitely generated, Gorenstein projective modules is

GProj ∩ R-mof. Denote by proj the full subcategory of finitely generated pro-

jective R-modules; and by Gproj the full category of modules M isomorphic to

Imd−1, where

· · · −→ P−1 d−1

−→ P 0 d0

−→ P 1 d1

−→ P 2 −→ · · ·

is a Hom(−,proj)-exact sequence with each P i ∈ proj.
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Recall that a ring is left coherent, if each finitely generated left ideal of R is

finitely presented; or equivalently, any finitely generated submodule of a finitely

presented left module is finitely presented. A left noetherian ring is left coherent.

Proposition 1.4. Let R any ring. Then Gproj ⊆ GProj ∩R-mof.

If R is left cohenret, then GProj ∩R-mof = Gproj.

Proof. Let M ∈ Gproj. Then there is a Hom(−,proj)-exact sequence

P• = · · · −→ P−1 d−1

−→ P 0 d0

−→ P 1 d1

−→ P 2 −→ · · ·

with each P i ∈ proj, such that M ∼= Imd−1. So M is finitely generated. Since

each P i is finitely generated, it is clear that P• is also Hom(−,Proj)-exact, i.e.,

M ∈ GProj ∩R-mof.

Let R be a coherent ring, and M ∈ GProj ∩ R-mof. By Facts 1.2(vi) one

can take an exact sequence 0 −→ M
f−→ F −→ X −→ 0 with F free and X

Gorenstein projective. Since M is finitely generated, one can write F = P 0 ⊕ Q0

with Imf ⊆ P 0. Then we have an exact sequence 0 −→ M
f−→ P 0 −→ M ′ −→ 0

with X ∼= M ′ ⊕ Q0, and hence M ′ ∈ GProj ∩ R-mof by Theorem 1.2. Repeating

this procedure with M ′ replacing M , we get an exact sequence

0 −→ M −→ P 0 −→ P 1 −→ · · ·

with all images in GProj∩R-mof. Hence it is a Hom(−,proj)-exact sequence. Since

M is a finitely generated submodule of P 0 which is finitely presented, M is finitely

presented. Repeating this we get a finitely generated projective resolution of M ,

which is Hom(−,proj)-exact since M ∈ ⊥(proj). So M ∈ Gproj. �

1.4. Strongly Gorenstein projective modules

A complete projective resolution of the form · · · f−→ P
f−→ P

f−→ P
f−→ · · · is

said to be strong, and M ∼= Kerf is called a strongly Gorenstein projective module

([BM]). Denote by SGProj the full subcategory of strongly Gorenstein projective

modules. Then it is known in [BM] that

Proj $ SGProj $ GProj;

and that a module is Gorenstein projective if and only if it is a direct summand

of a strongly Gorenstein projective module. So, a strongly Gorenstein projective

module is an analogue of a free module.
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Denote by SGproj the full subcategory of all the modules M isomorphic to Kerf ,

where · · · f−→ P
f−→ P

f−→ P
f−→ · · · is a complete projective resolution with P

finitely generated. Then for any ring R, then category of all the finitely generated,

strongly Groenstein projective modules is exactly SGproj, namely we have

(SGProj) ∩ R-mof = SGproj.

Remark. Up to now there are no efficient ways of constructing concretely

(especially finitely generated) Gorenstein projective modules. Strongly Gorenstein

projective modules may provide an easier way to obtain the Gorenstein projective

modules. In [GZ2] we determined all the finitely generated strongly Gorenstein

projective modules over upper triangular matrix artin algebras.
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2. Proper Gorenstein projective resolutions

A basic problem in Gorenstein homological algebra is, given a ring R, when R-

GProj is contravariantly finite; or equivalently, when every module admits a proper

Gorenstein projective resolution.

2.1. First, we recall a general result due to Auslander and Buchweitz [ABu].

Let A be an abelian category, X be a full subcategory of A closed under exten-

sions, direct summands, and isomorphisms. Let ω be a cogenerator of X , which

means ω is a full subcategory of X closed under finite direct sums and isomorphisms,

and for any X ∈ X , there is an exact sequence 0 −→ X −→ B −→ X ′ −→ 0 in

X with B ∈ ω. Denote by X̂ the full subcategory of A consisting of all objects X

of finite X -dimension n, i.e., there is an exact sequence 0 −→ Xn −→ Xn−1 −→
· · · −→ X0 −→ X −→ 0 with Xi ∈ X .

Theorem 2.1. ([ABu], Theorems 1.1, 2.3, 2.5) (i) Every object C ∈ X̂ has

a surjective right X -approximation. More precisely, for any C ∈ X̂ there is a

Hom(X ,−)-exact sequence

0 −→ YC −→ XC −→ C −→ 0

with XC ∈ X , YC ∈ ω̂; and YC ∈ X⊥.

(ii) Every object C ∈ X̂ has a injective left ω̂-approximation. More precisely, for

any C ∈ X̂ there is a Hom(−, ω̂)-exact sequence

0 −→ C −→ Y C −→ XC −→ 0

with XC ∈ X , Y C ∈ ω̂; and XC ∈ ⊥ω̂.

2.2. A proper Gorenstein projective resolution of an R-module M is a Hom(GProj,−)-

exact sequence G• : · · · −→ G1 −→ G0 −→ M −→ 0 with each Gi Gorenstein

projective.

Note that Hom(GProj,−)-exactness guarantee the uniqueness of such a resolu-

tion in the homotopy category.

2.3. The Gorenstein projective dimension, GpdM , of R-module M is defined as

the smallest integer n ≥ 0 such that M has a GProj-resolution of length n.

Theorem 2.2. Let M be an R-module of finite Gorenstein projective dimension

n. Then M admits a surjective right GProj-approximation φ : G −→ M , with

pd Kerφ = n − 1 (if n = 0, then K = 0). In particular, a module of finite
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Gorenstein projective dimension n admits a proper Gorenstein projective resolution

of length at most n.

Proof. This follows from Theorem 2.1(i) by letting X = GProj, ω = Proj. How-

ever, we include a direct proof given in [H1]. Recall the Auslander-Bridger Lemma

([AB], Lemma 3.12), which in particular showing that any two “minimal” resolu-

tions are of the same length.

Auslander-Bridger Lemma Let X be a resolving subcategory of an abelian

category A having enough projective objects. If

0 −→ Xn −→ Xn−1 −→ · · · −→ X0 −→ A −→ 0

and

0 −→ Yn −→ Yn−1 −→ · · · −→ Y0 −→ A −→ 0

are exact sequences with Xi, Yi ∈ X , 0 ≤ i ≤ n − 1, then Xn ∈ X if and only if

Yn ∈ X .

Coming back to the proof. Take an exact sequence 0 −→ K ′ −→ Pn−1 −→
· · · −→ P0 −→ M −→ 0 with Pi projective. By Auslander-Bridger Lemma, K ′ is

Gorenstein projective. Hence there is a Hom(−,Proj)-exact sequence 0 −→ K ′ −→
Q0 −→ Q1 −→ · · ·Qn−1 −→ G −→ 0, where Qi are projective, G is Gorenstein

projective. Thus there exist homomorphisms Qi −→ Pn−1−i for i = 0, ..., n − 1,

and G −→ M , such that the following diagram is commutative

0 // K ′ // Q0 //

��

Q1 //

��

· · · // Qn−1 //

��

G′ //

��

0

0 // K ′ // Pn−1
// Pn−2

// · · · // P0
// M // 0.

Let C•1 and C•2 denote the upper and the lower row, respectively. Then we have a

distinguished triangle in the homotopy category

C•1
f•−→ C•2 −→ Con(f•) −→ C•1 [1].

Since H0 is a cohomology functor, it follows that Con(f•) is also exact, i.e., we

have exact sequence

0 −→ K ′
α−→ Q0⊕K ′ −→ Q1⊕Pn−1 −→ · · · −→ Qn−1⊕P1 −→ G′⊕P0 −→ M −→ 0

with α splitting mono. It follows that we have exact sequence

0 −→ Q0 −→ Q1 ⊕Qn−1 −→ · · · −→ Qn−1 ⊕Q1 −→ G′ ⊕ P0
φ−→ M −→ 0
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with G′⊕P0 Gorenstein projective, pd Ker φ ≤ n− 1 (then necessarily pd Ker φ =

n− 1). Since Exti(H,Proj) = 0 for i ≥ 1 and Gorenstein projective module H, so

in particular Ext1(H,Ker φ) = 0, and hence φ is a left GProj-approximation. �

Corollary 2.3. If 0 −→ G′ −→ G −→ M −→ 0 is a short exact sequence with G′,

G Gorenstein projective, and Ext1(M,Proj) = 0, then M is Gorenstein projective.

Proof. Since Gpd M ≤ 1, by the theorem above there is an exact sequence

0 −→ Q −→ E −→ M −→ 0 with E Gorenstein projective and Q projective. By

assumption Ext1(M,Q) = 0, hence M is Gorenstein projective by Theorem 1.2. �

Remark 2.4. If R is left noetherian and M is a finitely generated left module

with GpdM = n < ∞, then M has a surjective left Gproj-approximation G −→ M

with kernel of projective dimension n − 1. Hence M has a proper finitely gener-

ated Gorenstein projective resolution of length at most n. The proof is same as

Proposition 1.4.

2.4. We list some facts on the Gorenstein projective dimensions of modules.

Proposition 2.5. ([H1]) 1. We have Gpd(
⊕

Mi) = sup{GpdMi | i ∈ I}.

2. Let n be an integer. Then the following are equivalent. (i) GpdM ≤ n. (ii)

Exti(M,L) = 0 for all i > n and modules L with finite pdL. (iii) Exti(M,Q) = 0

for all i > n and projective modules Q. (iv) For every exact sequence 0 −→
K−n −→ G−n+1 −→ · · · −→ G−1 −→ G0 −→ M −→ 0 with all Gi Gorenstein

projective, then also K−n is Gorenstein projective.

3. Let 0 −→ M ′ −→ M → M ′′ −→ 0 be a short exact sequence. If any two of

the modules have finite Gorenstein projective dimension, then so has the third.

4. If M is of finite projective dimension, then GpdM = pdM .

2.5. If M has a proper Gorenstein projective resolution G• −→ M −→ 0, then for

any module N , the Gorenstein right derived functor Extn
GProj(−, N) of HomR(−, N)

is defined as

Extn
GProj(M,N) := HnHomR(G•,N).

Note that it is only well-defined on the modules having proper Gorenstein projective

resolutions. Dually, fix a module M , one has the Gorenstein right derived functor

Extn
GInj(M,−) of HomR(M,−), which is defined on the modules having coproper

Gorenstein injective resolutions.



A BRIEF INTRODUCTION TO GORENSTEIN PROJECTIVE MODULES 11

Theorem 2.6. ([AM], [H3]) For all modules M and N with GpdRM < ∞ and

GidRN < ∞, one has isomorphisms

Extn
GProj(M,N) ∼= Extn

GInj(M,N),

which are functorial in M and N ; and if either pd M < ∞ or id N < ∞, then the

group above coincides with Extn(M,N).

Remark 2.7. (i) If 0 −→ M1 −→ M2 −→ M3 −→ 0 is a short Hom(GProj,−)-

exact sequence, where all Mi have proper Gorenstein projective resolutions, then

for any N , Extn
GProj(−, N) induce a desired long exact sequence ([AM], [V]).

(ii) If 0 −→ N1 −→ N2 −→ N3 −→ 0 is a short Hom(GProj,−)-exact sequence,

and M has a proper Gorenstein projective resolution, then Extn
GProj(M,−) induce

a desired long exact sequence ([EJ2], [AM], [V]).

(iii) Over some special rings (e.g. the Gorenstein rings), the Gorenstein Ext

groups, the usual Ext groups, and the Tate cohomology groups can be related by a

long exact sequence ([AM], [J2]).



12 PU ZHANG

3. Gorenstein rings

By a Gorenstein ring (an n-Gorenstein ring) R, we mean that R is left and right

noetherian, and that RR and RR have finite injective dimension (at most n).

Finite-dimensional k-algebras which are self-injective, or are of finite global di-

mension, are examples of Gorenstein rings. But there are many other examples of

Gorenstein rings.

For an example, let Λ be the k-algebra given by the quiver

2•
@GFBECDy

__
a // 1 •

@GFBECD
x__

with relations x2, y2, ay − xa (we write the conjunction of paths from right to

left). Then Λ is a Gorenstein algebra which is of infinite global dimension, and not

self-injective.

3.1. One has the following basic property of an n-Gorenstein ring.

Theorem 3.1. (Iwanaga, 1980) Let R be an n-Gorenstein ring, and M a left

R-module. Then the following are equivalent. (i) id M < ∞. (ii) id M ≤ n.

(iii) pd M < ∞. (iv) pd M ≤ n. (v) fd M < ∞. (vi) fd M ≤ n.

Proof. Before proving the theorem, we first recall some useful facts.

(A) If id RR ≤ n, then id RP ≤ n, for any left projective module P .

In fact, note that P may be a direct summand of an infinite direct sum R(I).

Then it suffices to see id R(I) ≤ n, or equivalently, Extn+i
R (N,R(I)) = 0 for any

i ≥ 1 and for any module N . Since N is a direct limit of all finitely generated

submodules Ni of N , and since

Extn+i
R (lim

−→
Ni, R

(I)) = lim
←−

Extn+i
R (Ni, R

(I)),

it suffices to prove Extn+i
R (N,R(I)) = 0 for any i ≥ 1 and for any finitely generated

module N . This is true since for finitely generated module N one has

Extn+i
R (N,R(I)) = Extn+i

R (N,R)(I) = 0.

(B) A module is flat if and only if it is a direct limit of projective modules.

The sufficiency follows from

Tori(X, lim
−→

Nj) = lim
−→

Tori(X, Nj), ∀ i ≥ 1, ∀ XR.
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The proof of the necessity is not a short one. The first proof was given by V.E.

Govorov in ”On flat modules” (Russian), Sib. Math. J. VI (1965), 300-304; and

then it was proved by D. Lazard in ”Autour de la Platitude”, Bull. Soc. Math.

France 97 (1969), 81-128.

(C) If R is left noetherian, and id RR ≤ n, then id RF ≤ n, for any left flat

module F .

In fact, by (B) we have id F = id lim
−→

Pi. Since R is left noetherian, we have

Exti
R(M, lim

−→
Ni) = lim

−→
Exti

R(M,Ni)

for any finitely generated module M . It follows that id lim
−→

Ni ≤ sup{id Ni}. Now

the assertion follows from (A).

(iii) =⇒ (ii): Since pd M < ∞, and id P ≤ n for any projective module P by

(A), it follows that id M ≤ n.

(v) =⇒ (iv): Let m = fd M < ∞. Take a projective resolution of M

· · · −→ Pt −→ Pt−1 −→ · · · −→ P0 −→ M −→ 0.

If m > n, then by dimension shift we see F = Im(Pm −→ Pm−1) is flat, and

hence id F ≤ n by (C). Then Extm(M,F ) = 0, which implies Hom(Pm−1, F ) −→
Hom(F, F ) is surjective, and hence F ↪→ Pn−1 splits, say Pn−1 = F ⊕G. Hence we

have exact sequence

0 −→ G −→ Pm−2 −→ · · · −→ P0 −→ M −→ 0

with G projective. If m− 1 = n then we are done. If m− 1 > n then we repeat the

procedure with G replacing F . So we see pd M ≤ n. If m ≤ n, then we also have

pd M ≤ n. Otherwise d = pd M > n, then one can choose d′ < ∞, n < d′ ≤ d.

Note that F ′ = Im(Pd′ −→ Pd′−1) is again flat by dimension shift, and hence

id F ′ ≤ n by (C). Then Extd′(M,F ′) = 0, which implies Hom(Pd′−1, F
′) −→

Hom(F ′, F ′) is surjective, and hence F ′ ↪→ Pd′−1 splits, say Pd′−1 = F ′ ⊕ G′.

Hence we have exact sequence

0 −→ G′ −→ Pd′−2 −→ · · · −→ P0 −→ M −→ 0

with G′ projective. This contradicts d = pd M.

(i) =⇒ (vi): It suffices to prove fd I ≤ n for any injective left R-module. Note

that I+ = HomZ(I, Q/Z) is flat right R-module. Then by (C) on the right one has
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id I+ ≤ n, and hence fd I++ ≤ n. However, I is a pure submodule of I++, it

follows that (for details see Appendix)

fd I ≤ fd I++ ≤ n.

Now we have (i) =⇒ (vi) =⇒ (v) =⇒ (iv) =⇒ (iii) =⇒ (ii) =⇒ (i). �

3.2. As we will see, for an n-Gorenstein ring, the full subcategory of Gorenstein

projective modules is exactly the left perpendicular of projective modules.

Lemma 3.2. ([EJ2], Lemma 10.2.13) Let R be an n-Gorenstein ring. Then every

module M has an injective left L-approximation f : M −→ L, where L is the full

subcategory of R-modules of finite injective dimension.

Theorem 3.3. ([EJ2]) Let R be an n-Gorenstein ring. Then GProj = ⊥(Proj).

Proof. Note that GProj ⊆ ⊥(Proj). Assume M ∈ ⊥(Proj). By Lemma 3.2

M has an injective left L-approximation f : M −→ L. Take an exact sequence

0 −→ K −→ P 0 θ−→ L −→ 0 with P 0 projective. By Theorem 3.1 K has finite

projective dimension. It follows from this and the assumption M ∈ ⊥(Proj) that

Exti(M,K) = 0 for i ≥ 1. In particular Ext1(M,K) = 0. Thus, θ induces a

surjective map HomR(M,P 0) −→ HomR(M,L). Hence we get g : M −→ P 0 such

that f = θg. Since f is an injective left L-approximation and P 0 ∈ L, we deduce

that g is also an injective left L-approximation, and hence Exti(P 0/M,Proj) = 0 for

i ≥ 1. Applying the same argument to P 0/M and continuing this process, we obtain

a long exact sequence 0 −→ M −→ P 0 −→ P 1 −→ · · · , which is Hom(−,Proj)-

exact. Putting a (deleted) projective resolution of M together with (the deleted

version of) this exact sequence, we see M is Gorenstein projective. �

Corollary 3.4. Let R be an n-Gorenstein ring, and

0 −→ K −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0

be an exact sequence with Pi projective. Then K is Gorenstein projective.

Proof. Note that Exti
R(K, Proj) = Extn+i

R (M,Proj) = 0 for all i ≥ 1, by Theorem

3.1. Then K is Gorenstein projective by Theorem 3.3. �

Theorem 3.3 together with Corollary 3.4 are few existed way of producing Goren-

stein projective modules.
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3.3. The following shows, in particular, that for an n-Gorenstein ring, the subcate-

gory of Gorenstein projective modules is covariantly finite; and moreover, that any

module has a proper Gorenstein projective resolution of bounded length n.

Theorem 3.5. ([EJ2]) Let R be an n-Gorenstein ring. Then every R-module M

has a surjective left GProj-approximation φ : G −→ M −→ 0, with pd Ker φ ≤
n − 1 (if n = 0 then Ker φ = 0). Thus, every R-module has Gorenstein projective

dimension at most n.

Proof. By the corollary above there is an exact sequence

0 −→ K −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0

with every Pi projective and K Gorenstein projective. Since K is Gorenstein pro-

jective, there is a Hom(−,Proj)-exact sequence

0 −→ K −→ P 0 −→ P 1 −→ · · · −→ Pn−1 −→ G′ −→ 0 (∗)

with every P i projective and G′ Gorenstein projective. Since (∗) is Hom(−,Proj)-

exact, we have the following commutative diagram with exact rows

0 // K // P 0 //

��

P 1 //

��

· · · // Pn−1 //

��

G′ //

��

0

0 // K // Pn−1
// Pn−2

// · · · // P0
// M // 0.

With the same argument as in the proof of Theorem 2.4 we get a surjective left

GProj-approximation φ : G −→ M −→ 0, with pd Ker φ ≤ n− 1. �

Together with Theorem 2.2 we have

Corollary 3.6. Let R be an n-Gorenstein ring. Then every module has a proper

Gorenstein projective resoluiton, of length at most n.
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4. Some recent results

We state more recent results.

Theorem 4.1. ([H2]) Let R be a ring. If M is an R-module with pdRM < ∞,

then GidRM = idRM . In particular, if GidRR < ∞, then also idRR < ∞.

Let A, B be k-algebra. A dualizing dualizing complex BD•A is a bounded com-

plex of B-A-bimodules, such that the cohomology modules of D• are all finitely

generated both over B and Aop, D• ∼= I• ∈ Db(B ⊗k Aop) with each component of

I• being injective both over B and Aop, and the canonical maps

A −→ RHomB(D•, D•), B −→ RHomAop(D•, D•)

are isomorphisms in D(Ae) and in D(Be), respectively.

Theorem 4.2. ([J1, Thm. 1.10, Thm. 2.11]) If a ring A satisfies one of the

following two conditions, then A-GProj is contravariantly finite.

(i) A is a noetherian commutative ring with a dualizing complex.

(ii) A is a left coherent and right noetherian k-algebra over the field k for which

there exists a left noetherian k-algebra B and a dualizing complex BDA.

Note that if A is a finite-dimensional k-algebra, then A has a dualizing complex

A∗ = Homk(A, k). So A-GProj is contravariantly finite.

Recall from [Be] that a ring R is called Cohen-Macaulay finite (CM-finite for

short) if there are only finitely many isomorphism classes of finitely generated in-

decomposable Gorenstein projective R-modules.

Theorem 4.3. ([C]) Let A be a Gorenstein artin algebra. Then A is CM-finite if

and only if every Gorenstein projective module is a direct sum of finitely generated

Gorenstein projective modules.

A class T of modules is called a tilting class if there is a (generalized) tilting

module T such that T = T⊥.

Theorem 4.4. ([HHT]) Let R be a noetherian ring. Denote by GInj-R the category

of right Gorenstein injective R-modules. The following statements are equivalent:

(i) R is Gorenstein.

(ii) Both R-GInj and GInj-R form tilting classes.
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Theorem 4.5. ([BMO]) Let R be a ring. Then the following are equivalent.

(i) Any Gorenstein projective module is Gorenstein injective.

(ii) Any Gorenstein injective module is Gorenstein projective.

(iii) R is quasi-Frobenius.

Theorem 4.6. ([WSW]) Let R be a commutative ring. Given an exact sequence

of Gorenstein projective R-modules

G• = · · · → G−2 d−2

−−→ G−1 d−1

−−→ G0 d0

−→ G1 d1

−→ · · ·

such that the complexes HomR(G•,H) and HomR(H,G•) are exact for each Goren-

stein projective R-module H. Then all the images are Gorenstein projective.
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5. Appendix: Character modules

5.1. An injective left R-module E is an injective cogenerator of left R-modules,

if Hom(M,E) 6= 0 for any nonzero module M , or equivalently, for any nonzero

module M and any 0 6= x ∈ M , there is f ∈ Hom(M,E) such that f(x) 6= 0.

Example-definition. Q/Z is an injective cogenerator of Z-modules.

For any right R-module M 6= 0, the nonzero left R-module M+ = HomZ(M, Q/Z)

is called the character module of M .

By the adjoint pair one can see that R+ is an injective left R-modules. So R+

is an injective cogenerator of left R-modules since Hom(M,R+) ∼= M+.

5.2. A submodule N of M is pure if 0 −→ X ⊗ N −→ X ⊗ M is exact for any

right R-module X. For any module M , M is a submodule of M++: In fact, the

R-homomorphism M −→ M++ = HomZ(HomZ(M, Q/Z), Q/Z) given by

m 7→ f : “g 7→ g(m)”

is injective. Moreover, we have

Lemma 5.1. For any module M , M is a pure submodule of M++.

Proof. Applying Hom(−, Q/Z) to the canonical injection M ↪→ M++, we get the

surjection π : M+++ � M+. Put σ : M+ ↪→ M+++. Then by direct verification

one see πσ = IdM+ , which implies M+ is a direct summand of M+++. Thus for

any right module X we have exact sequence

Hom(X, M+++) −→ Hom(X, M+) −→ 0,

i.e., we have exact sequence (by the adjoint pair)

(X ⊗M++)+ −→ (X ⊗M)+ −→ 0;

and then it is easily verified that

0 −→ X ⊗M −→ X ⊗M++

is exact. �
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5.3.

Lemma 5.2. Let N be a pure submodule of M . Then fd N ≤ fd M .

In particular, fd M ≤ fd M++ for any module M .

Proof. We may assume fd M = n < ∞. For any right module X, take a partial

projective resolution

0 −→ K −→ Pn −→ · · · −→ P0 −→ X −→ 0.

Consider the commutative diagram

K ⊗N //

��

Pn ⊗N

��
0 // K ⊗M // Pn ⊗M.

Since Torn+1(X, M) = 0, the bottom row is exact. Two vertical maps are injective

since N is a pure submodule of M . It follows that K ⊗N −→ Pn ⊗N is injective,

and hence Torn+1(X, N) = 0. So fd N ≤ n. �

5.4. Flat modules can be related with injective modules as follows.

Proposition 5.3. Let M be an R-S-bimodule, E an injective cogenerator of right

S-modules. Then

(i) fd RM = id HomS(M,E)R.

In particular, RM is flat ⇐⇒ (M+)R is injective.

(ii) If furthermore R is left noetherian, then id RM = fd HomS(M,E)R.

In particular, RM is injective ⇐⇒ (M+)R is flat.

Proof. The assertion (i) follows from the identity

HomS(TorR
i (X, M), E) ∼= Exti

R(X, HomS(M,E)), ∀ XR.

For (ii), note that if R is left noetherian, then for any finitely presented module

RX there holds

TorR
i (HomS(M,E), X) ∼= HomS(Exti

R(X, M), E);

also, by using direct limit one has id M ≤ n if and only if Exti
R(X, M) = 0, ∀ i ≥

n + 1, and for all finitely generated modules X.
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