Borcherds Kac-Moody Lie algebras II Seminar: Representation Theory

Angela Holtmann

Bielefeld, 21 November, 2008

Let A be a symmetrisable BKM matrix over a field k, $\mathfrak{g} := \mathfrak{g}(A)$. Let (π, V) be a representation of \mathfrak{g} . For $x \in \mathfrak{g}$, $v \in V$, we write just xv instead of $\pi(x)v$. For $\lambda \in \mathfrak{h}^*$, set

$$V_{\lambda} := \{ v \in V \mid hv = \lambda(h)v \ \forall h \in \mathfrak{h} \}$$
 =:weight space

If $V_{\lambda} \neq 0$, we say that λ is a *weight* of the representation (π, V) . We set

$$\mathsf{mult}_V(\lambda) := \mathsf{dim}_k V_\lambda$$

and call this the multiplicity of λ in (π, V) (or in V).

We denote by $P(V) \subseteq \mathfrak{h}^*$ the set of weights of the representation (π, V) .

A representation (π, V) is called \mathfrak{h} -diagonalisable (and V an \mathfrak{h} -diagonalisable module), if

1. dim $V_{\lambda} < \infty$ for all $\lambda \in \mathfrak{h}^*$, and

2.
$$V = \bigoplus_{\lambda \in P(V)} V_{\lambda}$$
.

If V is \mathfrak{h} -diagonalisable, we set

$${\sf ch}\,V:=\sum_{\lambda\in P(V)}({\sf dim}_k\,V_\lambda)\cdot e^\lambda$$

and call this the character of V.

Integrable representations Characters – continued

$$\mathsf{ch}\, V := \sum_{\lambda \in P(V)} (\mathsf{dim}_k \, V_\lambda) \cdot e^\lambda$$

The value of chV at $h \in \mathfrak{h}$ is defined as

$$(\operatorname{ch} V)(h) := \sum_{\lambda \in P(V)} (\dim_k V_\lambda) \cdot e^{\lambda(h)},$$

if the sum converges. (In this case, this can be rewritten as:

$$(\operatorname{ch} V)(h) = \sum_{\lambda \in P(V)} \operatorname{tr}_V(e^{\pi(h)}),$$

which is the trace of the linear operator $e^{\pi(h)}$.)

Let V be an h-diagonalisable g-module. If $\pi(e_i)$ and $\pi(f_i)$ act on V locally nilpotently for all $i \in I^{re}$, then V is called *integrable*.

If V is integrable, then also e_{α} and f_{α} act locally nilpotently for all $\alpha \in \Delta^{re}$. If we set

$$r_{\alpha}^{V} := e^{\pi(f_{\alpha})} e^{\pi(-e_{\alpha})} e^{\pi(f_{\alpha})},$$

then

$$v \in V_{\lambda} \Rightarrow r_{\alpha}^{V} v \in V_{r_{\alpha}\lambda}$$

It follows:

If V is an \mathfrak{h} -diagonalisable integrable \mathfrak{g} -module, then $\operatorname{ch} V$ is invariant under the action of the Weyl group.

Let V be an \mathfrak{h} -diagonalisable integrable \mathfrak{g} -module. If there exists a $\Lambda \in P(V)$ and an element $0 \neq v_{\Lambda} \in V_{\Lambda}$ with the following properties

1. $xv_{\Lambda} = 0$ for all $x \in \mathfrak{n}_+$, and

2.
$$\mathfrak{U}(\mathfrak{g}) \cdot v_{\Lambda} = V$$
,

then V is called highest weight representation (or highest weight \mathfrak{g} -module) with highest weight Λ and v_{Λ} a highest weight vector. Note that:

$$\mathfrak{U}(\mathfrak{g}) = \mathfrak{U}(\mathfrak{n}_{-}) \cdot \mathfrak{U}(\mathfrak{h}) \cdot \mathfrak{U}(\mathfrak{n}_{+})$$

(by the PBW-Theorem) and that this implies that already

$$\mathfrak{U}(\mathfrak{n}_{-})\cdot v_{\Lambda}=V$$

If V is a highest weight g-module with highest weight Λ , then we have:

• Any $\lambda \in P(V)$ can be written as

$$\lambda = \Lambda - \sum_{i=1}^{n} m_i \alpha_i$$

with $m_i \in \mathbb{Z}_{\geq 0}$. $V_{\Lambda} = \mathbb{C}v_{\Lambda} (\dim_k V_{\Lambda} = 1)$ Since

$$\mathfrak{U}(\mathfrak{n}_{-})\cdot v_{\Lambda}=V,$$

the linear map $f: \mathfrak{U}(\mathfrak{n}_{-}) \to V, \ x \mapsto xv_{\Lambda}$ is clearly surjective.

If f is also injective, then we call V a Verma module. We denote the Verma module with highest weight Λ by $M(\Lambda)$.

It can be shown that, given a $\Lambda \in \mathfrak{h}^*$, a Verma module with highest weight Λ exists (explicit construction) and that it is unique (using universal properties).

We get a basis of the Verma module $M(\Lambda)$ if we have a basis of $\mathfrak{U}(\mathfrak{n}_{-})$, because $f : \mathfrak{U}(\mathfrak{n}_{-}) \to V$, $x \mapsto xv_{\Lambda}$ is a linear isomophism.

We take a basis of n_- , from which we can construct by the PBW-Theorem a basis of $\mathfrak{U}(n_-)$.

From this basis (and an application of the geometric series) we obtain:

$$\mathsf{ch} \mathcal{M}(\Lambda) = e^{\Lambda} \prod_{lpha \in \Delta_+} rac{1}{(1-e^{-lpha})^{\mathsf{mult}(lpha)}}$$

We set $R := \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{\mathsf{mult}(\alpha)}$. Then: $\mathsf{ch} M(\Lambda) = \frac{e^{\Lambda}}{R}$.

The second condition for highest weight modules does *not* imply that they are irreducible. To study what can happen, we will now take a look at "maximal weights" for invariant subspaces.

Let V be a highest weight g-module and $\lambda \in P(V)$ with $\lambda \neq \Lambda$, the highest weight of V.

We call a vector $0 \neq v \in V_\lambda$

- ▶ a singular vector of weight λ if $e_i v = 0$ for all $i \in I$
- ► a primitive vector of weight \u03c6 if there is an invariant subspace U ⊂ V s.t.
 - 1. $v \notin U$, and
 - 2. $e_i v \in U$ for all $i \in I$.

If there is a singular (primitive) vector of weight λ , we call λ a singular (primitive) weight.

Casimir element

$$\Omega := 2\varrho + \sum_{i=1}^{\dim \mathfrak{h}} u^i u_i + 2 \sum_{\alpha \in \Delta_+} e_{-\alpha}^{(i)} e_{\alpha}^{(i)}$$

Forget about the exact definition. The following properties are more important.

Casimir element $\boldsymbol{\Omega}$

If V is a highest weight g-module with highest weight Λ , then Ω is a scalar operator with eigenvalue $(\Lambda | \Lambda + 2\varrho)$, where ϱ is the half sum of the positive roots.

Idea of proof: Use the definition and show the identity for v_{Λ} . Now use that $\mathfrak{U}(\mathfrak{n}_{-}) \cdot v_{\Lambda} = V$ and that the action of the Casimir element commutes with the action of \mathfrak{g} .

Further, if λ is a primitive weight, then

$$(\lambda|\lambda+2\varrho) = (\Lambda|\Lambda+2\varrho).$$

Idea of proof: Show the identity for singular vectors and use that primitive vectors are singular vectors in V/U!

Let V be a highest weight \mathfrak{g} -module with highest weight Λ . If V is integrable, then

$$\langle \Lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$$
 for all $i \in I^{re}$.

The converse is in general *not* true!

One can show:

Every highest weight g-module V with highest weight Λ is isomorphic to a quotient of the Verma module $M(\Lambda)$ by an appropriate invariant subspace U:

 $V \cong M(\Lambda)/U$

(Construct *U* explicitly!)

Let us denote by v_{Λ} a highest weight vector for V, and by \tilde{v}_{Λ} a highest weight vector for $M(\Lambda)$.

Integrable representations Characterisation of integrability

If $\Lambda \in \mathfrak{h}^*$ with

$$\langle \Lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$$

for all $i \in I^{re}$, define $U_0 \subset M(\Lambda)$ as follows:

$$U_0:=\sum_{i\in I^{
m re}}\mathfrak{U}(\mathfrak{n}_-)f_i^{\langle\Lambda,lpha_i^{ee}
angle+1}\widetilde{v}_{\Lambda}.$$

(Here, $\langle \Lambda, \alpha_i^{\vee} \rangle =: m_i$ is the minimal possible integer with $f^{m_i+1}v_{\Lambda} = 0$.) Then:

- U_0 is an invariant subspace of $M(\Lambda)$, and
- if U is an invariant subspace of $M(\Lambda)$, then

$$V := M(\Lambda)/U$$
 is integrable $\Leftrightarrow U_0 \subset U$.

 $\mathfrak{g}(A)$ is a Kac-Moody Lie algebra $\Leftrightarrow I^{re} = I$ So, the elements of the set $\{f_i \mid i \in I^{re}\}$ contain all generators of \mathfrak{n}_- .

One can show that in the Kac-Moody case, the subspace U_0 as defined above is a maximal proper invariant subspace. So every U with $U_0 \subset U$ is already U_0 .

From this, one can derive that in the Kac-Moody case, every integrable highest weight \mathfrak{g} -module is irreducible.

In the non Kac-Moody case, a U for which $U_0 \subset U$ is *not* unique. There exist integrable highest weight g-modules which are not irreducible if g is not a Kac-Moody Lie algebra. In particular, if $I^{\rm re} = \emptyset$, then *all* highest weight modules are integrable. Maximal proper invariant submodules and irreducible highest weight modules

If V is a highest weight module with highest weight $\Lambda \in \mathfrak{h}^*$, then there is a maximal proper invariant submodule of V.

For $\Lambda \in \mathfrak{h}^*$, we denote the maximal proper invariant subspace of the Verma module $M(\Lambda)$ by J_{Λ} .

For $\Lambda \in \mathfrak{h}^*$, there is a unique irreducible highest weight module $L(\Lambda)$ with highest weight Λ , namely $L(\Lambda) = M(\Lambda)/J_{\Lambda}$.

Category \mathcal{O} ? For $\lambda \in \mathfrak{h}^*$, set

$$D(\lambda) := \{ \mu \in \mathfrak{h}^* \mid \mu \leq \lambda \} := \{ \lambda - \alpha \mid \alpha \in Q_+ \}.$$

 $(Q_+ = \text{positive root lattice})$

The *objects* of the category \mathcal{O} are the \mathfrak{h} -diagonalisable \mathfrak{g} -modules V such that there exist $\lambda_1, \ldots, \lambda_k \in \mathfrak{h}^*$ with

$${\sf P}(V)\subset igoplus_{i=1}^k {\sf D}(\lambda_i).$$

The morphisms are homomorphisms of g-modules.

- The category O is closed under taking subobjects and quotients.
- ► For an object in the category O, there are only finitely many maximal weights.
- ▶ $\lambda \in P(V)$ is called *primitive weight*, if there exists $0 \neq v \in V_{\lambda}$ and an invariant subspace $U \subset V$ with
 - 1. $v \notin U$, and
 - 2. $e_i v \in U$ for all $1 \leq i \leq n$.
- If U = 0, then we call λ a singular weight.

For an object V in the category O, primitive vectors of sub- and factor objects give rise to primitive vectors for V itself.

If V is an object in the category O, then there is a proper invariant submodule U of V such that V/U is an irreducible g-module.

In particular, if one takes one of the maximal weights Λ of V, then there exists a proper invariant submodule U of V such that $V/U \cong L(\Lambda)$. Let V be an object in the category O. Then there exists a series

$$\cdots \subset W_{k+1} \subset W_k \subset \cdots \subset W_1 \subset W_0 = V$$

such that

1. W_k/W_{k+1} are irreducible g-modules, k = 0, 1, 2, ..., and 2. $\bigcap_{k=0}^{\infty} W_k = 0.$

If we have such a series and we denote the highest weights ($\neq 0$) of W_k/W_{k+1} by μ_k , k = 0, 1, 2, ..., then

$$\operatorname{ch} V = \sum_{k} \operatorname{ch} L(\mu_{k}).$$

Rewriting the formula for Verma modules, we get:

$$\mathsf{ch} M(\Lambda) = \sum_{\substack{\lambda \leq \Lambda, \ |\lambda + arrho|^2 = |\Lambda + arrho|^2}} b(\Lambda, \lambda) \mathsf{ch} L(\lambda),$$

where $b(\Lambda, \lambda) \in \mathbb{Z}_{\geq 0}$ are uniquely determined by $M(\Lambda)$ and $b(\Lambda, \Lambda) = 1$.

Applying this to a general highest weight module $V \cong M(\Lambda)/U$ of highest weight $\Lambda \in \mathfrak{h}^*$ we obtain:

$$\mathsf{ch} V = \sum_{\substack{\lambda \leq \Lambda, \ |\lambda + arrho|^2 = |\Lambda + arrho|^2}} c(\Lambda, \lambda) \mathsf{ch} L(\lambda),$$

where $c(\Lambda, \lambda) \in \mathbb{Z}$ and $c(\Lambda, \Lambda) = 1$.

Let A be a BKM matrix. We set:

<u>Aim</u>:

Compute $ch_{\Lambda} := chL(\Lambda)$, where $L(\Lambda)$ is the irreducible highest weight \mathfrak{g} -module with highest weight $\Lambda \in P_{(+)}$.

Character formula and denominator identity

Application of the character formula for highest weight modules to irreducible modules

$$egin{aligned} \mathsf{ch}_{\mathsf{\Lambda}} &= \sum_{\substack{\lambda \leq \Lambda, \ |\lambda + arrho|^2 = |\Lambda + arrho|^2}} c(\Lambda, \lambda) \mathsf{ch} \mathit{M}(\lambda) \ &= rac{1}{R} \sum_{\substack{\lambda \leq \Lambda, \ |\lambda + arrho|^2 = |\Lambda + arrho|^2}} c(\Lambda, \lambda) e^{\lambda} \ &= rac{1}{e^{arrho} R} \sum_{\substack{\lambda \leq \Lambda, \ |\lambda + arrho|^2 = |\Lambda + arrho|^2}} c(\Lambda, \lambda) e^{\lambda + arrho} \end{aligned}$$

Character formula and denominator identity Calculation of coefficients

Since ch_{Λ} is *W*-invariant and $w(e^{\varrho}) = \varepsilon(w)e^{\varrho}$ for $w \in W$, we get:

▶ If $\lambda, \mu \in P(\Lambda)$ with $w(\mu + \varrho) = \lambda + \varrho$ and $|\mu + \varrho|^2 = |\lambda + \varrho|^2$, then

$$c(\Lambda, \lambda) = \varepsilon(w)c(\Lambda, \mu).$$

• If
$$c(\Lambda, \mu) \neq 0$$
, then $w(\mu + \varrho) \leq \Lambda + \varrho$ for all $w \in W$.

From this we obtain:

If $\Lambda \in P_{(+)}$ and $\mu \in \mathfrak{h}^*$ with $w(\mu + \varrho) \leq \Lambda + \varrho$ for all $w \in W$, then there exists $w_0 \in W$ with

$$\langle w_0(\mu + \varrho), \alpha_i^{\vee} \rangle \ge 0 \ \forall i \in I^{\text{re}}.$$

Idea of proof: Use the heights of the corresponding vectors.

Character formula and denominator identity

Calculation of coefficients – non zero coefficients and simplification of the character formula

It follows from a direct calculation, that

$$r_i(\mu+\varrho)=\mu+\varrho,$$

if $\langle w_0(\mu + \varrho), \alpha_i^{\vee} \rangle = 0$, and therefore (using the skew symmetry w.r.t. *W* above) that

$$c(\Lambda,\mu)=0.$$

Taking into account that now $\langle w_0(\mu + \varrho), \alpha_i^{\vee} \rangle \geq 1$ has to be fulfilled, one can show that one has to summerise in the character formula only over the $\mu \in P_+$, and that all the μ are such that

$$\mu + \varrho = w(\lambda + \varrho)$$
 for some $w \in W$.

So, the character formula simplifies to

$$e^{arrho}R\cdot \mathsf{ch}_{\mathsf{\Lambda}} = \sum_{w\in W}arepsilon(w)\sum_{\substack{\lambda\in P_+\ \lambda\leq \mathsf{\Lambda},\ |\lambda+arrho|^2=|\mathsf{\Lambda}+arrho|^2}} c(\mathsf{\Lambda},\lambda)e^{w(\lambda+arrho)}.$$

For simplification, we set:

$$\mathcal{S}_{\Lambda} := \sum_{\lambda \in \mathcal{P}_+ lpha \leq \Lambda, \ |\lambda+arepsilon|^2 = |\Lambda+arepsilon|^2} c(\Lambda,\lambda) e^{w(\lambda+arepsilon)}.$$

Now, the question is: What are the $\lambda \in {\cal P}_+$ satisfying the two conditions

$$\lambda \leq \Lambda$$
, and $|\lambda + \varrho|^2 = |\Lambda + \varrho|^2$?

Let A be a symmetrisable BKM matrix and $\Lambda \in P_{(+)}$ and $\lambda \in \mathfrak{h}^*$ with $\lambda \leq \Lambda$ and $(\lambda + \varrho | \alpha_i) \geq 0$ for all $i \in I^{re}$. Then:

• If $i \in \operatorname{supp}(\Lambda - \lambda) \cap I^{\operatorname{re}}$, then $(\Lambda + \lambda + 2\varrho | \alpha_i) > 0$.

• If
$$i \in \operatorname{supp}(\Lambda - \lambda) \cap I^{\operatorname{im}}$$
, then $(\Lambda + \lambda + 2\varrho | \alpha_i) \ge 0$.

$$\blacktriangleright \ |\Lambda + \varrho|^2 \ge |\lambda + \varrho|^2$$

• Write
$$\lambda = \Lambda - \sum_{i \in J} m_i \alpha_i$$
 with $J \subset I$ and $m_i \in \mathbb{Z}_{\geq 0}$. Then:
 $|\Lambda + \varrho|^2 = |\lambda + \varrho|^2$ if and only if

•
$$J \subset I^{\text{im}}$$
, and

• if
$$i \in J$$
, then $(\Lambda | \alpha_i) = 0$, and

• if $i, j \in J$ with $i \neq j$, then $(\alpha_i | \alpha_j) = 0$, and

• if
$$i \in J$$
 [with $a_{ii} < 0$], then $m_i = 1$.

Claim:

If $c(\Lambda, \lambda) \neq 0$, then

$$c(\Lambda,\lambda) = (-1)^{|J|}$$

for J defined as above. Since $(\Lambda | \alpha_i) = 0$ for $i \in J$, it follows that

 $f_i v_{\Lambda} \in M(\Lambda)$

is a singular vector. Thus it cannot appear in the irreducible representation $L(\Lambda)$. It follows that $\Lambda - \alpha_i$ is *not* a weight of $L(\Lambda)$. So the coefficient $c(\Lambda, \Lambda - \alpha_i)$ is zero.

Now, compare the two hand sides in the simplified character formula!

Let now $i_1, \ldots, i_k \in J$ be distinct roots. Then $\Lambda - \alpha_{i_1} - \ldots - \alpha_{i_k}$ cannot be a weight of $L(\Lambda)$, this follows from the fact that the α_{i_j} are pairwise orthogonal (and some calculations). But the expression $e^{-\alpha_{i_1}-\cdots-\alpha_{i_k}}$ appears in the expansion of

$$R = \prod_{lpha \in \Delta_+} (1 - e^{-lpha})^{\mathsf{mult}(lpha)}.$$

It can only be obtained from

$$(1-e^{-\alpha_{i_1}})\cdots(1-e^{-\alpha_{i_k}}),$$

since one can show that $\alpha_{i_j} + \alpha_{i_\ell}$ cannot be a root. So, the coefficient is $(-1)^k$, as stated above.

Theorem

If $\mathfrak{g}(A)$ is a symmetrisable BKM Lie algebra, then, for $\Lambda \in P_{(+)}$,

$$\mathsf{ch}_{\Lambda} = rac{1}{e^{arrho}R}\sum_{w\in W}arepsilon(w)w(S_{\Lambda})$$

with $S_{\Lambda} := \sum_{k \in \mathbb{Z}_{\geq 0}; i_1, \dots, i_k \in I^{\text{im}}; (i), (ii)} (-1)^k e^{\Lambda + \varrho - (\alpha_{i_1} + \dots + \alpha_{i_k})}$, where (i) $(\Lambda | \alpha_{i_j}) = 0$ for $j = 1, \dots, k$ (ii) i_1, \dots, i_k distinct with $\alpha_{i_1}, \dots, \alpha_{i_k}$ pairwise orthogonal. From the previous considerations, one can derive that only element λ fulfilling all the conditions above (and over which we have to summerise in the expression S_{Λ}) is Λ itself.

So we get:

Theorem

If $\mathfrak{g}(A)$ is a symmetrisable Kac-Moody Lie algebra, then, for $\Lambda \in P_+(=P_{(+)})$,

$$\mathsf{ch}_{\Lambda} = rac{1}{e^{arrho}R} \sum_{w \in W} \varepsilon(w) e^{w(\Lambda + arrho)}.$$