
http://www.elsevier.com/locate/aim

Advances in Mathematics 185 (2004) 159–177

Radical embeddings and representation
dimension

Karin Erdmann,a Thorsten Holm,b,� Osamu Iyama,c and
Jan Schröerd
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Abstract

Given a representation-finite algebra B and a subalgebra A of B such that the Jacobson

radicals of A and B coincide, we prove that the representation dimension of A is at most three.

By a result of Igusa and Todorov, this implies that the finitistic dimension of A is finite.
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1. Introduction and main result

In representation theory there are various homological invariants which measure
the deviation of an algebra or its module category from a nice situation which is well
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understood. Among the first and most important of such invariants is the global
dimension of an algebra which roughly speaking describes how far the algebra is
away from being semisimple, where all modules are projective. A highlight in
exploiting this invariant is the Auslander–Buchsbaum–Serre Theorem, proved in the
1950s, which states that an algebraic variety over an algebraically closed field is
smooth if and only if its coordinate ring has finite global dimension, and in this case
the global dimension is equal to the dimension of the variety.
Taking the point of view that finite-dimensional modules for an algebra A are to

be studied via their endomorphism rings, leads to the concept of representation
dimension. This homological invariant was introduced by Auslander around 1970 in
[1]. It describes the minimal global dimension of such endomorphism rings for
modules which are roughly speaking not too small. To be precise

repdimðAÞ ¼ minfgldimðEndAðZÞÞg

taking the minimum over all A-modules Z which are generator–cogenerators for A:
(A generator–cogenerator is a module which has all indecomposable projective and
all indecomposable injective modules as direct summands.) It is shown in [13] that
repdimðAÞoN for all algebras A: Auslander proved in [1] that repdimðAÞp2 if and
only if A is representation finite (that is, there are only finitely many non-isomorphic
indecomposable A-modules). Apart from this, there were only few examples where
the precise value of the representation dimension was known.
Our main result is the following.

Theorem 1.1. Suppose A is an algebra such that there is a radical embedding f :A-B

with B a representation finite algebra, then repdimðAÞp3:

A radical embedding f :A-B is an algebra monomorphism which maps the
Jacobson radical of A onto the Jacobson radical of B: This can be applied to a large
class of algebras, we will give details later.
Algebras with small representation dimension are of particular interest due to a

result by Igusa and Todorov. They proved that any algebra A with representation
dimension p3 satisfies findimðAÞoN; i.e. the (second) finitistic dimension
conjecture holds for A [11, Corollary 0.8].
In case of infinite global dimension usually many modules have finite projective

dimension. In this situation one would like to know whether or not these finite
projective dimensions are bounded. For a ring A and an A-module M; let
projdimðMÞ denote its projective dimension, that is the minimal length of a
projective resolution. The little finitistic dimension of A is defined to be

findimðAÞ ¼ supfprojdimðMÞ : projdimðMÞoNg;

the supremum taken over all finitely generated A-modules. Similarly, the big finitistic
dimension FindimðAÞ is defined, allowing arbitrary A-modules.
If A is commutative noetherian then FindimðAÞ is equal to the Krull dimension of

A [4,10], and if in addition A is local then findimðAÞ is equal to the depth of A; in
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particular, the little and the big finitistic dimensions coincide if and only if A is
Cohen–Macaulay. The finitistic dimensions are far less understood for non-
commutative rings.
We assume that A is a finite-dimensional associative algebra over a field k: In [3]

Bass formulated two so-called finitistic dimension conjectures. The first one asserts
that findimðAÞ ¼ FindimðAÞ: A counterexample was given in [20]; and [15] shows
that the difference can be arbitrary large.
The second finitistic dimension conjecture, which is open in general, states that

findimðAÞoN: It was proved to be true only for few classes of algebras: monomial
algebras [8], algebras where the cube of the radical is zero [9] and a few more special
cases [2,16,19]. If the finitistic dimension conjecture holds then some other well-
known homological conjectures also hold, this is explained for example in [21].
To check whether the finitistic dimension is finite is very difficult, since (at least

with the naive approach) we have to compute the projective dimension of all
modules. To prove that the representation dimension of an algebra is at most three,
one ‘just’ has to guess a suitable module, which is a generator–cogenerator and
whose endomorphism algebra has global dimension at most three. So the result of
Igusa and Todorov gives a new possible strategy to prove the finitistic dimension
conjecture for particular classes of algebras. Up to now there are no examples known
where the representation dimension is bigger than three.1 For further results on the
representation dimension of algebras we refer to [1,17,18]. For proving that a
particular algebra has representation dimension at most three, the following result of
the present paper is often useful:

Proposition 1.2. Let A be a basic algebra, and let P be an indecomposable projective–

injective A-module. Define B ¼ A=socðPÞ: If repdimðBÞp3; then repdimðAÞp3:

We remark that in the above situation every indecomposable A-module, except P

itself, is a B-module, by the rejection lemma of Drozd and Kiricenko [7].
An important class of algebras is given by the special biserial algebras (for the

definition see Section 4). Special biserial algebras have tame representation type.
Well-known examples are given by blocks of group algebras with cyclic or dihedral
defect group, and by algebras occurring in the Gelfand–Ponomarev classification of
Harish-Chandra modules over the Lorentz group.
In [14] it was proved that all special biserial algebras with at most two simple

modules have finite finitistic dimension. The following application of our main result
Theorem 1.1 proves the finitistic dimension conjecture for all special biserial
algebras:

Corollary 1.3. If A is a special biserial algebra, then we have repdimðAÞp3 and

findimðAÞoN:
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The proof of Theorem 1.1 yields an explicit construction of a generator–
cogenerator, whose endomorphism algebra has the desired global dimension.
Namely, as before, let f :A-B be a radical embedding with B representation finite.
Let N be the direct sum of a complete set of representatives of the isomorphism
classes of indecomposable B-modules. Note that we can consider N also as an
A-module. Then define Cf ¼ A"A�"N: We get the following result on the

structure of the endomorphism ring (for the definition of quasi-hereditary algebras
see Section 5):

Theorem 1.4. If f :A-B is a radical embedding with B a representation-finite algebra,
then EndAðCf Þ is a quasi-hereditary algebra of global dimension at most three.

The paper is organized as follows: In Section 2 we prove Theorem 1.1 and
Proposition 1.2. In Section 3 we give a general construction principal for
radical embeddings. This is applied in Section 4 to prove Corollary 1.3.
Section 5 contains the proof of Theorem 1.4. Finally, we discuss an example in
Section 6.
In this paper, ‘modules’ are finite-dimensional left modules. Although we often

write maps on the left-hand side, we compose them as if they were on the right. Thus,
the composition of a map y followed by a map f is denoted yf:

2. Proof of Theorem 1.1 and Proposition 1.2

The proof of the following lemma is implicitly contained in [1, Chapter III, Section
3]. For convenience we repeat it here.

Lemma 2.1. Let A be an algebra, and let M be a generator–cogenerator of A: Then for

nX3 the following are equivalent:

(1) For all indecomposable A-modules X there exists an exact sequence

0-Mn�2-?-M1-M0-X-0

with MiAaddðMÞ; such that

0-HomAðM;Mn�2Þ-?-HomAðM;M1Þ

-HomAðM;M0Þ-HomAðM;X Þ-0

is exact.
(2) For all indecomposable A-modules X there exists an exact sequence

0-X-M0-M1-?-Mn�2-0
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with MiAaddðMÞ; such that

0-HomAðMn�2;MÞ-?-HomAðM1;MÞ

-HomAðM0;MÞ-HomAðX ;MÞ-0

is exact.
(3) gldimðEndAðMÞÞpn:

Proof. For brevity set E ¼ EndAðMÞ: Assume that (1) holds. Let T be an E-module,
and let

HomAðM;M 00Þ!F HomAðM;M 0Þ-T-0

be a projective presentation of T : Then F ¼ HomAðM; f Þ for some homomorphism
f :M 00-M 0: Thus we get an exact sequence

0-Kerð f Þ-M 00-M 0:

Using our assumption, we get an exact sequence

0-Mn�2-?-M1-M0-Kerð f Þ-0

having the properties described in (1), here we set X ¼ Kerð f Þ: This yields an exact
sequence

0-Mn�2-?-M1-M0-M 00-M 0:

Applying HomAðM;�Þ gives an exact sequence
0-HomAðM;Mn�2Þ-?-HomAðM;M1Þ-HomAðM;M0Þ

-HomAðM;M 00Þ-HomAðM;M 0Þ-T-0:

Thus projdimðTÞpn for all E-modules T : We get gldimðEÞpn: Thus (3) is true.
Next, assume that (3) holds. For an A-module X ; let

0-X-I0!
h

I1

be an injective presentation. Note that I0; I1AaddðMÞ: We get an exact sequence

0-HomAðM;X Þ-HomAðM; I0Þ-HomAðM; I1Þ-Y-0

with Y ¼ CokðHomAðM; hÞÞ: Now HomAðM;X Þ is the second syzygy module
O2ðYÞ of Y : Since gldimðEÞpn; we know that projdimðO2ðYÞÞpn � 2: Thus there
exists an exact sequence

0-HomAðM;Mn�2Þ-?-HomAðM;M1Þ

-HomAðM;M0Þ-HomAðM;XÞ-0

ARTICLE IN PRESS
K. Erdmann et al. / Advances in Mathematics 185 (2004) 159–177 163



with MiAaddðMÞ: This yields an exact sequence

0-Mn�2-?-M1-M0-X-0:

Thus (1) follows. The equivalence of statements (2) and (3) is proved dually. This
finishes the proof. &

Let B be an algebra, and let ADB be a subalgebra of B:We regard any B-module
also as an A-module in the obvious way. For an A-module X ; define X� ¼
HomAðB;XÞ: Furthermore, we identify X and HomAðA;X Þ: Let

eX :X
�-X

be the natural map induced by the inclusion ADB: Note that eX is an A-module
homomorphism. Observe also that X� is a B-module.

Lemma 2.2. Let A be a subalgebra of an algebra B; and let X be an A-module. Then

HomBðY ;X�Þ-HomAðY ;X Þ;

f/f eX

is an isomorphism for all B-modules Y :

Proof. For all B-modules Y we have

HomBðY ;HomAðB;X ÞÞDHomAðB#BY ;XÞDHomAðY ;XÞ;

where the isomorphisms are given by

f/ðb#y/f ðyÞðbÞÞ/ðy/f ðyÞð1ÞÞ:

Thus the composition maps f to f eX : &

Lemma 2.3. Let A be a subalgebra of an algebra B such that JA ¼ JB: Then CokðeX Þ
and KerðeX Þ are semisimple A-modules for all A-modules X :

Proof. The sequence

0-HomAðB=A;XÞ-X� !eX
X-Ext1AðB=A;X Þ

is exact. We have ðB=AÞJA ¼ 0: Thus we get JA Ext
1
AðB=A;XÞ ¼ 0; which implies

that Ext1AðB=A;X Þ is a semisimple A-module. Thus CokðeX Þ is a semisimple A-

module, since it is a submodule of Ext1AðB=A;X Þ: Also KerðeX Þ is semisimple, since
JA HomAðB=A;XÞ ¼ 0: &
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Proof of Theorem 1.1. Assume that B is a representation-finite algebra, and let
M1;y;Mn be a complete set of representatives of isomorphism classes of
indecomposable B-modules. Without loss of generality we assume that A is a
subalgebra of B such that JA ¼ JB: Define N ¼ "n

i¼1 Mi; and let M ¼ A"A�"N:

We claim that gldimðEndAðMÞÞp3: To prove this, we use the criterion presented
in Lemma 2.1.
If X is an indecomposable injective A-module, then we get a short exact sequence

0-0-X-X-0:

Setting M0 ¼ X and M1 ¼ 0; we see that this sequence satisfies the conditions in
Lemma 2.1(1).
Assume next that X is an indecomposable non-injective A-module. We know by

Lemma 2.3 that CokðeX Þ is a semisimple A-module. By p : P-CokðeX Þ we denote
the projective cover of CokðeX Þ: Since P is a projective A-module, there exists a
homomorphism p : P-X such that the diagram

commutes and has exact rows. Observe that the map

eX

p

 !
:X�"P-X

is an epimorphism of A-modules. Note also that X�"PAaddðMÞ: We take

M0 ¼ X�"P

and will show that this works. It follows from Lemma 2.2 that the map

HomAðY ;X�"PÞ-HomAðY ;XÞ;

ð f ; gÞ/ð f eX þ gpÞ

is surjective for any B-module Y : Since A is projective, it follows that the map

HomAðA;X�"PÞ-HomAðA;X Þ;

ð f ; gÞ/ð f eX þ gpÞ

is surjective as well.
Finally, take an injective A-module I ; and some homomorphism fAHomAðI ;X Þ:

Let I-I=socðIÞ be the canonical projection. Since X is not injective, there exists a
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homomorphism g : I=socðIÞ-X such that the diagram

commutes. We have I ¼ "t
i¼1 ðeiAÞ� for some primitive idempotents ei in A: Since

ADB; the ei are also idempotents of B: From JA ¼ JB we get I=socðIÞ ¼
"t

i¼1 ðeiJBÞ�: Thus I=socðIÞ is also a B-module. Thus by Lemma 2.2, g factors

through eX :
Altogether, we proved that for any A-module ZAaddðMÞ and any homomorph-

ism f :Z-X of A-modules with X indecomposable there exists a homomorphism
g :Z-X�"P of A-modules, such that the diagram

commutes. Next, we show that the kernel of the map ðeX

p
Þ :M0-X belongs to

addðMÞ:
Let eX

0 :X�-ImðeX Þ be the epimorphism induced by eX : There are the obvious
inclusion maps ImðeX Þ-X and JAP-P: Clearly, there exists a homomorphism
p0 : JAP-ImðeX Þ such that the diagram

commutes. Now we construct the pullback of p0 and get the commutative diagram

Thus

Y ¼ Ker
eX

p

 !
:

We have P ¼ "t
i¼1 Aei for some primitive idempotents ei in A: Since JA ¼ JB; we get

JAP ¼ "t
i¼1 JBei: Thus JAP is also a B-module. Thus, by Lemma 2.2, the
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homomorphism p0 factors through eX
0: Thus the short exact sequence

0-KerðeX Þ-Y-JAP-0

splits, and we get YDKerðeX Þ"JAP: By the construction of M this implies
YAaddðMÞ: Now set M1 ¼ Y :
Thus for each A-module X we constructed a short exact sequence

0-M1-M0-X-0

with the properties required in Lemma 2.1. We get gldimðEndAðMÞÞp3: Since M is
a generator–cogenerator of A; it follows that repdimðAÞp3: This finishes the
proof. &

Remark. Theorem 1.1 and its proof hold under the weaker assumption that f is a
monomorphism such that f ðJAÞ is a two-sided ideal of B (not necessarily equal to
JB). So far we are not aware of interesting applications of this slightly more general
result. Thus we refrain from giving details here.

Proof of Proposition 1.2. Next, we prove Proposition 1.2. We have B ¼ A=socðPÞ:
Thus there is a surjective algebra homomorphism f :A-B: We can regard any B-
module as an A-module with the A-module structure induced by f :
Let N be a generator–cogenerator of B with gldimðEndBðNÞÞp3: Define M ¼

N"P: Observe that M is a generator–cogenerator of A: We claim that
gldimðEndAðMÞÞp3: To check this, we use again Lemma 2.1. Let X be any
indecomposable A-module. If X ¼ P; then we get a short exact sequence

0-0-X-X-0:

SetM0 ¼ X andM1 ¼ 0: It is easy to verify that this sequence satisfies the conditions
required in Lemma 2.1. Next, assume that X is not isomorphic to P: Thus X is an
indecomposable B-module. Applying Lemma 2.1 and our assumption
gldimðEndBðNÞÞp3; we get a short exact sequence

0-N1-N0-X-0

of B-modules with N0;N1AaddðNÞ and

0-HomBðN;N1Þ-HomBðN;N0Þ-HomBðN;XÞ-0

an exact sequence. Since P is projective, the functor HomAðP;�Þ is exact. Thus we
get an exact sequence

0-HomAðM;N1Þ-HomAðM;N0Þ-HomAðM;X Þ-0:

This enables us to apply Lemma 2.1 again, and we get gldimðEndAðMÞÞp3: This
finishes the proof. &
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3. Construction of radical embeddings

A quiver is a quadruple Q ¼ ðQ0;Q1; s; eÞ; where Q0 and Q1 are finite sets and
s; e :Q1-Q0 are maps. We call the elements in Q0 the vertices of Q; and the elements
in Q1 the arrows of Q: A path of length nX1 in Q is of the form a1a2?an where the ai

are arrows with sðaiÞ ¼ eðaiþ1Þ for 1pipn � 1: Additionally, there is a path ei of
length zero for each vertex iAQ0: By kQ we denote the path algebra of Q with basis
the set of all paths in Q: The multiplication is given by concatenation of paths.

A relation for Q is a linear combination
Pt

i¼1 liri such that liAk� and the ri are

paths of the form aipibi with ai; biAQ1 such that sðbiÞ ¼ sðbjÞ and eðaiÞ ¼ eðajÞ for all
1pi; jpt:
A basic algebra is a finite-dimensional algebra of the form kQ=I ; where the ideal I

is generated by a set of relations. By a result of Gabriel, any finite-dimensional k-
algebra is Morita equivalent to a basic algebra provided we assume that k is
algebraically closed.
Now, let A ¼ kQ=I be a basic algebra with Q ¼ ðQ0;Q1; s; eÞ: Let lAQ0 be a

vertex. Define

SðlÞ ¼ faAQ1 j sðaÞ ¼ lg

and

EðlÞ ¼ fbAQ1 j eðbÞ ¼ lg:

Note that the intersection of SðlÞ and EðlÞ might be non-empty.
Let SðlÞ ¼ S1,S2 and EðlÞ ¼ E1,E2 be disjoint unions. We call ðS1;S2;E1;E2Þ a

splitting datum at l if the following hold:

(1) For aASi and bAEj we have ab ¼ 0 whenever iaj:

(2) The ideal I can be generated by a set r of relations of the form
Pt

i¼1 liaipibi such

that fai j 1piptg-Ej ¼ | for j ¼ 1 or j ¼ 2; and fbi j 1piptg-Sj ¼ | for j ¼ 1
or j ¼ 2:

Note that condition (2) in the above definition is automatically satisfied, if we
assume that I is a monomial ideal, i.e. if I can be generated by a set of paths in Q:
Given a splitting datum Sp ¼ ðS1;S2;E1;E2Þ at l; we construct from Q a new quiver

QSp ¼ ðQSp0 ;Q
Sp
1 ; sSp; eSpÞ

as follows: Let

Q
Sp
0 ¼ fl1; l2g,Q0\flg;

and set Q
Sp
1 ¼ Q1: The maps sSp; eSp :QSp1 -Q

Sp
0 are

sSpðaÞ ¼
sðaÞ if sðaÞal;

l1 if aAS1;

l2 if aAS2;

8><
>:
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and

eSpðaÞ ¼
eðaÞ if eðaÞal;

l1 if aAE1;

l2 if aAE2:

8><
>:

Let r be a set of relations for Q which satisfy condition (2) above. Define

rSp ¼ r\fab j aASi; bAEj; iajg:

Then each element in rSp is also a relation for the quiver QSp: Let ISp be the ideal of

kQSp generated by the relations in rSp: Set

ASp ¼ kQSp=ISp:

We get the following result:

Lemma 3.1. Let A ¼ kQ=I be a basic algebra, and let Sp be a splitting datum at some

vertex of Q: Then there exists a radical embedding

A-ASp:

Proof. Let Sp be a splitting datum at some vertex lAQ0: We construct a map

f :A-ASp as follows: For the arrows aAQ1 we just define

f ðaÞ ¼ a:

For a vertex jAQ0 let

f ðejÞ ¼
ej if jal;

el1 þ el2 if j ¼ l:

(

It follows directly from the definition of a splitting datum that f can be extended to
an algebra homomorphism. It is also clear that f is a monomorphism and satisfies
f ðJAÞ ¼ JASp : &

The above lemma is useful for the construction of radical embeddings. In fact, it
can be applied to numerous situations. In the next section, we illustrate this for one
of the most important classes of tame algebras, the string algebras.

4. Proof of Corollary 1.3

A basic algebra A ¼ kQ=I is called a special biserial algebra if the following hold:

(1) Any vertex of Q is the starting point of at most two arrows and also the end
point of at most two arrows.

ARTICLE IN PRESS
K. Erdmann et al. / Advances in Mathematics 185 (2004) 159–177 169



(2) Let b be an arrow in Q1: Then there is at most one arrow a with abeI and at
most one arrow g with bgeI :

(3) There exists some N such that each path of length at least N lies in I ; i.e. A is
finite dimensional.

A string algebra is a special biserial algebra kQ=I which satisfies the additional
condition that I is generated by paths. For details and further references on string
algebras we refer to [5].

Proof of Corollary 1.3. Let A ¼ kQ=I be a string algebra. Define

cðAÞ ¼ jflAQ0 j jSðlÞj ¼ 2gj þ jflAQ0 j jEðlÞj ¼ 2gj:

If cðAÞ ¼ 0; then Q is a disjoint union of quivers which are of type A with linear

orientation or of type *A with cyclic orientation. But string algebras with such
underlying quivers are representation finite. In fact, it is easy to check that for a
string algebra A all indecomposable A-modules are serial if and only if cðAÞ ¼ 0:
Thus, assume cðAÞX1: Let lAQ0 such that jSðlÞj ¼ 2 or jEðlÞj ¼ 2: First, we con-

sider the case jSðlÞj ¼ 2; say SðlÞ ¼ fa1; a2g: We construct a splitting datum Sp ¼
ðS1;S2;E1;E2Þ at l as follows: Let S1 ¼ fa1g; S2 ¼ fa2g; E1 ¼ fbAEðlÞ j a2b ¼ 0g
and E2 ¼ EðlÞ\E1: It follows directly from the definition of a string algebra, that Sp is
a splitting datum. Now ASp is again a string algebra, and we have

cðASpÞpcðAÞ � 1:

The case jEðlÞj ¼ 2 is done in the same way. Repeating this construction a finite
number of times and applying Lemma 3.1 yields a chain

A ¼ A1-A2-?-At ¼ B

of radical embeddings, where B is a string algebra with cðBÞ ¼ 0 (cf. [12]). As
observed above, B is representation finite. Thus, for any string algebra A; we get a
radical embedding A-B with B representation finite. Then Theorem 1.1 yields that
repdimðAÞp3:
Next, assume that A is a special biserial algebra. Then we get from A to a string

algebra B by successively factoring out socles of indecomposable projective–injective
modules. Applying Proposition 1.2 after each step, we get repdimðAÞp3: Now we
use the result in [11] and get findimðAÞoN for any special biserial algebra A: This
finishes the proof. &

Note that for a string algebra A; the proofs of Theorem 1.1 and Corollary 1.3 yield
an explicit construction of a generator–cogenerator M of A such that
gldimðEndAðMÞÞp3: Namely, take M as the direct sum of a complete set of
representatives of isomorphism classes of string modules, which are projective,
injective or serial.
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5. Proof of Theorem 1.4

Let A be a subalgebra of an algebra B: We have the ‘induction’ functor

T ¼ BB#A� : modðAÞ-modðBÞ;

which is left adjoint to the ‘inclusion’ functor

F ¼ HomBðB;�Þ : modðBÞ-modðAÞ:

Thus for any A-module Y and any B-module X we get an isomorphism

fX ;Y : HomBðTY ;XÞ-HomAðY ;FXÞ:

For the sake of brevity, we will just write f instead if fX ;Y : Sometimes we will omit

writing F : Let

e : FT-1modðBÞ

be the corresponding counit, so that

eX ¼ f�1ð1FX Þ : B#A HomBðB;XÞ ¼ TðFX Þ-X

is just the multiplication map. This is a B-homomorphism. The unit of this
adjunction is the natural transformation

d : 1modðAÞ-TF ;

so that for YAmodðAÞ we have

dY ¼ fð1TY Þ :Y-FðTY Þ;

y/ð1#yÞ

if FðTY Þ ¼ HomBðB;B#AYÞ is identified with B#AY : This is an A-module

homomorphism. Note also that f�1ðgÞ ¼ TðgÞeX for g :Y-FX an A-homomorph-
ism, and fð f Þ ¼ dY Fð f Þ for f : TY-X a B-homomorphism.

Lemma 5.1. Let A be a subalgebra of an algebra B such that JA ¼ JB: If X is a B-
module, then as a B-module, we have TðFXÞDB#A FXDX"S where S is a

semisimple B-module.

Proof. Write Y ¼ FX :
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(1) First consider the exact sequences and the resulting commutative diagram

of A-homomorphisms, obtained by taking radical quotients (here
topðMÞ ¼ M=JAM), where the vertical maps are the canonical epimorphisms. Since
topðYÞ is the restriction of a B-module, the map Y-topðYÞ factors through dY ; see
the dual of Lemma 2.2, that is by adjointness. Hence the lower row is a split short
exact sequence.
(2) Let eX be the counit of the adjunction. Then we have a commutative diagram

of B-homomorphisms, which has exact rows. By lðMÞ we denote the length of a
module M: We have (using that the lower sequence in (1) is split exact)

lðKerðeX ÞÞ ¼ lðB#AYÞ � lðX Þ ¼ lðB#AYÞ � lðYÞ

¼ lðB=A#AY Þ ¼ lðtopðB#AYÞÞ � lðtopðY ÞÞ

¼ lðtopðB#AYÞÞ � lðtopðX ÞÞplðtopðKerðeX ÞÞÞ:

Thus KerðeX Þ is a semisimple B-module, and p is an isomorphism, and both rows in
the diagram in (2) are split short exact sequences of B-modules. &

Proof of Theorem 1.4. Let f :A-B be a radical embedding with B a representation-
finite algebra. We assume, without loss of generality, that f is an inclusion map, i.e.
ADB with JA ¼ JB: Let N be the direct sum of a complete set of representatives of
the isomorphism classes of indecomposable B-modules, say N ¼ "i Ni with Ni

indecomposable. Define M ¼ A"A�"FN: From the proof of Theorem 1.1 we
already know that gldimðEndAðMÞÞp3:We claim that EndAðMÞ is quasi-hereditary.
Let us recall the definition of quasi-hereditary algebras. Let G be a finite-

dimensional k-algebra, and assume that there is a partial order p on a set of labels
for the isomorphism classes of simple G-modules. Then ðG;pÞ is called a quasi-

hereditary algebra if for any label l with corresponding simple module LðlÞ there
exists a G-module DðlÞ (called standard module) such that
(i) there is a surjection DðlÞ-LðlÞ where the kernel has only composition factors

LðmÞ with mol;
(ii) there exists a map PðlÞ-DðlÞ; where PðlÞ is the projective cover of LðlÞ;

whose kernel has a filtration by standard modules DðmÞ with m4l:
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We set G ¼ EndAðMÞ and show that G is quasi-hereditary.
(1) Recall that the isomorphism classes of simple modules of the endomorphism

algebra of a module are indexed by the isomorphism classes of its indecomposable
direct summands. Let

R ¼ EndBðB#AMÞ ¼ EndBðTMÞ ¼ EndBðTA"TA�"TðFNÞÞ:

Lemma 5.1 implies addðB#AMÞ ¼ addðNÞ: Since B is a representation-finite
algebra, it follows from [1, Chapter III, Section 4] that gldimðRÞp2: This implies
that R is a quasi-hereditary algebra with respect to some partial orderpR so that the
labels given by the simple direct summands of N are maximal, see [6].
Define a partial orderp on the labels for the simple G-modules as follows: Let X

and Y be non-isomorphic indecomposable direct summands of the A-moduleM: Set
XoY if and only if one of the following holds:

* XDFNi and YDFNj for some i; j such that NioRNj ;
* X is not isomorphic to a direct summand of FN; and YDFNi for some i:

Note that this is a partial order: The only indecomposable B-modules, which could
become isomorphic as A-modules, are simple ones. Namely, if Ni and Nj are B-

modules with FNiDFNj; then TðFNiÞDTðFNjÞ; and if they are not simple, then
Lemma 5.1 implies that Ni and Nj are isomorphic. It follows that all simple direct

summands of M are maximal with respect to p:
For any indecomposable direct summand X of M; we have the submodule UðXÞ

of the projective G-module PðX Þ ¼ HomAðM;XÞ; which is defined to be the span of
all homomorphismsM-X ; which factor through some Y with Y4X : The standard

module associated to X is defined as DðX Þ ¼ PðX Þ=UðX Þ: By LðX Þ we denote the
top of PðX Þ: Thus LðX Þ is simple.
We have to show that for each X ; the module PðXÞ has a filtration by standard

modules with DðXÞ occurring only once, and if DðYÞ occurs, then YXX :
(2) For X simple we have DðX Þ ¼ PðXÞ: Assume now that X is not isomorphic

to a direct summand of FN: Thus X is a projective or injective A-module
(and not simple). In case X is projective, the radical of X is of the form"i Xi where
Xi ¼ FXi

0 with Xi
0 an indecomposable B-module for all i: Then we get the exact

sequence

0-
M

i

PðXiÞ-PðXÞ;

and the cokernel is one dimensional, hence is LðXÞ: Since Xi4X it follows that
DðX Þ ¼ LðXÞ:
In the second case, we have a short exact sequence of A-modules

0-HomAðB=A;XÞ-X� !eX
X-0

with the kernel a semisimple A-module, write it as"i Si with Si simple. Here we use
Lemma 2.3. Write also X� ¼ "j Xj where Xj ¼ FXj

0 with Xj
0 an indecomposable
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B-module for all j: This gives an exact sequence

0-
M

i

DðSiÞ-
M

j

PðXjÞ-PðXÞ:

We claim that the cokernel at PðX Þ is simple. Suppose g :W-X is an A-
homomorphism where W is an indecomposable direct summand of M: If W is
isomorphic to a direct summand of FN; then g factors through eX ; via adjointness,
and clearly it factors if W is projective. Suppose W is indecomposable injective and
not isomorphic to a direct summand of FN: If g is not an isomorphism, then it
factors through the socle quotient of W : But this is of the form FW 0 for some B-
module W 0: Hence g factors through eX again. It follows that the cokernel is LðXÞ
and is isomorphic to DðX Þ:
(3) So assume now that X ¼ FX 0 with X 0 an indecomposable B-module, which is

not simple. Let f be the adjoint isomorphism

f : HomBðTM;X 0ÞDHomAðM;X Þ ¼ PðX Þ:

Through the ring homomorphism T : G-R; f�1 induces G-isomorphisms
PðX Þ-PRðXÞ; UðXÞ-URðXÞ and DðXÞ-DRðX Þ:
We only have to show that this is compatible with factorizing through some

module ZAaddðNÞ; modulo maps factorizing through a semisimple module.
Suppose that g :M-X is an A-homomorphism with a factorization g ¼ ab; where

a :M-FZ and b : FZ-X are A-homomorphisms. Then we have

f�1ðgÞ ¼ TðaÞf�1ðbÞ : TM-X 0:

Hence f�1ðgÞ factors through TðFZÞ: Since Z is a B-module, Lemma 5.1 implies
that TðFZÞDZ"S as a B-module with S semisimple, and this is what we need.
Conversely, suppose f : TM-X 0 is a B-module homomorphism, which factors

through a B-module Z; say f ¼ ab; where a : TM-Z and b :Z-X 0: Then fð f Þ ¼
fðaÞFðbÞ; hence it factors through FZ:
Since R is quasi-hereditary with respect to pR; each indecomposable projective

module HomBðTM;X 0Þ has a filtration by standard modules of the right kind. The
above shows that the adjoint isomorphism identifies this filtration with a filtration of
HomAðM;XÞ by standard modules for G:
It remains to show that LðXÞ occurs with multiplicity one as a composition factor

of DðX Þ: This is clear if X is simple, and we have already seen it in case X is not
isomorphic to a direct summand of FN: If X is isomorphic to a direct summand of
FN; then this multiplicity is the same as the multiplicity of LRðXÞ in DRðX Þ; hence it
is one. &

6. An example

Let A ¼ kQ=I where Q is the quiver with one vertex x and two loops a; b and

I ¼ ða2; b2; ðabÞ2; ðbaÞ2Þ:When the field has characteristic 2 this is the socle quotient
of the group algebra of the dihedral group of order 8:
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Let Sp ¼ ðS1;S2;E1;E2Þ where S1 ¼ fag; S2 ¼ fbg; E1 ¼ fbg and E2 ¼ fag:
Clearly, Sp is a splitting datum at x: Following the general construction in Section 3,

we get the quiver QSp with two vertices l1 and l2 and arrows a : l1-l2 and b : l2-l1:

The ideal ISp is generated by all paths of length 4 in QSp: The algebra ASp is a

Nakayama algebra. Every indecomposable ASp-module is serial, and visibly its
restriction to A remains serial.
Hence M ¼ A"A�"N; where N is the direct sum of a complete set of

representatives of isomorphism classes of serial string modules over A: We denote
these string modules as MðCÞ for C in f1x; a; b; ab; ba; aba; babg; and we write k ¼
Mð1xÞ for the simple A-module. (For example, MðabÞ has basis fv; bv; abvg:)
Let G ¼ EndAðMÞ: We can see directly that gldimðGÞ ¼ 3: For each indecompo-

sable direct summandW ofM; we write PðWÞ for the indecomposable projective G-
module HomAðM;WÞ: Let LðWÞ be the simple top of PðWÞ:
(1) The radical JA belongs to addðMÞ; and the inclusion JA-A gives an inclusion

of projective G-modules

0-HomAðM; JAÞ-HomAðM;AÞ ¼ PðAÞ:

Clearly, the cokernel is one dimensional, hence it is the simple module LðAÞ: This
implies projdimðLðAÞÞp1:
(2) We have an exact sequence

0-k-MðabaÞ"MðbabÞ-A�-0:

This gives an exact sequence

0-PðkÞ-PðMðabaÞÞ"PðMðbabÞÞ-PðA�Þ:

of G-modules. We claim that the cokernel is one dimensional. Consider f :W-A�

where W is an indecomposable direct summand of M: If W ¼ A; then f factors.
SupposeW is serial. Then one easily calculates dimensions and gets that f factors. If
W ¼ A� and f is not an isomorphism, then f factors through the socle quotient, and
this is a direct sum of serials. Hence f factors by what we have already seen. This
shows projdimðLðA�ÞÞp2:
Next, assume that X is serial but not simple. Similarly as above, one can show that

projdimðLðXÞÞp2 in this case. This uses the short exact sequences

0-MðbaÞ-A-MðabaÞ-0;

0-MðabÞ-MðbÞ"MðabaÞ-MðbaÞ-0;

0-MðbÞ-k"MðbaÞ-MðaÞ-0

with terms in addðMÞ:
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Now consider the projective dimension of LðkÞ: We start with the exact sequence

0-D-MðaÞ"MðbÞ-k-0

of A-modules, where D ¼ A=J2A: Applying HomAðM;�Þ gives the exact sequence

0-HomAðM;DÞ-PðMðaÞÞ"PðMðbÞÞ-PðkÞ;

which has a one-dimensional cokernel, namely LðkÞ: The exact sequence

0-JA-A"k"k-D-0

gives rise to the projective resolution

0-HomAðM; JAÞ-PðAÞ"PðkÞ"PðkÞ-HomAðM;DÞ-0:

Hence projdimðLðkÞÞp3: Thus, we get gldimðGÞp3; and therefore repdimðAÞp3:
Since the algebra A has infinite representation type, we get repdimðAÞX3 by
Auslander’s theorem.
The same method works for arbitrary string algebras.
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