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1. Introduction

When faced with a complex task, is it better to be systematic or to proceed by
making random adjustments? We study aspects of this problem in the context of
generating random elements of a finite group. For example, suppose we want to
fill n empty spaces with zeros and ones such that the probability of configuration
x = (x1, . . . , xn) is θ n−|x|(1− θ)|x|, with |x| the number of ones inx. A system-
atic scan approach works left to right, filling each successive place with aθ coin
toss. A random scan approach picks places at random, and a given site may be hit
many times before all sites are hit. The systematic approach takes ordern steps
and the random approach takes order1

4n logn steps.
Realistic versions of this toy problem arise in image analysis and Ising-like sim-

ulations, where one must generate a random array by a Monte Carlo Markov chain.
Systematic updating and random updating are competing algorithms that are dis-
cussed in detail in Section 2. There are some successful analyses for random scan
algorithms, but the intuitively appealing systematic scan algorithms have resisted
analysis.

Our main results show that the binary problem just described is exceptional;
for the examples analyzed in this paper, systematic and random scans converge in
about the same number of steps.

LetW be a finite Coxeter group generated by simple reflectionss1, s2, . . . , sn,

wheres2
i = id. For example,W may be the permutation groupSn+1 with si =

(i, i + 1). The length functioǹ (w) is the smallestk such thatw = si1si2 · · · sik .
Fix 0< θ ≤ 1 and define a probability distribution onW by

π(w) = θ−`(w)

PW (θ−1)
, where PW(θ

−1) =
∑
w∈W

θ−`(w) (1.1)

is the normalizing constant. Thusπ(w) is smallest whenw = id and, asθ → 1,
π tends to the uniform distribution. These nonuniform distributions arise in sta-
tistical work as Mallows models. Background and references are in Section 2e.

Received March 21, 2000. Revision received April 10, 2000.
Research of the first author was supported in part by National Science Foundation grant DMS-9504379.

Research of the second author was supported in part by National Science Foundation grant DMS-
9622985.

157



158 Per s i Diac oni s & Arun Ram

A standard Monte Carlo Markov chain algorithm for sampling fromπ is the
Metropolis algorithm with a systematic scan. This algorithm cycles through the
generators in order. If multiplying by the current generator increases length
then this multiplication is made. If the length decreases, then the multiplica-
tion is made with probabilityθ and omitted with probability 1− θ. One scan uses
s1, s2, . . . , sn−1, sn, sn, sn−1, . . . , s1, in order. Define

K(w,w ′) = the chance that a systematic scan started atw ends inw ′. (1.2)

Repeated scans of the algorithm are defined by

K`(w,w ′) =
∑
w ′′
K`−1(w,w ′′)K(w ′′, w ′), ` ≥ 2. (1.3)

In Section 2c and 4a we show that this Markov chain hasπ as unique stationary
distribution.

The main results of this paper derive sharp results on rates of convergence for
these walks. As an example of what our methods give, we show that scans of
ordern are necessary and suffice to reach stationarity on the symmetric group
starting from the identity. More precisely, we prove the following.

Theorem 1.4. Let Sn be the permutation group onn letters. Fixθ, 0 < θ ≤ 1.
LetK`

1 (w) = K`(id, w) be the systematic scan chain onSn defined by(1.2) and
(1.3). For ` = n/2− (logn)/(logθ)+ c with c > 0,

‖K`
1 − πθ‖2TV ≤

(
eθ

2c+1 − 1
)+ n! θ n2/8−n(logn)/(logθ)+n(c+1/4). (1.5)

Conversely, if̀ ≤ n/4 then, for fixedθ, ‖K`
1 − π‖TV tends to1 asn→∞.

The total variation norm is defined in Section 2a. Note that the upper bound in
(1.5) tends to zero forc large, so that aboutn/2 scans suffice to reach stationarity.
The lower bound shows that this is of the right order for largen.

Each scan uses 2nmultiplications. Thus, Theorem 1.4 implies that the system-
atic scan approach reaches stationarity inn2 operations up to lower-order terms.
We also conjecture that the random scan approach (see Section 2b) for this exam-
ple takes ordern2 operations. Further, in Section 7, we prove that the scan based
on the sequence

(s1, s2, . . . , sn, sn, . . . , s1), (s1, . . . , sn−1, sn−1, . . . , s1), . . . , (s1, s2, s2, s1), (s1, s1)

converges in one pass. Thus, again, up to lower-order terms,n2 operations suffice
to reach stationarity. These results show that various different scanning strategies
take the same number of operations to reach stationarity.

One novel aspect of the present arguments is our use of the Iwahori–Hecke al-
gebraH spanned by the symbols{Tw}w∈W . This algebra is generated byTi = Tsi
(1≤ i ≤ n) with the relations

TiTw =
{
Tsiw if `(siw) > `(w),

qTsiw + (q −1)Tw if `(siw) < `(w).

We have succeeded in giving an algebraic interpretation of the Markov chain
K(w,w ′) as multiplication in the Iwahori–Hecke algebraH. From there, knowl-
edge of the center ofH (via a result of Brieskorn–Saito and Deligne) allows us
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to diagonalizeK(w,w ′) explicitly. Convergence bounds are given in terms of the
eigenvalues and the generic degrees of representation theory. Then calculus leads
to results like Theorem 1.4.

Section 2 collects together probabilistic background and tools. We explain
Markov chains, the Metropolis algorithm, and systematic scans, and we relate
the basic Metropolis chain to a natural walk on the chambers of a building. In
Section 2e we develop properties of the measuresπ. Some of these are new even
for reflection groups of type A (the symmetric group). These properties will be
applied to prove lower bounds for walks as in Theorem 1.4.

Section 3 collects together representation theoretic background and tools and
connects the representation theory to Markov chains. Section 4 connects Hecke
algebras to the Metropolis algorithm and specializes the results from Section 3. A
basic upper bound for convergence is derived by relating two inner products.

Sections 5 and 6 derive results for the hypercube and the dihedral groups. Here
we find that both the systematic and random scans converge in about the same
number of steps—the differences are only in the lead term constants (which are
functions ofθ).

Section 7 derives results for two different systematic scanning plans for the sym-
metric group. Though we do not have the space to treat further examples in this
paper, it should be remarked that the methods of Section 7 should also produce
analogous results for the Weyl groups of typeBn and the imprimitive complex re-
flection groupsG(r,1, n). The long and short systematic scans can be defined in
a similar way and the representation theory goes through without problems (see
[AK; Hf; R]). The remaining necessary ingredient is an analog of Lemma 7.2.

Acknowledgment. We are thankful to Ruth Lawrence for early efforts to help
understand deformed random walks.

2. Probabilistic Background

In this section we give background material for Markov chains, the Metropolis al-
gorithm, and systematic scans. In Section 2d we interpret the basic walk as a walk
on flags and the chambers of a building, and in Section 2e we derive basic prop-
erties of the stationary distributions.

2a. Markov Chains

Background for Markov chains may be found in any standard probability text (see
e.g. [F, Chap. XV]). For the quantitative theory developed here, see [S-C] and the
references therein.

Let X be a finite set. AMarkov chainonX is a matrixK = (K(x, y))x,y∈X
such that

K(x, y)∈ [0,1] and
∑
y∈X

K(x, y) = 1.

The setX is thestate space,andK(x, y) gives the probability of moving fromx
to y in one step. Powers of the matrixK give the probability of moving fromx to
y in more steps. For example,
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K2(x, y) =
∑
z∈X

K(x, z)K(z, y)

indicates that, in order to move fromx to y in two steps, the chain must move to
z and then fromz to y. The chain isirreducible and aperiodicif there is aǹ > 0
such thatK`(x, y) > 0 for all x, y ∈X. The chainK is reversibleif there is asta-
tionary distributionπ : X→ [0,1],

∑
x∈X π(x) = 1, such that, for allx, y ∈X,

π(x)K(x, y) = π(y)K(y, x).
For irreducible aperiodicK, reversibility implies that, for eachx ∈ X, the real
numbersK`(x, y) converge toπ(y) as`→∞.

The quantitative theory of Markov chains studies the speed of convergence. The
total variation distanceof K`(x, ·) to π is defined by

‖K`
x − π‖TV = max

A⊆X

∣∣∣∣∑
y∈A

K`(x, y)− π(y)
∣∣∣∣.

Using the setA = {y ∈X | K`(x, y) > π(y)}, it is easily shown that

‖K`
x − π‖TV =

1

2

∑
y∈X
|K`(x, y)− π(y)|. (2.1)

LetL2(π) be the space of functionsf :X→ R with the norm

〈f, g〉2 =
∑
x∈X

f(x)g(x)π(x). (2.2)

The following lemma provides a relation between the total variation and theL2(π)

norms. This bound is the primary tool for studying rates of convergence of Markov
chains.

Lemma 2.3. Letf ∈L2(π). Then‖f ‖2TV ≤ 1
4‖f/π‖22.

Proof. By the Cauchy–Schwartz inequality,

‖f ‖2TV =
1

4

(∑
x∈X

|f(x)|√
π(x)

√
π(x)

)2

≤ 1

4

(∑
x∈X

f(x)2

π(x)

)(∑
x∈X

π(x)

)
= 1

4

〈
f

π
,
f

π

〉
2

.

2b. Systematic Scan Algorithms

Let π be a probability distribution on a finite setX, and letK1,K2, . . . , Kn be
Markov chains onX each having stationary distributionπ. Then any product
Ki`Ki`−1 · · ·Ki1 has stationary distributionπ, and a choice of an infinite sequence
{i`}∞`=1 gives a scanning strategy. A random choice of indices gives a random
scanning stategy. If eachKi is reversible forπ, thenK1K2 · · ·Kn−1KnKnKn−1 · · ·
K2K1 is an example of a reversible systematic scanning strategy (whereasK1 · · ·Kn
is not necessarily reversible).
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In routine applications of the Metropolis algorithm to image analysis and Ising-
like models, the state space has coordinates. Randomized strategies choose a co-
ordinate at random and attempt to change it. Systematic strategies cycle through
the coordinates in various orders. Fishman [Fi] reviews the literature on scanning
strategies and gives some practical comparison. The scheme underlying Theorem
1.4 is Fishman’s Plan 3.

There has been some rigorous work on rates of convergence for systematic scans
in a related case: Gaussian distribution of coordinates with the stochastic updating
done by the heat bath algorithm (also known as Glauber dynamics or the Gibbs
sampler). One fascinating study by Goodman and Sokal [GS] relates scanning
strategies to standard approaches for solving large linear systems. They show that
the systematic scan heat bath algorithm is a stochastic analog of the Gauss–Seidel
algorithm. Moreover, they show how previous analyses of Gauss–Seidel give the
eigenvalues of its stochastic counterpart. Amit [A1; A2] and Amit and Grenan-
der [AG] have pushed forward and carried out these ideas to give some compar-
ison of systematic and randomized sweeps in the Gaussian case. Their approach
uses the fact that the heat bath algorithm is a projection operator. In the Gaussian
case, the problem reduces to the computation of angles between subspaces of a
Hilbert space; Baronne and Frigessi [BF] and Roberts and Sahu [RS] are related
references.

2c. The Metropolis Algorithm

The Metropolis algorithm gives a way of changing the stationary distribution of a
given Markov chain into any distribution; it was invented by Metropolis and col-
leagues [MRRTT]. A clear description is in Hammersley and Handscomb [HH],
and a recent survey appears in [DS].

Let X be a finite set. LetP(x, y) = P(y, x) be a symmetric Markov matrix
onX, and letπ be a fixed probability distribution onX. Form a new chain by the
following recipe:

M(x, y)

=



P(x, y) if x 6= y andπ(y) ≥ π(x),
P(x, y)

π(y)

π(x)
if x 6= y andπ(y) < π(x),

P(x, x)+
∑

π(z)<π(x)

P(x, z)

(
1− π(z)

π(x)

)
if x = y.

(2.4)
In words:

Form the Metropolis chain fromx by choosingy from P(x, y). If
π(y) ≥ π(x) then move tox. If π(y) < π(x), flip a coin with chance
of headsπ(y)/π(x). If the coin comes up heads then move toy. In all
other cases, stay atx.

As shown in the references just cited, the Metropolis chain is reversible with sta-
tionary distributionπ. It is of practical importance that the chainM can be run



162 Per s i Diac oni s & Arun Ram

knowingπ only up to a normalizing constant. Irreducibility and aperiodicity of
M must be checked on a case-by-case basis.

An example of interest isX = W, whereW is a finite real reflection group gen-
erated by simple reflectionss1, s2, . . . , sn. LetP(x, y) be the Markov chain given
by

P(x, y) =
{

1/n if y = si x for somei,

0 otherwise.

HereP(x, y) is the usual random walk based on a generating set. It has uniform
stationary distribution. Fixθ, 0< θ ≤ 1, and letπ be as in (1.1). TheMetropolis
construction then gives the Markov chain

M(x, y) =


1/n if y = si x and`(y) > `(x),

θ/n if y = si x and`(y) < `(x),

(1/n)
∑

`(si x)<`(x)
(1− θ) if y = x,

0 otherwise,

(2.5)

which has stationary distributionπ. In Section 4a we demonstrate that this is ex-
actly the chain given by left multiplication by a uniformly chosen generatorT̃i in
the Iwahori–Hecke algebraH with q = θ−1. Similarly, the systematic scan chain
of Theorem 1.4 can be interpreted via multiplication inH.

Despite its widespread use there has been very limited success in analyzing the
time to stationarity of the Metropolis algorithm. In the present paper we carry this
out for the random scan Metropolis algorithm (2.5) on the hypercube (Section 5)
and on the dihedral group (Section 6). Though we have not analyzed the random
scan Metropolis algorithm on the symmetric group, we conjecture that ordern2

steps are necessary and sufficient to achieve stationarity. A survey of what is rig-
orously known appears in [DS].

Diaconis and Hanlon [DH] studied the example given byW = Sn, the sym-
metric group (soc(w) = n− [# of cycles inw]), with input chain

P(x, y) =
{

1
/(

n

2

)
if y = (i, j)x for some transposition(i, j),

0 otherwise,
(2.6)

and stationary distributionπ(w) = zθc(w), wherez is a normalizing constant and
c(w) is the minimum number of transpositions needed to sortw. They showed
that all eigenvectors of the resulting Metropolis chain are given by the coefficients
of Jack’s symmetric functions (expanded in terms of power sum symmetric func-
tions), and they used the corresponding eigenvalues to give a complete analysis of
the running time.

Similar analyses were carried out by Belsley [B2] and Silver [Si]. They worked
in abelian groups withπ proportional toθ`(y), where` is the length function with
respect to a natural set of generators. In several cases they found that the eigen-
functions were natural deformations of classical orthogonal polynomials. Ross
and Xu [RX] studied the random scan Metropolis algorithm on the hypercube,
using its representation as a random walk on a hypergroup. It should be empha-
sized that, for other choices ofπ or in nongroup cases, careful analysis of rates of
convergence for the Metropolis algorithm is completely open.
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2d. Some Other Interpretations of the Walks

We have presented Theorem 1.4 in an algorithmic context. Here we show how
the walk (2.5) arises geometrically on the space of flags and as the natural near-
est neighbor walk on the chambers of a building. The systematic scan walks have
similar interpretations.

Let Fq be a finite field. Acomplete flagF = (0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆
Fn−1⊆ Fn = V ) is a nested increasing sequence of subspaces of ann-dimensional
vector spaceV overFq with dim(Fi) = i. A natural random walk on complete
flags may be performed as follows:

choosei (1≤ i ≤ n−1) uniformly;
replaceFi by a uniformly chosen subspacẽFi with Fi−1⊆ F̃i ⊆ Fi+1.

This walk is symmetric, irreducible, and aperiodic; it therefore has the uniform
distribution as its unique stationary measure. It is instructive to think of theq = 1
case. Then a flag is a nested increasing chain{i1} ⊆ {i1, i2} ⊆ · · · ⊆ {i1, i2, . . . , in}
of elements of ann set or, equivalently, a permutation(i1, i2, . . . , in). In this case
the walk is multiplication by random pairwise adjacent transpositions.

The space of flags may also be identified as the chambers of a building of type
An−1, and in this formulation the walk is described as follows:

From a chamberC of the building, choose one of the adjacent chambers
uniformly at random and move there.

In an elegant and readable treatment of buildings, Brown [Br] explains that flag
space may be represented asG/B, with G = GLn(Fq) andB the subgroup of
upper triangular matrices in GLn(Fq). Then two flagsg1B andg2B differ in the
ith step if and only ifg1Pi = g2Pi, wherePi is the parabolic subgroupPi =
B ∪BsiB (see [Br, pp. 102–103]). Thus, if flagsg1B andg2B arei-adjacent then
g2 = g1b or g2 = g1bsib

′ with b, b ′ ∈B, so the walk onG/B moves fromgB to
gg ′B with g ′ uniformly chosen inB or BsiB. In this way, choosing an adjacent
chamber of the building at random produces aB-invariant walk onG/B. Finally,
the walk on flags gives rise to a natural walk on the double coset spaceB\G/B
(described in more detail in Section 3b). The double coset space is identifiable
with the symmetric groupSn, and the induced Markov chain is given by (2.5) with
θ = 1/q. A similar story holds for the natural walk on any spherical building.

2e. Properties of the Stationary Distribution

Suppose that(X, d ) is a finite metric space. A simple way of building probability
models onX is to fix 0< θ ≤ 1 andx0 ∈X and then define

π(x) = q d(x,x0)

PX(q)
, where q = θ−1 and PX(q) =

∑
x∈X

qd(x,x0) (2.7)

is a normalizing constant. Whenq = 1, the distribution is uniform.
Models of the form (2.7) were introduced by Mallows [M] for the study of per-

mutations. He used the length function as a distance,`(x−1x0) = d(x, x0), and
estimatedq andx0 to match data. Such Mallows models have had application and
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development for ranked and partially ranked data using a variety of metrics [CR;
D; FV; Ma]. They have also been used for phylogenetic trees [BHV], classifica-
tion trees [SB], and compositions [DHJLP].

One problem in studying Mallows models is that the normalizing constantPX(q)

is uncomputable in general. In such cases, properties ofπ can be studied by sim-
ulation using the Metropolis algorithm given in Section 2c.

For the examples based on reflection groups, the normalizing constants are
known; moreover, there is a simple algorithm available for exact generation from
π. The properties ofπ are collected together here. In each case the properties are
illustrated for the permutation group; some of our results are new for the original
Mallows model. Further, the properties ofπ (particularly Property 4) are used in
proving the lower bounds in Theorem 1.4.

Throughout this section we work with the model whose underlying spaceX =
W is a finite Coxeter group generated by simple reflections,x0 is the identity ele-
ment ofW, and the length function is the distance onW. Thus the model is

π(w) = q`(w)

PW(q)
, where q = θ−1 and PW(q) =

∑
w∈W

q`(w) (2.8)

is thePoincaré polynomialof the groupW. It is a classical theorem that the nor-
malizing constant has a simple form:

PW(q) =
n∏
i=1

q di −1

q −1
(2.9)

for known integersdi, thedegreesof W (see [Hu, Thm. 3.15]). For the symmet-
ric groupSn+1, di = i+1 for 1≤ i ≤ n. The Poincaré polynomialPW(q) will be
used crucially in what follows.

Property 1. π(w) = π(w−1), since`(w) = `(w−1).

This invariance under inversion was first used by Mallows [M] to characterize
Mallows models in a larger class of measures as follows. Supposen objects are to
be ranked by making pairwise comparisons. Suppose that the true ranking is 1<

2 < 3< · · · < n and that a subject ranks objectsi andj correctly with probabil-
ity pij . LetQ(w) be the chance that the comparisons lead to the permutationw,

given that they are all consistent. Of course,Q(w) depends on the
(
n

2

)
parameters

pij . Mallows proved thatif Q(w) = Q(w−1) then, for some real numbersq and
φ, Q(w) = zq`(w)φ r(w) with r(w) =∑ iw(i) andz a normalizing constant. He
further showed that the two parametersq andφ were practically indistinguishable
for largen and suggested settingφ = 1, leading to the distributionπ(w).

Property 2. LetJ ⊆ {1,2, . . . , n}, and letWJ be the subgroup ofW generated
by the generatorssi for i ∈ J. The groupWJ is a parabolicsubgroup ofW. Each
coset ofWJ inW contains a unique coset representativexj of minimal length[Hu,
Prop.1.10],and the probability of any such coset is computable via
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π(xjWJ ) = q`(xj ) PWJ (q)
PW(q)

. (2.10)

As an example, suppose thatW is the symmetric groupSn generated bys1, s2, . . . ,

sn−1, wheresi = (i, i + 1). If J = {1,2, . . . , n − 2} thenWJ is the subgroup of
permutations that leaven fixed. The minimal length coset representativesxj for
the cosets ofWJ in W havej in positionn and the rest of the entries in order.
Property 2 says that

π({w ∈ Sn | w(n) = j}) = qn−j (1− q)
(1− qn) . (2.11)

Similarly, if J = {2,3, . . . , n−1} then Property 2 yields

π({w ∈ Sn | w(1) = j}) = qj−1 (1− q)
(1− qn) . (2.12)

Similar formulas can be derived for the cases whereJ consists of the firstj or last
j elements of{1,2, . . . , n}.

In combination with Property 1, (2.11) also provides a formula for the proba-
bility of the set of permutations withj in the nth position and (2.12) gives the
probability of the set of permutations withj in the first position. More gener-
ally, one can give formulas for the probability of the set of permutations that have
1,2, . . . , j in any given relative position.

Property 3. Let J1 ⊇ J2 ⊇ · · · ⊇ Jk = ∅ be a sequence of subsets of
{1,2, . . . , n}. Then a sequential algorithm for generatingw in W from π is to
choose, for each1 ≤ i ≤ k − 1, the minimal length coset representative of a
coset ofWJi+1 in WJi (1≤ i ≤ k − 1) and multiply these together. Ifxi is a mini-
mal length coset representative of a coset inWJi/WJi+1, choosexi with probability
q`(xi )PWJi+1

(q)/PWJi (q).

As an example, supposeW is the symmetric groupSn generated bys1, s2, . . . , sn−1.

If J1 ⊇ J2 ⊇ · · · ⊇ Jn−1 is given byJi = {i, i + 1, . . . , n − 1}, then the algo-
rithm can be realized as the following procedure. Place symbols down sequen-
tially, beginning with 1. If symbols 1,2, . . . , i−1 have been placed in some order,
then placei first with probabilityq i−1(1− q)/(1− q i), second with probability
q i−2(1− q)/(1− q i), . . . , ith with probability(1− q)/(1− q i). Continuing until
all n elements are placed gives an efficient method of choosing fromπ.

An application of this is the following clever algorithm suggested by Pak [P] for
generating a uniformly chosen element of GLn(Fq). Choosew ∈ Sn with prob-
ability proportional toq`(w). Then formb1wb2 with b1 andb2 uniformly chosen
in the lower triangular matrices in GLn(Fq). This yields an efficient algorithm
for uniform choice in GLn(Fq). With obvious modifications, this procedure easily
adapts to the other finite groups with a BN pair.

Property 4. Consider a finite Coxeter group with probability distributionπ as
given in(2.8). LetZ be the random variable given byZ(w) = `(w) for w ∈W.
Then, withdi as in(2.9),
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Eπ(Z) = nq

1− q −
n∑
i=1

diq
di

1− q di ,

Varπ (Z) = nq

(1− q)2 −
n∑
i=1

d2
i q

di

(1− q di )2 .
(2.13)

Proof. The moment generating function ofZ is

MZ(t) = Eπ(etZ) = 1

PW(q)

∑
w∈W

(etq)`(w)

= PW(e
tq)

PW(q)
=

n∏
i=1

(1− (e tq)di )
(1− e tq)

(1− q)
(1− q di ) .

It follows thatZ is the sum of independent random variablesZ1, . . . , Zn, where

MZi(t) =
(1− (e tq)di )
(1− e tq)

(1− q)
(1− q di ) .

Then

Eπ(Zi) = d

dt
MZi(t)

∣∣
t=0 =

q

1− q −
diq

di

1− q di
and

Eπ(Z
2
i ) =

d2

dt 2
MZi(t)

∣∣
t=0 =

q

1− q −
2diq di+1

(1− q)(1− q di ) +
2q2

(1− q)2 −
d2
i q

di

1− q di .

It follows that

Varπ (Zi) = q

(1− q)2 −
d2
i q

di

(1− q di )2 .

We remark that, for Coxeter groups of typeAn,Bn,Dn under the probability distri-
butionπ, `(w) has an approximately normal distribution with mean and variance
as in (2.13). This follows from its representation as a sum of independent variables
in the proof of Property 4. For details, see [D, Chap. 6C, Cor. 1-2].

3. Hecke Algebras

This section introduces Hecke algebras as bi-invariant functions on a group. We
develop the needed Fourier analysis and then specialize to the Iwahori–Hecke al-
gebras associated to finite Coxeter groups.

3a. Algebras and Fourier Analysis

Random walks are traditionally analyzed using Fourier analysis [D]. We find this
possible in our examples and explain the basic tools here.

An algebraH overC is (split) semisimpleif it is isomorphic to a direct sum
of matrix algebras. This means that there exist a finite index setŴ and positive
integersdλ (λ∈ Ŵ ) such that
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H ∼=
⊕
λ∈Ŵ

Mdλ(C),

whereMdλ(C) is the algebra ofdλ× dλ matrices with entries inC. Fix an isomor-
phism

φ:H →
⊕
λ

Mdλ(C)

and define
eλST = φ−1(Eλ

ST ), λ∈ Ŵ, 1≤ S, T ≤ dλ, (3.1)

whereEλ
ST is the matrix in

⊕
λ Mdλ(C) that has a 1 in the(S, T ) entry of theλth

block and 0 everywhere else. The elementseλST ∈H are a set ofmatrix unitsforH.
The matrix units{eλST } form a basis ofH, and we write

h =
∑
λ∈Ŵ

∑
1≤S,T≤dλ

ρλST (h)e
λ
ST (3.2)

for h ∈ H. The homomorphismsρλ:H → Mdλ(C) and the linear functionals
χλH :H → C given by

ρλ(h) = (ρλST (h))1≤S,T≤dλ and χλH (h) = Tr(ρλ(h))

are theirreducible representationsand theirreducible charactersof H, respec-
tively. The homomorphismsρλ depend on the choice ofφ, but the irreducible
charactersχλH do not.

A traceonH is a linear functionalEt :H → C such thatEt(h1h2) = Et(h2h1) for
all h1, h2 ∈ H. Up to constant multiples, there is a unique trace onMdλ(C); this
implies that, for any traceEt :H → C onH, there are uniquetλ∈C (λ∈ Ŵ ) such
that

Et =
∑
λ∈Ŵ

tλχ
λ
H . (3.3)

The traceEt is nondegenerateif tλ 6= 0 for all λ ∈ Ŵ. Define a symmetric bilinear
form 〈·, ·〉H :H ×H → C onH by

〈h1, h2〉H = Et(h1h2) for h1, h2 ∈H.
The form〈·, ·〉H is nondegenerate if and only ifEt is a nondegenerate trace.

Let {Tw}w∈W be a basis ofH. The Fourier transform ofh =∑w∈W hwTw at the
representationρ is

ĥ(ρ) =
∑
w∈W

hwρ(Tw). (3.4)

The Fourier inversion theorems describe the change of basis matrix between{Tw}
and{eλST } and recoverh from {ĥ(ρλ)}λ∈Ŵ .
Theorem 3.5 (Fourier inversion and Plancherel).LetH be a semisimple alge-
bra overC with a nondegenerate traceEt . Let {Tw}w∈W be a basis for the algebra
H. Let {T̃ ∗w }w∈W be the dual basis with respect to〈·, ·〉H ; that is,〈T̃ ∗w, Tv〉H = δwv.
Then, with notation as in(3.1)–(3.4),



168 Per s i Diac oni s & Arun Ram

eλST =
∑
w∈W

tλρ
λ
TS(T̃

∗
w )Tw

and, for anyh, h1, h2 ∈H,
hw =

∑
λ∈Ŵ

tλ Tr(ĥ(ρλ)ρλ(T̃ ∗w )) for h∈H (3.6)

and
〈h1, h2〉H =

∑
λ∈Ŵ

tλ Tr(ĥ1(ρ
λ)ĥ2(ρ

λ)) for h1, h2 ∈H. (3.7)

Proof. SinceEt is nondegenerate, the equationEt(eλST ) =
∑

µ∈Ŵ tµχ
µ

H (e
λ
ST ) = tλδST

implies that{
eλTS

tλ

}
is the dual basis to{eλST } with respect to〈·, ·〉H .

By (3.2),ρλST (a) = (1/tλ)〈a, eλTS〉H . Thus

eλST =
∑
w∈W
〈eλST , T̃ ∗w 〉HTw =

∑
w∈W

tλρ
λ
TS(T̃

∗
w )Tw.

Then equation (3.6) is

hw = 〈h, T̃ ∗w 〉H = Et(hT̃ ∗w ) =
∑
λ∈Ŵ

tλχ
λ
H (hT̃

∗
w ) =

∑
λ∈Ŵ

tλ Tr(ĥ(ρλ)ρλ(T̃ ∗w )),

and (3.7) is

〈h1, h2〉H = Et(h1h2) =
∑
λ

tλχ
λ
H (h1h2) =

∑
λ

tλ Tr(ĥ1(ρ
λ)ĥ2(ρ

λ)).

3b. Coset Chains and Hecke Algebras

Let G be a finite group andB a subgroup ofG, and letQ be a leftB-invariant
probability distribution onG. Right multiplication by random picks fromQ in-
duces a random walk onG,

X0 = x0, X1= x0g1, X2 = x0g1g2, . . . , (3.8)

which, in turn, induces a process onB cosetsY0, Y1, Y2, . . . , whereYi is the coset
containingXi. The chain onG produced by right multiplication by random picks
fromQ is K̃(x, y) = Q(x−1y). The chance that this chain winds up in an element
of yB is K̃(x, yB) = Q(x−1yB) and, sinceQ is left B-invariant,K̃(x, yB) =
K̃(xb, yB) for anyb ∈ B. This invariance is a necessary and sufficient condition
for the induced coset process to be a Markov chain for any starting statex0B ∈
G/B (see [KeS, Thm. 6.32]). If the support ofQ is not a coset of a subgroup of
G then the chain in (3.8) is irreducible and aperiodic with uniform stationary dis-
tribution. The resulting coset chain is

K(xB, yB) = Q(x−1yB) with stationary distributionπ(xB) = |B|/|G|.
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If the probabilityQ isB bi-invariant, then the right process (3.8) onG induces
a process onB double cosets by simply reporting which double coset the element
Xi is in. The chance that theG-chain moves fromx to an element ofByB in one
step isQ(x−1ByB) and, since this depends only on the double coset ofx, the in-
duced process is a Markov chain on double cosets for any starting stateBx0B.

LettingW be a set of coset representatives for the double cosets ofB in G, the
chain is given by

K(w,w ′) = K(w−1Bw ′B) with stationary distributionπ(w) = |BwB|/|G|,
where we view the double coset chain as a Markov chain on the setW.

TheHecke algebraof the pair(G,B) is the subalgebra of the group algebra of
G consisting of theB bi-invariant functions onG,

H = {f :G→ C | f(g) = f(b1gb2) for g ∈G andb1, b2 ∈B}.
Background on Hecke algebras may be found in Curtis and Reiner [CR, Sec.
11D]. If H is commutative then(G,B) is called aGelfand pair,and there is a
well-developed probabilistic literature surveyed in [L1; L2] and [D, Chap. 3F].

LetW be a set of representatives of the double cosets inB\G/B. The functions

Tw = 1

|B|δBwB, w ∈W,

form a basis ofH, whereδBwB is the characteristic function of the double coset
BwB. The natural anti-involution onG given by g 7→ g−1 induces an anti-
involution ∗:H → H given by Tw 7→ Tw−1. The trivial representation ofG
restricts to theindexrepresentation ofH given by

ρ1(Tw) = ind(w), where ind(w) = |BwB||B| . (3.9)

An example to keep in mind isG = GLn(Fq) with B the subgroup of upper trian-
gular matrices. ThenW is the set of permutation matrices and ind(w) = q`(w).

Let L(G/B) = {f :G→ C | f(g) = f(gb) for g ∈G andb ∈ B}. The group
G acts on the left ofL(G/B) andH acts on the right ofL(G/B) by convolu-
tion. The raison d’être for the Hecke algebra is thatH = EndG(L(G/B)) and, as
(G,H ) bimodules,

L(G/B) =
∑
λ∈Ŵ

Gλ ⊗Hλ. (3.10)

Hereλ runs over an index set̂W of all the irreducible representations ofH,Gλ is an
irreducibleG-module, andHλ is an irreducibleH module (see [CR, (11.25)(ii)]).
Centralizers of the action of a finite group, in this caseG acting onL(G/B), are
semisimple (our base field isC) and hence the theory of Section 3a applies to
Hecke algebras. The trace of the action ofH onL(G/B) is given by

Et(Tw) =
{ |G|/|B| if w = 1,

0 otherwise.
(3.11)

The decomposition (3.10) yields
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Et =
∑
λ∈Ŵ

tλχ
λ
H , where tλ = dim(Gλ), (3.12)

andχλH are the irreducible characters ofH. Define an inner product onH by

〈h1, h2〉H = Et(h1h2), h1, h2 ∈H.
The basis {

Tw−1

ind(w)

}
w∈W

is the dual basis to{Tw}w∈W (3.13)

with respect to〈·, ·〉H ; that is,〈(1/ind(v))Tv−1, Tw〉H = δvw for all v,w ∈W (see
[CR, (11.30)(iii)]).

3c. Iwahori–Hecke Algebras

The Hecke algebras associated to finite Chevalley groupsG and their Borel sub-
groupsB have a remarkable structure theory for their double cosets—they are
indexed by the elements of a finite Coxeter groupW. For example, in the case of
the groupG = GLn(Fq) and its Borel subgroupB of upper triangular matrices,
the groupW is the symmetric group. There are many wonderful references for
this material; see [Bo, Chap. IV, Sec. 2, Ex. 22–27; Br; C, Sec. 10.8–10.11; CR,
Sec. 67–68]. We develop what we need in this section and give the relation to
probability theory.

LetW be a finite Coxeter group generated bysimple reflectionss1, . . . , sn. These
define a length function with̀(id) = 0, `(si) = 1, and`(siw) = `(w) ± 1 for
eachw ∈ W, 1 ≤ i ≤ n. The Iwahori–Hecke algebraH corresponding toW is
the vector space with basis{Tw | w ∈W } and multiplication given by

TiTw =
{
Tsiw if `(siw) = `(w)+1,

(q −1)Tw + qTsiw if `(siw) = `(w)−1,
(3.14)

whereTi = Tsi for 1 ≤ i ≤ n. Whenw = si we haveT 2
i = (q − 1)Ti + q or,

equivalently,(Ti − q)(Ti +1) = 0.
Let Ŵ be an index set for the irreducible representations ofW. For eachλ∈ Ŵ,

letχλW be the corresponding irreducible character ofW and letdλ = χλW(1) be the
dimension of this representation. The irreducible representations of the Iwahori–
Hecke algebraH are in one-to-one correspondence with the irreducible represen-
tations ofW in such a way that, ifχλH is the character of the irreducible represen-
tation ofH indexed byλ∈ Ŵ, then

χλH (Tw)
∣∣
q=1= χλW(w)

for all w ∈W ; see [CR, (68.21)]. In particular, the dimension of the irreducible
representation ofH indexed byλ is dλ.

Define a traceEt :H → C onH by

Et(Tw) =
{
PW(q) if w = 1,

0 otherwise,
where PW(q) =

∑
w∈W

q`(w)
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is the Poincaré polynomial ofW. ThenEt is the trace onH given by (3.11) and the
generic degreesare the constantstλ defined by

Et =
∑
λ∈Ŵ

tλχ
λ
H , (3.15)

whereχλH (λ∈ Ŵ ) are the irreducible characters ofH (see (3.2)). Now, if〈·, ·〉H :
H × H → C is the inner product onH given by 〈h1, h2〉H = Et(h1h2) for all
h1, h2 ∈H, then

〈Tx, Ty−1〉H = δxy q`(y)PW (q) for all x, y ∈W ; (3.16)

see [CR, (68.29)].
The “trivial” representationρ1 of the Iwahori–Hecke algebraH is the 1-dimen-

sional representation corresponding to the trivial representation ofW. Forw ∈W,

ρ1(Tw) = χ1
H (Tw) = q`(w), and π = 1

PW(q)

∑
w∈W

Tw

is the corresponding minimal central idempotent ofH (cf. (3.9)). Sincet1 = 1,

Et(hπ) = t1χ1(h) and Twπ = q`(w)π (3.17)

for all h∈H andw ∈W ; see [CR, (68.23) and (68.28)].
Let tr be the trace of the regular representation ofH—that is, tr(h) is the trace

of the linear transformation obtained from the action ofh onH by left multipli-
cation. Then

tr =
∑
λ∈Ŵ

dλχ
λ
H , (3.18)

wheredλ are the dimensions of the irreducible representations ofH (see [CR,
(3.37)(iii)]). Both traces tr andEt are important in our analysis of Metropolis walks
(see e.g. the proof of Proposition 4.8).

4. Metropolis Walks and Systematic Scans

This section brings together previous results in the form needed to prove our main
theorems. We show that the various systematic scans are precisely represented as
multiplication in the Iwahori–Hecke algebra. Then representation theory yields
tractable expressions for the norms involved.

4a. Metropolis Walks onW

LetW be a finite Coxeter group generated by simple reflectionss1, . . . , sn and, for
each 1≤ i ≤ n, let Pi(x, y) be the Markov chain onW given by

Pi(x, y) =
{

1 if y = si x,
0 otherwise.

Fix θ (0 < θ ≤ 1) and letπ be as in (1.1).Then the Metropolis construction pro-
duces the Markov chain
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Ki(x, y) =


1 if y = si x and`(y) > `(x),

θ if y = si x and`(y) < `(x),

1− θ if y = x.
(4.1)

The chainKi can be interpreted as follows.

Fromw, try to multiply by si . If this increases the length, carry out the
multiplication. If it decreases the length then flip aθ coin. If the coin
comes out heads, carry out the multiplication; if it comes up tails then
the chain stays atw.

Of course, the chain based on a fixed value ofi is not irreducible. However, any
convex linear combination and any symmetric product of reversible Markov chains
with a fixed stationary distribution is reversible with the same stationary distribu-
tion. If W is the symmetric group then the following chains are reversible forπ :

1

n

n∑
i=1

Ki (random scan Metropolis),

K1K2 · · ·KnKn · · ·K2K1 (short systematic scan),

(K1K2 · · ·KnKn · · ·K2K1) · · · (K1K2K2K1)(K1K1) (long systematic scan).

(4.2)

Note thatK1K2 · · ·Kn is an irreducible Markov chain withπ stationary. However,
it is not reversible in general.

The following theorem (a direct consequence of our setup) shows that many
Markov chains onW can be obtained by left multiplication by elements ofH on
the basis{T̃w}. The remaining results in this subsection provide the necessary tools
for studying the convergence of these chains by using the representation theory
of the Iwahori–Hecke algebraH. Though we have chosen to focus here on the
Iwahori–Hecke algebras related to finite reflection groupsW, the results of this
section hold in a general Hecke algebra context.

Theorem 4.3. LetW be a finite Coxeter group, and letH be the Iwahori–Hecke
algebra with basis{Tw}w∈W as defined in(3.14).Let

q = θ−1, T̃i = Ti/q, and T̃w = q−`(w)Tw for w ∈W.
The Metropolis chainKi in (4.1) is the same as the matrix of left multiplication by
T̃i with respect to the basis{T̃w}w∈W ofH :

T̃i T̃w =
{
T̃siw if `(siw) > `(w),

(1− θ)T̃w + θT̃siw if `(siw) < `(w).
(4.4)

Identify functionsf :X→ R in L2(π) with elements of the Iwahori–Hecke alge-
braH via

f =
∑
x∈W

f(x)T̃x. (4.5)
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The following proposition shows that we can use the inner product〈·, ·〉H onH
(defined in Section 3c) to compute norms inL2(π). Coupled with Lemma 2.3, it
gives bounds on rates of convergence in total variation distance.

Proposition 4.6. LetW be a finite Coxeter group, and letπ be as in(1.1). With
the identification ofL2(π) and the Iwahori–Hecke algebraH given by(4.5),

〈f/π, g/π〉2 = 〈f, g∗〉H for all f, g ∈L2(π),

where∗:H → H is the involutive anti-automorphism ofH defined byT ∗w = Tw−1.

Proof. Use the notation

f =
∑
x∈W

f(x)T̃x =
∑
x∈W

f(x)q−`(x)Tx =
∑
x∈W

fxTx.

Then, sinceθ = q−1, (2.2) and(1.1) give〈
f

π
,
g

π

〉
2

=
∑
x∈W

f(x)g(x)

π(x)

=
∑
x∈W

fx q
`(x)gx q

`(x)

θ−`(x)
PW (θ

−1) =
∑
x∈W

fxgx q
`(x)PW (q).

Thus, by (3.16),〈
f

π
,
g

π

〉
2

=
∑
x∈W

fxgx〈Tx, Ty−1〉H =
∑
x,y∈W

fxgy〈Tx, Ty−1〉H = 〈f, g∗〉H .

The following lemma shows that the inner product inL2(π), reversibility, and the
involution∗:H → H are simply related.

Lemma 4.7. LetH be the Iwahori–Hecke algebra corresponding to a finite real
reflection groupW, and letπ be as in(1.1). LetK be a reversible Markov chain on
W determined by left multiplication by an element ofH (also denoted byK). The
chainK operates onL2(π) byKf(x) =∑y∈W K(x, y)f(y). Then the following
are equivalent:

(a) K is reversible with respect toπ;
(b) K is self-adjoint with respect to〈·, ·〉2; and
(c) K = K∗ in the Iwahori–Hecke algebraH.

Here〈·, ·〉2 is the norm onL2(π) defined in(2.2)and∗:H → H is the involutive
anti-automorphism ofH defined byT ∗w = Tw−1.

Proof. If K is reversible, then

〈Kf, g〉2 =
∑
x,y∈X

K(x, y)f(y)g(x)π(x)

=
∑
x,y∈X

f(y)K(y, x)g(x)π(y) = 〈f,Kg〉2;
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conversely, ifK is self-adjoint then

π(x)K(x, y) = 〈δx,Kδy〉 = 〈Kδx, δy〉 = π(y)K(y, x),
whereδz denotes the delta function atz given byδz(x) = δzx (Kronecker delta).
HenceK is reversible if and only ifK is self-adjoint.

If K is self-adjoint with respect to〈·, ·〉2 then, by Proposition 4.6,

〈Kf, g∗〉H = 〈Kf/π, g/π〉2 = 〈f/π,Kg/π〉2 = 〈f, (Kg)∗〉H = 〈f, g∗K∗〉H .
Thus, for allw ∈W,

〈K, Tw〉H = 〈1, TwK∗〉H = 〈Tw,K∗〉H = 〈K∗, Tw〉H .
Therefore,K = K∗.
The following proposition is a primary tool for studying rates of convergence
of Markov chains on Iwahori–Hecke algebras, and it bounds theL2(π) norm of
Lemma 2.3 in terms of characters of that algebra. In contrast with the way that
random walks are often analyzed (see e.g. [DS]), the following proposition also
shows that the Markov chain given byK can be analyzed without knowing the
eigenvalues ofK—it is necessary only to compute traces.

Proposition 4.8. LetH be the Iwahori–Hecke algebra corresponding to a finite
real reflection groupW. LetK be a reversible Markov chain onW with stationary
distributionπ determined by left multiplication by an element ofH (also denoted
byK). LetK`

x denote the Markov chain started atx after` steps. Then

(a) ‖K`
x/π − 1‖22 = q−2`(x)∑

λ 6=1 tλχ
λ
H (Tx−1K2`Tx) and

(b)
∑

x∈W π(x)‖K`
x/π − 1‖22 =

∑
λ 6=1 dλχ

λ
H (K

2`),

whereχλH are the irreducible characters,tλ the generic degrees(3.15),anddλ the
dimensions of the irreducible representations ofH.

Proof. Equation (3.17) says thatEt(hπ) = t1χ
1
H (h) and T̃wπ = π for all h ∈ H

andw ∈W. Thus, sinceK`
x is a probability, Proposition 4.6 gives

1= 〈K2`
x /π,1〉2 = 〈K2`T̃x, π〉H = 〈K2`T̃x, T̃x−1π〉H

= Et(K2`T̃x T̃x−1π) = t1χ1
H (K

2`T̃x T̃x−1) = t1χ1
H (T̃x−1K2`T̃x).

Then, by Proposition 4.6,

〈K`
x/π,K

`
x/π〉2 = 〈K`T̃x, (K

`T̃x)
∗〉H = 〈K`T̃x, T̃x−1(K`)∗〉H .

Thus, by (3.12) and Lemma 4.7(c),

〈K`
x/π,K

`
x/π〉2 = 〈K`T̃x, T̃x−1K`〉H = Et(T̃x−1K2`T̃x)

= q−2`(x)
∑
λ∈Ŵ

tλχ
λ
H (Tx−1K2`Tx).

Now (a) follows because〈K`
x/π −1,K`

x/π −1〉2 = 〈K`
x/π,K

`
x/π〉2−1. Part (b)

follows similarly from the following calculation. Using the definition (2.2) of the
norm onL2(π),
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∑
x∈W

π(x)

〈
K`
x

π
,
K`
x

π

〉
2

=
∑
x,y∈W

π(x)
K`(x, y)K`(x, y)

π(y)

=
∑
x,y∈W

π(y)
K`(y, x)K`(x, y)

π(y)

=
∑
y∈W

K2`(y, y) = tr(K2`) =
∑
λ∈Ŵ

dλχ
λ
H (K

2`),

where tr is the trace of the regular representation ofH given in (3.18).

4b. Systematic Scans

One case of Proposition 4.8 that can be analyzed for all finite Coxeter groupsW

is the case when the Markov chainK is a (generalized)systematic scan.This is
whenK is given by left multiplication by the element̃T 2

w0 in the Iwahori–Hecke
algebra. In terms of the geometry of the Coxeter group, this chain is the Metropo-
lis walk on the chambers that tries to move a chamber to its opposite chamber and
back again by successive reflections in the walls of chambers. Since each step is a
Metropolis step, the chance that the chamber returns to its original position after
one pass is not1but instead depends on the parameterθ.WhenW is the symmetric
group, this chain is the long systematic scan defined in (4.2).

Let z be the sum of all the reflections inW. Thenz is a central element (since it
is a conjugacy class sum) in the group algebra ofW and thus, by Schur’s lemma,z
acts by a constantcλ on the irreducible representation ofW labeled byλ∈ Ŵ. The
following well-known result shows that the elementT̃ 2

w0, wherew0 is the long-
est element ofW, is an Iwahori–Hecke algebra analog of the elementz. From the
point of view provided by Theorem 4.3, the following proposition determines the
eigenvalues (with their multiplicities) of the systematic scan Metropolis chainK

onW.

Proposition 4.9. Let z be the sum of all the reflections inW, and letw0 be the
longest element ofW. Then the element̃T 2

w0 is in the center of the Iwahori–Hecke
algebraH and

ρλ(T̃ 2
w0 ) = qcλ−`(w0) Id, where cλ = χλW(z)

dλ
,

ρλ is the irreducible representation ofH indexed byλ, χλW is the irreducible char-
acter ofW labeled byλ, anddλ = χλW(1) is the dimension of this representation.

Proof. This result is standard (see [R, (2.4) and (2.5)], so we only sketch the proof
here. A result of Brieskorn–Saito [BS] and Deligne [De] states thatT 2

w0 is in the
center of the corresponding braid group. Since the Iwahori–Hecke algebraH is a
quotient of the group algebra of the braid group, it follows thatT 2

w0 is in the center
of H. The constant by which it acts on the irreducible representation labeled byλ

can be checked as follows. The elementT 2
w0 − q`(w0) is divisible by(q −1) and
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z = T 2
w0 − q`(w0)

q −1

∣∣∣
q=1
.

Since
q`(w0)+cλ − q`(w0)

q −1

∣∣∣
q=1
= cλ

andz acts by the constantcλ, the elementT 2
w0 must act by the constantq`(w0)+cλ .

The result of the proposition now follows, sinceT̃ 2
w0 = q−2`(w0)T 2

w0. An alterna-
tive way to obtain the constantq`(w0)+cλ by whichT 2

w0 acts is to note that

det(ρλ(Ti)) = (−1)(dλ−χ
λ
W
(si ))/2q(dλ+χ

λ
W
(si ))/2

for all 1≤ i ≤ n; this and [Bo, Chap. VI, Sec. 1, Cor. 2] imply that

det(T 2
w0 ) = q2`(w0)dλ+2χλ

W
(z))/2 = q dλ(`(w0)+cλ).

Combining Propositions 4.9 and 4.8 gives the following bounds on the convergence
of the systematic scan Metropolis walk on a finite Coxeter groupW. Explicit analy-
ses of these bounds in examples are given in Sections 5, 6, and 7.

Theorem 4.10. LetH be the Iwahori–Hecke algebra corresponding to a finite
real reflection groupW. LetK be the systematic scan Metropolis chain onW—that
is, the reversible Markov chain onW with stationary distributionπ determined
by left multiplication by the elementT̃ 2

w0 ofH, wherew0 is the longest element of
W. Then

(a) ‖K`
1/π − 1‖22 =

∑
λ 6=1 tλdλθ

2`(`(w0)−cλ) and
(b)

∑
x∈W π(x)‖K`

x/π − 1‖22 =
∑

λ 6=1 d
2
λ θ

2`(`(w0)−cλ)

where`(w0) is the length ofw0, tλ are the generic degrees(see(3.15)),dλ are the
dimensions of the irreducible representations ofH, and the constantscλ are as
given in Proposition 4.9.

5. The Hypercube

We begin with a simple but instructive example where all details can be carried
out. We are able to analyze and compare both randomized and systematic scans.
We show that both kinds of scans take ordern logn operations to converge to sta-
tionarity. For small values ofθ, the systematic scan converges faster; forθ close
to 1, the random scan converges faster.

5a. Preliminaries

The Coxeter groupW = (Z/2Z)n has generatorss1, s2, . . . , sn and relations

s2
i = 1 and sisj = sj si for all 1≤ i, j ≤ n.

The setX = W = (Z/2Z)n is the space of binaryn-tuples,si is the vector
with 1 in theith coordinate and 0 elsewhere, and the length function is given by
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`(x) = |x| = (# of ones inx). The longest element ofW isw0 = s1s2 · · · sn, and
`(w0) = n.

The irreducible representationsρλ of the Iwahori–Hecke algebra of(Z/2Z)n
are all 1-dimensional and are indexed byn-tuplesλ = (λ1, . . . , λn), λi ∈ {0,1}.
Let |λ| = λ1+ · · · + λn. Then

ρλ(Ti) =
{
q if λi = 0,

−1 if λi = 1,
cλ = n− 2|λ|, tλ = q |λ|, (5.1)

wherecλ and tλ are the constants defined in Proposition 4.9 and (3.15), respec-
tively.

Fix 0< θ ≤ 1 and let

π(x) = q`(x)

PW (q)
, where q = θ−1 and PW(q) = (1+ q)n (5.2)

is a normalizing constant. Thenπ is a product measure on(Z/2Z)n, since

π(x) =
(

q

1+ q
)̀ (x)( 1

1+ q
)n−`(x)

.

5b. Random Scan Metropolis

The random scan Metropolis algorithm proceeds by choosing a coordinate at ran-
dom and attempting to change to its opposite mod 2. If this results in a 1, the
change is made. If the change results in a 0, flip a coin with parameterθ. If the flip
comes up heads then change the chosen coordinate to 0; if it comes up tails then
the coordinate stays at 1. The resulting chain is

K(x, y) =


(1/n) if `(y) = `(x)+1,

(1/n)θ if `(y) = `(x)−1,

(`(x)/n)(1− θ) if y = x,
0 otherwise.

(5.3)

The following theorem shows that ordern logn steps are necessary and sufficient
to reach stationarity.

Theorem 5.4. Let the random scan Metropolis algorithm on(Z/2Z)n be de-
fined by(5.3)with 0< θ ≤ 1. Then, for any starting statex and any`,∥∥∥∥K`

x

π
− 1

∥∥∥∥2

2

=
∑
λ 6=0

θ 2λ·x−|λ|
(

1− |λ|
n
(1+ θ)

)2`

. (5.5)

For 0< θ < 1 and` = n(logn− logθ + c)/2(1+ θ) with c > 0,

‖K`
x − π‖2TV ≤

(
ee
−c − 1

)+ e−c/2. (5.6)

The bound in(5.6) is sharp in the sense that if̀= n(logn− logθ + c)/2(1+ θ)
then, for allε > 0, there exists ac < 0 such that‖K`

0 − π‖TV > 1− ε for all
sufficiently largen.
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Proof. From the definitions of the irreducible representations ofH,

χλH
(
T̃x−1

((
1
n

)
(T̃1+ · · · + T̃n)

)2`
T̃x
)

= n−2`q−2`(x)−2`χλH (T1+ · · · + Tn)2`χλH (Tx)2
= n−2`q−2`((n− |λ|)q − |λ|)2`q2(|x|−λ·x)q−2|x|

= (1− (|λ|/n)(1+ θ))2`θ 2λ·x.

The first statement then follows from Theorem 4.10(a) with the value fortλ given
in (5.1). For the second statement, we need to bound the sum on the right-hand
side of (5.5). Sinceθ ≤ 1, it follows thatθλ·x ≤ θ0 and∥∥∥∥K`

x

π
−1

∥∥∥∥2

2

≤
n∑
j=1

(
n

j

)
θ−j

(
1− j

n
(1+ θ)

)2`

.

Break the sum atn/2. For the first half, use
(
n

j

) ≤ nj/j! and 1− x ≤ e−x to give
an upper bound

n/2∑
j=1

1

j!

(
n

θ

)j
e−j(1+θ)2`/n =

n/2∑
j=1

e−jc

j!
≤ ee−c −1.

For the second half, changej ton−k and use the same inequalities to get an upper
bound

n/2∑
k=0

nk

k!
θk−ne−(n−k)(1+θ)2`/n =

n/2∑
k=0

1

k!
ek(logn+logθ+2`(1+θ)/n)−n logθ−2`n(1+θ)/n.

Using
∑m

k=0(A
k/k!) ≤ Am for A ≥ 2, the bound for the second half becomes

e(n/2)(logn+logθ+2`(1+θ)/n)−n logθ−2`n(1+θ)/n = e(n/2)(logn−logθ−2`(1+θ)/n) = e−nc/2.

To show that this upper bound is sharp, we use the second moment method. With
respect to the action ofK onL2(π) defined in Lemma 4.7, the matrixK(x, y) of
(5.3) has an orthonormal basis of eigenfunctions

fλ(y) = θ−|λ|/2(−θ)λ·y with eigenvalues 1− |λ|
n
(1+ θ), λ∈ (Z/2Z)n. (5.7)

Let ei ∈ (Z/2Z)n be the vector with 1 in theith entry and 0 elsewhere. We shall
use the test function

T(y) =
∑
i

fei(y) = θ−1/2
n∑
i=1

(−θ)yi

= θ−1/2(n− |y|(1+ θ)) = n√
θ

(
1− |y|(1+ θ)

n

)
. (5.8)

The expectation and the variance ofT with respect to the distributionπ are

Eπ(T ) = 0 and Varπ (T ) = Eπ(T 2) = n. (5.9)

For i 6= j,
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feifej = fei+ej and f 2
ei
= f0 + 1− θ√

θ
fei ,

where the second identity is verified by checking that both sides agree when eval-
uated at each of the two cases:y such thatyi = 1 andy such thatyi = 0. We can
compute the expectation and variance ofT under the distributionK`

0 as follows:

E`,0(T ) =
∑
y

K`(0, y)T (y) =
n∑
i=1

(K`fei )(0) =
n√
θ

(
1− 1+ θ

n

)̀
(5.10)

and

Var`,0(T ) = E`,0(T 2)− E`,0(T )2

= E`,0
( n∑

i=1

f 2
ei
+
∑
i 6=j

feifej

)
− n

2

θ

(
1− 1+ θ

n

)2`

= n+ n(1− θ)
θ

(
1− 1+ θ

n

)̀
+ n(n−1)

θ

(
1− 2(1+ θ)

n

)̀
− n

2

θ

(
1− 1+ θ

n

)2`

.

We want to use these formulas to show that` = (n/2(1+ θ))(logn− logθ + c)
steps are sharp. Fixingk and using log(1−x) = −x−x2/2+O(x3) ande−x

2/2 =
1− x2/2+O(x4), it follows that(

1− k(1+ θ)
n

)̀
∼ e`(−k(1+θ)/n−`k2(1+θ)2/2n2) ∼

(
θe−c

n

)k/2(
1− `k

2(1+ θ)2
2n2

)
whenn is large. Thus, for̀ = (n/2(1+ θ))(logn− logθ + c) andn large,

E`,0(T ) ∼
√
ne−c/2

and

Var`,0(T ) ∼ n+
√
n

θ
(1− θ)e−c/2 + (n−1)e−c

(
1− `4(1+ θ)

2

2n2

)
− n

2

θ

θ

n
e−c
(

1− 2`(1+ θ)2
2n2

)
∼ n+Oc,θ (

√
n)+ ne−c

(
−`2(1+ θ)

2

2n2

)
− e−c

= n+Oc,θ (
√
n)+Oc,θ (logn),

with the error terms depending onc andθ. By first choosingc to be a fixed (large)
negative number and then lettingn→∞, we see that, ifb is large, the setAb =
{x | |T(x)| ≤ b√n } has probability 1− 1/b2 underπ and probabilityO(1/b2)

underK`
0. This completes the proof of the last statement.

5c. Systematic Scan Metropolis

We turn next to the systematic scan version. Ordern logn steps are required here,
too. Lest the reader think this contradicts the example that began this paper, we
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note that the opening example (which actually corresponds to the heat bath up-
dating setup) replaces each coordinate with a freshly chosen pick. Thus a chosen
zero coordinate can remain zero with probabilityθ. For the Metropolis version
analyzed here, a chosen 0 must change to a 1.

With notation as in Section 5a, letN be the chain onZ/2Zwith matrix
(

0 1
θ 1−θ

)
.

On (Z/2Z)n defineKi acting asN on theith coordinate. Let

K = K1K2 · · ·KnKn · · ·K1. (5.11)

This is the systematic scan Metropolis algorithm with stationary distributionπ.

The following theorem gives bounds on the distance to stationarity. The proof is
similar to the proof of Theorem 5.4; for further details see [DR].

Theorem 5.12. Let the systematic scan Metropolis algorithm on(Z/2Z)n be
defined by(5.11)with 0< θ ≤ 1. Then, for any starting statex and any`,∥∥∥∥K`

x

π
− 1

∥∥∥∥2

2

=
∑
λ 6=0

θ(4`−1)|λ|+2λ·x. (5.13)

For 0< θ < 1 and

` = 1

4

(
logn+ c
log(1/θ)

+ 1

)
with c > 0,

‖K`
x − π‖2TV ≤ 1

4

(
ee
−c − 1

)
. (5.14)

The bound in(5.14)is sharp in the sense that if

` = 1

4

(
logn+ c
log(1/θ)

+ 1

)
then, for allε > 0, there exists ac < 0 such that‖K`

0 − π‖TV > 1− ε for all
sufficiently largen.

After ` passes, the systematic scan algorithm makes 2`n basic steps. Thus, the
results of Theorems 5.4 and 5.12 show that both scanning strategies converge in
ordern logn basic steps. The following table compares the lead term constants
for the two scanning strategies at various values ofθ.

θ random systematic

general
n log(n/θ)

2(1+ θ)
n logn

2 log(1/θ)

1

1+ ε
n logn

4

n logn

2 log(1+ ε)
1

2

n log 2n

3

n logn

2 log 2

ε
n log(n/ε)

2

n logn

2 log(1/ε)
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We see that the lead term constants make the random scan faster asθ → 1 whereas
the systematic scan is faster asθ → 0.

6. The Dihedral Group

The hypercube of Section 5 is commutative. This section treats the simplest non-
commutative example—the dihedral groupD2n. We completely analyze the con-
vergence of both the randomized and systematic scans. We find that both scanning
strategies take ordern operations to converge to stationarity.

The dihedral group of order 2n is the groupW given by generatorss1, s2 and
relations

s2
1 = 1, s2

2 = 1, and s1s2s1 · · ·︸ ︷︷ ︸
n factors

= s2s1s2 · · ·︸ ︷︷ ︸
n factors

.

This is the group of symmetries of a regular 2n-gon, wheres1 ands2 act by re-
flection in axes through the center of the 2n-gon that form an angle of 2π/2n (see
Figure 1).

Figure 1

Fix 0< θ ≤ 1 and consider the distribution onW given by

π(w) = q`(w)

PW(q)
, where PW(q) = (q2 −1)

(q −1)

(qn −1)

(q −1)
and q = θ−1.

This measure is largest at the longest element ofW, w0 = s1s2s1 · · · (n factors),
and`(w0) = n. The walks to be analyzed will all start at the identity.

One may picture the walks described in this section on the 2n chambers of an
n-gon. Pick one chamber (labeled with identity) and identify the two internal sides
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with s1, s2. Reflecting the fundamental chamber around gives each edge and each
chamber a label. The distance`(w) is the smallest number of chambers required
to walk from the chamber labeled byw to the identity. For example, inD12 pic-
tured in Figure 1,̀ (s1s2s1s2) = 4.

The random scan Metropolis walk proceeds fromw by choosing one ofs1, s2

with probability 1/2. If `(siw) > `(w), the move is accepted. If̀(siw) < `(w)

then the move is accepted with probabilityθ and rejected with probability 1− θ.
One pass of the systematic scan Metropolis algorithm choosesn generators in

the orders1, s2, s1, s2, . . . . Geometrically, starting from the identity, this amounts
to marching around then-gon. If no rejections are made then one complete scan
ends inw0.

Our bounds result in explicit expressions for the convergence of the two walks.
One of these has been carefully analyzed by Belsey [B1, Chap. VI, Thm. 2-10].
He showed the following.

Proposition 6.1. For the random scan Metropolis algorithm starting from the
identity, ∥∥∥∥K`

1

π
− 1

∥∥∥∥2

2

≤ θ−n
√

1+ θ
1− θ

(
1− 1

2
(1−
√
θ )2

)2`

. (6.2)

For 0<θ <1, the right-hand side of(6.2) is small fork of order
n logθ

2 log(1− (1/2)(1−√θ )2) .

Belsley [B1, Chap. VI, Thm. 4-12] further showed that the random scan Metrop-
olis algorithm has a total variation cutoff at

` = 2n

1− θ + c
√
n.

For the systematic scan algorithm, Theorem 4.10 and a computation of the rel-
evant constants from that theorem for the dihedral group shows that∥∥∥∥K`

1

π
−1

∥∥∥∥2

2

= θ(4`−1)n + θ(2`−1)n

(
θ 2 −1

θ −1
· θ

n −1

θ −1
−1

)
− θ 2`n,

∑
x∈W

π(x)

∥∥∥∥K`
x

π
−1

∥∥∥∥2

2

= θ 4`n + (2n− 2)θ 2`n.

(6.3)

(For details of these calculations see [DR] or http://math.wisc.edu/∼ram/pub/
persi3.21.00.ps.) Thus, for largen and fixed 0< θ ≤ 1, a single scan suffices to
achieve stationarity for typical starting states under the systematic scan. For typi-
cal starting states, the random scan converges in order logn steps.

A comparison of the results in (6.2) and (6.3) shows a mild advantage for sys-
tematic scans. The effect is most pronounced asθ approaches 1.

7. The Symmetric Group

This section proves Theorem 1.4 and a similar result for a different scanning strat-
egy. The results show that both scanning strategies requiren2 operations up to
lead term constants.
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7a. Preliminaries

The symmetric groupSn is generated by the simple transpositionssi = (i, i +1),
1≤ i ≤ n−1, and the longest element ofSn is the reversal permutation

w0 =
(

1 2 · · · n−1 n

n n−1 · · · 2 1

)
with `(w0) =

(
n

2

)
.

The book of Fulton [Fu] provides a review of the representation theory ofSn, and
we will adopt the conventions for tableaux used there. The irreducible represen-
tations of the Iwahori–Hecke algebraH are indexed by partitionsλ with n boxes
(see Figure 2).

Figure 2

Number the rows and columns ofλ as for matrices. Ifλi andλ′j denote the
length of theith row andj th column (respectively) ofλ, then thecontentand the
hook lengthof a boxb in position(i, j) of λ are

c(b) = j − i and hb = λi − i + λ′j − j +1,

respectively. Set

n(λ) =
`(λ)∑
i=1

(i −1)λi,

and let

[k]q = qk −1

q −1
and [k]q ! = [k]q [k −1]q · · · [2]q [1]q

for each positive integerk. Using this notation, the dimensionsdλ of the irreducible
representations ofH, the generic degreestλ defined in (3.15), and the constantscλ
defined in Proposition 4.9 are given by

dλ = n!∏
b∈λ

hb
, tλ = qn(λ) [n]q !∏

b∈λ
[hb]q

, and cλ =
∑
b∈λ

c(b) (7.1)

(see [Fu, Sec. 7.2, Prop. 2; Hf, 3.4.14; Mac, I, Sec. 7, Ex. 7; Mac, I, Sec. 1,
Ex. 3; Mac, IV, (6.7)]). The dimensiondλ is also equal to the number of standard
tableaux of shapeλ—that is, fillings of the boxes ofλ with 1,2, . . . , n such that
the rows are increasing left to right and the columns are increasing top to bottom
(see [Fu, p. 53]).
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The next lemma provides bounds on the constants in (7.1)that will be useful for
proving bounds on the convergence times of the systematic scan Metropolis walks
that we analyze here. The bounds oncλ given in part (c) are essentially those given
by Diaconis and Shahshahani (see [D, 3D, Lemma 2].

Lemma 7.2. For each partitionλ, let tλ, cλ, anddλ be as defined in(7.1).

(a) Whenθ = 1/q and0< θ ≤ 1, tλ ≤ θ(
λ1
2 )−(

n
2)dλ.

(b)
∑
λ`n

d2
λ = n! and

∑
λ

λ1=n−j

d2
λ ≤

n2j

j!
for each1≤ j ≤ n.

(c) cλ ≤
{ (λ1

2

)+ 1
2(n− λ1)(n− λ1− 3) if λ1 ≥ n/2,

n2/4− n if λ1 ≤ n/2.

Proof. Setθ = 1/q and use [Mac, I, Sec. 1, Ex. 2] and [Mac,III, Sec. 6, Ex. 2]
to obtain

tλ = θ−n(λ)−(
n
2)−n+(

∑
hb) [n] θ !∏

b∈λ
[hb] θ

= θ n(λ′ )−(n2) [n] θ !∏
b∈λ

[hb] θ
= θ−(n2)

∑
Q

θr(Q),

where the sum is over all standard tableauxQ of shapeλ and wherer(Q) is the
sum ofi such thati + 1 is to the right ofi in Q. Thustλ is a sum ofdλ monomi-
als, where the lowest-degree term has degreen(λ′) − (n2) ≥ (λ1

2

) − (n2). Part (a)
follows.

For (b), we can bound the number of standard tableauxQ of shapeλ with λ1=
n − j by noting that there are

(
n

j

)
ways of picking the elements not in the first

row ofQ and at most
√
j! ways of arranging these to complete a standard tableau.

Thus ∑
λ

λ1=n−j

d2
λ ≤

( ∑
λ1=n−j

dλ

)2

≤
((
n

j

)√
j!

)2

≤ n2j

(j!)2
j! = n2j

j!
.

The inequalities in (c) are direct consequences of

cλ ≤
{
c(λ1,n−λ1) if λ ≥ n/2,

cλ ≤ c(n/2,n/2) if λ1 ≤ n/2.

7b. Long Systematic Scan

As in Section 4a, we fix 0< θ ≤ 1 and consider the Markov chain

Ki(x, y) =


1 if y = si x and`(y) > `(x),

θ if y = si x and`(y) < `(x),

1− θ if y = x,
(7.3)

which is produced by applying the Metropolis construction to the base chain
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Pi(x, y) =
{

1 if y = si x,
0 otherwise,

with the distributionπ as given in (1.1).Recall that the chainKi can be interpreted
as follows.

Fromw, try to multiply bysi . If this increases the number of inversions
of w, carry out the multiplication. If it decreases the the number of in-
versions then flip aθ coin and carry out the multiplication if the coin
comes up heads; otherwise stay atw.

The long systematic scan Metropolis chain is the chain given by

K = (K1K2 · · ·KnKn · · ·K2K1) · · · (K1K2K2K1)(K1K1).

The following theorem bounds the rate of convergence of this Markov chain. It
shows that a single scan suffices to be close to stationarity.

Proposition 7.4. LetK be the long systematic scan Metropolis walk on the sym-
metric groupSn defined by(4.2). Letdλ, tλ, andcλ be the constants given in(7.1),
and let0< θ ≤ 1. Then the following statements hold.

(a) ‖K`
1/π − 1‖22 =

∑
λ 6=(n) tλdλθ

2`((n2)−cλ) and, with` = 1,

‖K1
1 − π‖2TV ≤

(
en

2θ n/2 − 1
)+ n! θ n2/8+5n/4,

which, whenθ < 1, approaches0 asn→∞.
(b)

∑
x∈W π(x)‖K`

x/π − 1‖22 =
∑

λ 6=(n) d
2
λ θ

2`((n2)−cλ) and, with` = 1,∑
x∈W

π(x)

∥∥∥∥K`
x

π
− 1

∥∥∥∥2

TV

≤ (en2θ n − 1
)+ n! θ n2/2+n,

which, whenθ < 1, approaches0 asn→∞.
Proof. By Theorem 4.3, this walk is equivalent to the walk on the Iwahori–Hecke
algebraH defined by multiplication bỹT 2

w0 with respect to the basis{T̃w | w ∈ Sn}.
Thus the equalities in (a) and (b) are consequences of Theorem 4.10.

Fix ` = 1. If λ1= n−j andj ≤ n/2, then the bound oncλ from Lemma 7.2(c)
gives

θ(
λ1
2 )−(

n
2)+2(n2)−2cλ ≤ θj(n−j/2−1/2)−j(j−3) = θj(n−3j/2+5/2) ≤ θj(n/4+5/2);

by using the bounds in Lemma 7.2(a) and (b), it follows that

n/2∑
j=1

∑
λ6=(n)
λ1=n−j

tλdλθ
2`((n2)−cλ) ≤

n/2∑
j=1

n2j

j!
θj(n/4+5/2) ≤ en2θ n/4 −1.

Whenλ1 ≤ n/2, the bound in Lemma 7.2(c) gives∑
λ

λ1≤n/2

d2
λ θ
(
λ1
2 )−(

n
2)+2(n2)−2cλ ≤ n! θ n2/8+5n/4.
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The upper bound on‖K1
1 − π‖TV follows by combining these expressions. The

upper bound in (b) is proved similarly.

7c. Short Systematic Scan

We now analyze the convergence of the short systematic scan and prove Theorem
1.4 of the introduction. The short systematic scan Metropolis chain on the sym-
metric group is given by

K = K1K2 · · ·KnKn · · ·K2K1,

whereKi is as in (7.3). The theorem shows that ordern short systematic scans are
necessary and suffice to reach stationarity when starting from the identity. In part
(b′) it is shown that, for typical starting values, this chain converges in order logn

scans.

Theorem 7.5. LetK be the short systematic scan Metropolis algorithm on the
symmetric group defined by(4.2). Letdλ, tλ, andcλ be the constants given in(7.1).

(a) ‖K`
1/π − 1‖22 =

∑
λ 6=(n) tλ

∑
S θ

2`(n−1−c(S(n))), where the sum is over stan-
dard tableaux of shapeλ and whereS(n) denotes the box ofS containingn.

(a′) For ` = n/2− (logn/ logθ)+ c with c > 0,

‖K`
1 − π‖2TV ≤

(
eθ

2c+1 − 1
)+ n! θ n2/8−n(logn)/(logθ)+n(c+1/4).

Conversely, if̀ < n/4 then, for fixed0< θ < 1, ‖K`
1 − π‖TV tends to1as

n→∞.
(b)

∑
x∈W π(x)‖K`

1/π − 1‖22 =
∑

λ6=(n) dλ
∑

S θ
2`(n−1−c(S(n))), where the sum

is over standard tableaux of shapeλ and whereS(n) denotes the box ofS
containingn.

(b′) For 0< θ < 1 and` = −(logn)/(logθ)+ c with c > 0,∑
x∈Sn

π(x)

∥∥∥∥K`
x

π
− 1

∥∥∥∥2

2

≤ (eθ 2c − 1
)+ (θc

e

)n
e1/12
√

2πn.

Proof. By Theorem 4.3, the Markov chainK is the random walk on{T̃w |w ∈ Sn}
defined by multiplication bỹTn−1 · · · T̃2T̃

2
1 T̃2 · · · T̃n−1 in the Iwahori–Hecke alge-

braH corresponding to the symmetric groupSn. Let H ′ be the Iwahori–Hecke
algebra corresponding to the symmetric groupSn−1, and letH be the Iwahori–
Hecke algebra corresponding toSn. Letw ′0 be the longest element ofSn−1 and let
w0 be the longest element ofSn. The inclusionSn−1 ⊆ Sn induces an inclusion
H ′ ⊆ H of the corresponding Iwahori–Hecke algebras. InH, the generatorsTi
are invertible withT −1

i = q−1Ti + (1− q−1). Then

T̃ 2
w0T̃

−2
w ′0 = T̃n−1 · · · T̃2T̃

2
1 T̃2 · · · T̃n−1

and so it follows from Proposition 4.9 that, in the representationρλ of H indexed
by the partitionλ, the element

K = T̃n−1 · · · T̃2T̃
2
1 T̃2 · · · T̃n−1 has eigenvaluesθ n−1−c(S(n)),
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whereS runs over standard tableaux of shapeλ andS(n) denotes the box ofS
containingn. This determines the eigenvalues ofK2` in the representationρλ and
so

χλH (K
2`) =

∑
S

θ 2`(n−1−c(S(n))),

whereχλH is the irreducible character of the Iwahori–Hecke algebra corresponding
to the partitionλ. Parts (a) and (b) now follow from Proposition 4.8.

Usingθ 2`(n−1−c(S(n))) ≤ θ 2`(n−λ1) and the bound fortλ in Lemma 7.2, we have∥∥∥∥K`
1

π
−1

∥∥∥∥2

2

≤
∑
λ6=(n)

θ(
λ1
2 )−(

n
2)dλ

∑
S

θ 2`(n−λ1) ≤
∑
λ6=(n)

θ (1/2)(n−λ1)(n−λ1+4`+1−2n)d2
λ,

sincedλ is the number of standard tableaux of shapeλ. Fix ` = n/2− (logn)/
(logθ)+ c. Then, using the bound on the sum ofd2

λ from Lemma 7.2,

n/2∑
j=1

∑
λ6=(n)
λ1=n−j

θ (1/2)j(j+4`+1−2n)d2
λ ≤

n/2∑
j=1

θ(1/2)j(1+4`+1−2n+4(logn/ logθ))

j!

=
∞∑
j=1

θ(2c+1)j

j!
= eθ 2c+1 −1.

The function(n − λ1)(n − λ1 + 4` + 1− 2n) has a minimum atn − λ1 =
(−1/2)(4`+1− 2n). At this minimum,λ1= n− 2(logn)/(logθ)+ 2c+1/2 ≥
n/2 and so∑

λ
λ1≤n/2

θ(1/2)(n−λ1)(n−λ1+4`+1−2n)d2
λ ≤ θ(1/2)(n/2)(n/2+4`+1−2n)n!

= n! θ n2/8−(n logn)/(logθ)+n(c+1/4).

Combining these sums establishes the upper bound in (a′).
To prove the lower bound in (a′) let

A = {w ∈ Sn | `(w) > 2`(n−1)}

=
{
w ∈ Sn

∣∣∣ ∣∣∣∣`(w)− (n2
)∣∣∣∣ < 2(n−1)(n/4− `)

}
.

Since each pass of the systematic scan can change the length of a permutation by
at most 2(n−1),

K`
1 (A) = 0. (7.6)

From equation (2.13),

Eπ(`(w)) = − (n−1)

1− θ +
n∑

j=2

j

1− θj

=
n∑

j=2

j − (n−1)

1− θ +
n∑

j=2

jθj

1− θj =
(
n

2

)
+O(n)
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and

Varπ (`(w)) = (n−1)θ

(1− θ)2 −
n∑

j=2

j2θj

(1− θj )2 =
(n−1)θ

(1− θ)2 +O(1).

Hence Chebychev’s inequality implies that, whenn is large,

π(A) ∼
(

1− Varπ (`(w))

(2(n−1)(n/4− `))2
)

∼
(

1− θ

4(n−1)(1− θ)2(n/4− `)2
)
. (7.7)

If ` < n/4 then the right-hand side approaches 1 asn→∞. Thus (7.5) and (7.6)
imply that‖K`

1 − π‖TV → 1 asn → ∞, and this proves the second statement
of (a′).

For (b′), use the boundθ 2`(n−1−c(S(n))) ≤ θ 2`(n−λ1) to obtain∑
x∈Sn

π(x)

∥∥∥∥K`
1

π
−1

∥∥∥∥2

2

≤
∑
λ 6=(n)

θ 2`(n−λ1)d2
λ.

Fix ` = −(logn)/(logθ)+ c. Using the bound in Lemma 7.2(a) gives

n/2∑
j=1

∑
λ6=(n)
λ1=n−j

θ 2 j̀d2
λ ≤

n/2∑
j=1

θ 2 j̀ n
2j

j!
=

n/2∑
j=1

θ 2j(`+(logn/ logθ))

j!
= eθ 2c −1

and, by using the bound in Lemma 7.2(b) and the bound onn! given in [F, (9.15)],∑
λ

λ1≤n/2

θ 2`(n−λ1)d2
λ ≤ θ`nn! = n! n−nθcn ≤

(
θc

e

)n
e1/12
√

2πn.

The result follows by combining the bounds for these two sums.
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