PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 4, Pages 1011–1014 S 0002-9939(02)06616-9 Article electronically published on July 17, 2002

FINITENESS OF REPRESENTATION DIMENSION

OSAMU IYAMA

(Communicated by Martin Lorenz)

ABSTRACT. We will show that any module over an artin algebra is a direct summand of some module whose endomorphism ring is quasi-hereditary. As a conclusion, any artin algebra has a finite representation dimension.

M. Auslander introduced a concept of representation dimension of artin algebras in [A], which was a trial to give a reasonable way of measuring homologically how far an artin algebra is from being of finite representation type ([X1], [FGR]). His methods given there have been effectively applied not only for the representation theory of artin algebras [ARS], but also for the theory of quasi-hereditary algebras of Cline-Parshall-Scott [CPS] by Dlab-Ringel in [DR2]. Unfortunately, much seems to be unknown about representation dimension itself. In particular, Reiten asked in 1998 whether any artin algebra has a finite representation dimension or not (cf. $\{2.3(2)\}$. In this paper, we will give a positive answer to this question ($\{1.2\}$ by showing that any module is a direct summand of some module whose endomorphism ring is quasi-hereditary $(\S1.1)$. Our method is to construct a certain chain of subcategories of mod Λ (§2.2), which was applied to solve Solomon's second conjecture on zeta functions of orders in [I3]. We will formulate it in terms of rejective subcategories $(\S2.1)$, which was effectively applied in [I1] to study the representation theory of orders and give a characterization of their finite Auslander-Reiten quivers in [I2].

Note. After the author submitted this paper, Professor Xi kindly informed him that Theorem 1.1 and Corollary 1.2 were stated in [X2] as conjectures, where the former was given by Ringel and Yamagata. He thanks Professor Xi and Professor Yamagata for valuable comments.

1.

In this paper, any module is assumed to be a left module. For an artin algebra Λ over R, let mod Λ be the category of finitely generated left Λ -modules, J_{Λ} the Jacobson radical of Λ , dom.dim Λ the dominant dimension of Λ [T], $I_{\Lambda}(X)$ the injective hull of the Λ -module X and ()* := Hom_R($,I_{R}(R/J_{R}))$: mod $\Lambda \leftrightarrow$ mod Λ^{op} the duality. For $X \in \text{mod }\Lambda$, we denote by add X the full subcategory of mod Λ consisting of direct summands of a finite direct sum of X. The representation dimension of Λ is defined by rep.dim $\Lambda := \inf\{\text{gl.dim }\Gamma \mid \Gamma \in A(\Lambda)\}$, where $A(\Lambda)$ is the collection of all artin algebras Γ such that dom.dim $\Gamma \geq 2$ and $\text{End}_{\Gamma}(I_{\Gamma}(\Gamma))$ is

©2002 American Mathematical Society

Received by the editors August 6, 2001 and, in revised form, October 29, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16G10; Secondary 16E10.

OSAMU IYAMA

Morita-equivalent to Λ . Then rep.dim $\Lambda = \inf \{ \operatorname{gl.dim} \operatorname{End}_{\Lambda}(M) \mid M \in \operatorname{mod} \Lambda \text{ such}$ that $\Lambda \oplus \Lambda^* \in \operatorname{add} M \}$ holds by [A].

1.1. Theorem. Let Λ be an artin algebra. Then any $M \in \text{mod }\Lambda$ is a direct summand of some $N \in \text{mod }\Lambda$ such that $\text{End}_{\Lambda}(N)$ is a quasi-hereditary algebra.

1.2. Corollary. Let Λ be an artin algebra. Then rep.dim Λ has a finite value which is not greater than 2l-2, where l is the length of a $(\Lambda, \operatorname{End}_{\Lambda}(\Lambda \oplus \Lambda^*))$ -module $\Lambda \oplus \Lambda^*$.

In the rest of this paper, any subcategory \mathcal{C}' of an additive category \mathcal{C} is assumed to be full and closed under direct sums. Let $\mathcal{J}_{\mathcal{C}}$ be the Jacobson radical of \mathcal{C} and $[\mathcal{C}']$ the ideal of \mathcal{C} consisting of morphisms which factor through some object in \mathcal{C}' . Thus $\mathcal{J}_{\mathcal{C}}(X, X)$ forms the Jacobson radical of the ring $\mathcal{C}(X, X)$ for any $X \in \mathcal{C}$.

2.1. Let \mathcal{C} be an additive category and \mathcal{C}' a subcategory of \mathcal{C} .

(1) \mathcal{C}' is called a *right rejective subcategory* of \mathcal{C} if the inclusion functor $\mathcal{C}' \to \mathcal{C}$ has a right adjoint $\mathbb{F} : \mathcal{C} \to \mathcal{C}'$ with a counit ϵ [HS] such that ϵ_X is a monomorphism for any $X \in \mathcal{C}$ (cf. [I1], 5.1). This is equivalent to that, for any $X \in \mathcal{C}$, there exists a monomorphism $g \in \mathcal{C}(Y, X)$ with $Y \in \mathcal{C}'$ which induces an isomorphism $\mathcal{C}(Y, Y) \xrightarrow{g} [\mathcal{C}'](X)$ on \mathcal{C} (cf. [I1], 5.2).

(2) $0 = \mathcal{C}_m \subseteq \mathcal{C}_{m-1} \subseteq \cdots \subseteq \mathcal{C}_0 = \mathcal{C}$ is called a *right rejective chain* if $\mathcal{J}_{\mathcal{C}_n/[\mathcal{C}_{n+1}]} = 0$ holds and \mathcal{C}_{n+1} is a right rejective subcategory of \mathcal{C}_n for any n $(0 \leq n < m)$. In this case, if $\Gamma := \mathcal{C}(M, M)$ is an artin algebra for an additive generator M of \mathcal{C} , then Γ is a quasi-hereditary algebra with a heredity chain $0 = [\mathcal{C}_m](M, M) \subseteq [\mathcal{C}_{m-1}](M, M) \subseteq \cdots \subseteq [\mathcal{C}_0](M, M) = \Gamma$.

Dually, we define a left rejective subcategory and a left rejective chain.

2.1.1. Let \mathcal{C}' be a right rejective subcategory of \mathcal{C} and \mathcal{C}'' a subcategory of \mathcal{C}' . Then $\mathcal{C}'/[\mathcal{C}'']$ is a right rejective subcategory of $\mathcal{C}/[\mathcal{C}'']$ since the isomorphism $\mathcal{C}(\ ,\mathbb{F}(X)) \xrightarrow{\epsilon_X} [\mathcal{C}'](\ ,X)$ induces an isomorphism $[\mathcal{C}''](\ ,\mathbb{F}(X)) \xrightarrow{\epsilon_X} [\mathcal{C}''](\ ,X)$. Moreover, if \mathcal{C}'' is a right rejective subcategory of \mathcal{C}' , then it is a right rejective subcategory of \mathcal{C} .

2.1.2. Proof of 2.1(2). \mathcal{C}_{m-1} is also a right rejective subcategory of \mathcal{C} by 2.1.1. Let \mathbb{F} be the right adjoint of the inclusion $\mathcal{C}_{m-1} \to \mathcal{C}$. Then $I := [\mathcal{C}_{m-1}](M, M)$ is isomorphic to a projective Γ -module $\mathcal{C}(M, \mathbb{F}(M))$, and $IJ_{\Gamma}I = 0$ holds by $\mathcal{J}_{\mathcal{C}_{m-1}} = 0$. Since $[\mathcal{C}_{m-1}]^2 = [\mathcal{C}_{m-1}]$ holds, I is a heredity ideal of Γ . Since $0 = \mathcal{C}_{m-1}/[\mathcal{C}_{m-1}] \subseteq \mathcal{C}_{m-2}/[\mathcal{C}_{m-1}] \subseteq \cdots \subseteq \mathcal{C}_0/[\mathcal{C}_{m-1}] = \mathcal{C}/[\mathcal{C}_{m-1}]$ is again a right rejective chain by 2.1.1, we obtain the assertion inductively.

2.2. Our results 1.1 and 1.2 immediately follow from the following lemma (put $M := \Lambda \oplus \Lambda^*$ for 1.2).

Lemma. Let Λ be an artin algebra and $M \in \text{mod }\Lambda$. Put $M_0 := M$, $M_{n+1} := M_n J_{\text{End}_{\Lambda}(M_n)} \subsetneq M_n$ and take a large m such that $M_m = 0$. Then $0 = \mathcal{C}_m \subseteq \mathcal{C}_{m-1} \subseteq \cdots \subseteq \mathcal{C}_0 = \mathcal{C}$ gives a right rejective chain for $\mathcal{C}_n := \text{add} \bigoplus_{l=n}^{m-1} M_l$. Thus $\Gamma := \text{End}_{\Lambda}(N)$ is a quasi-hereditary algebra for $N := \bigoplus_{l=0}^{m-1} M_l$ such that $\text{gl.dim }\Gamma \leq 2m-2$.

1012

Proof. (i) Note that there exists a surjection $f_{n,l} \in \operatorname{Hom}_{\Lambda}(\bigoplus M_n, M_l)$ for any n < l. (ii) Define a functor $\mathbb{F}_n : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda$ by

$$\mathbb{F}_n(X) := \sum_{Y \in \mathcal{C}_n, f \in \mathcal{J}_{\text{mod } \Lambda}(Y,X)} f(Y).$$

Then a natural transformation $\epsilon : \mathbb{F}_n \to 1$ is defined by the inclusion $\epsilon_X : \mathbb{F}_n(X) \to X$. By (i), $\mathbb{F}_n(M_n) = M_n J_{\operatorname{End}_\Lambda(M_n)} = M_{n+1} \in \mathcal{C}_{n+1}$ holds. Thus $\mathcal{J}_{\mathcal{C}_n}(, X) = [\mathcal{C}_{n+1}](, X) = \mathcal{C}_n(, \mathbb{F}_n(X))\epsilon_X$ holds on \mathcal{C}_n for any indecomposable $X \in \mathcal{C}_n - \mathcal{C}_{n+1}$. (iii) Fix indecomposable $X \in \mathcal{C}_n$. Put $Y := \mathbb{F}_n(X)$ and $g := \epsilon_X$ if $X \notin \mathcal{C}_{n+1}$, and Y := X and $g := 1_X$ if $X \in \mathcal{C}_{n+1}$. By (ii), $Y \in \mathcal{C}_{n+1}$ and $\mathcal{C}_n(, Y) \xrightarrow{g} [\mathcal{C}_{n+1}](, X)$ is an isomorphism on \mathcal{C}_n . Thus \mathcal{C}_{n+1} is a right rejective subcategory of \mathcal{C}_n . Since $\mathcal{J}_{\mathcal{C}_n/[\mathcal{C}_{n+1}]} = 0$ holds by (ii), our chain is right rejective. Now gl.dim $\Gamma \leq 2m - 2$ follows from [DR1].

2.3. Remark. (1) The dual version of 2.2 is the following lemma, which gives a variation of the theorem of Auslander and Dlab-Ringel in [A] and [DR2] by putting $M := \Lambda$.

Lemma. Let Λ be an artin algebra and $M \in \text{mod }\Lambda$. Put $M_0 := M$, $M_{n+1} := M_n/\{x \in M_n \mid xJ_{\text{End}_{\Lambda}(M_n)} = 0\}$ and take a large m such that $M_m = 0$. Then $0 = \mathcal{C}_m \subseteq \mathcal{C}_{m-1} \subseteq \cdots \subseteq \mathcal{C}_0 = \mathcal{C}$ gives a left rejective chain for $\mathcal{C}_n := \text{add} \bigoplus_{l=n}^{m-1} M_l$. Thus $\Gamma := \text{End}_{\Lambda}(N)$ is a quasi-hereditary algebra for $N := \bigoplus_{l=0}^{m-1} M_l$ such that gl.dim $\Gamma \leq 2m - 2$.

(2) By a result of Igusa-Todorov ([IT], 0.8), rep.dim $\Lambda \leq 3$ implies fin.dim $\Lambda < \infty$. Thus, from the viewpoint of the finitistic global dimension conjecture, it is an interesting question whether any artin algebra Λ satisfies rep.dim $\Lambda \leq 3$ or not [A].

References

- [A] M. Auslander: Representation dimension of Artin algebras, Lecture notes, Queen Mary College, London, 1971.
- [ARS] M. Auslander, I. Reiten, S. O. Smale: Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995. MR 96c:16015, MR 98e:16011
- [CPS] E. Cline, B. Parshall, L. Scott: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391 (1988), 85–99. MR 90d:18005
- [DR1] V. Dlab, C. M. Ringel: Quasi-hereditary algebras. Illinois J. Math. 33 (1989), no. 2, 280– 291. MR 90e:16023
- [DR2] V. Dlab, C. M. Ringel: Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring. Proc. Amer. Math. Soc. 107 (1989), no. 1, 1–5. MR 89m:16033
- [FGR] R. M. Fossum, P. Griffith, I. Reiten: Trivial extensions of abelian categories. Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin-New York, 1975. MR 52:10810
- [HS] P. J. Hilton, U. Stammbach: A course in homological algebra. Graduate Texts in Mathematics, 4. Springer-Verlag, New York, 1997, xii+364 pp. MR 97k:18001
- [I1] O. Iyama: τ-categories II: Nakayama pairs and rejective subcategories, to appear in Algebras and Representation theory.
- [I2] O. Iyama: τ -categories III: Auslander orders and Auslander-Reiten quivers, to appear in Algebras and Representation theory.
- [I3] O. Iyama: A proof of Solomon's second conjecture on local zeta functions of orders, to appear in J. Algebra.
- [IT] K. Igusa, G. Todorov: On the finitistic global dimension conjecture, preprint.
- H. Tachikawa: Quasi-Frobenius rings and generalizations. Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. MR 50:2233

OSAMU IYAMA

- [X1] C. C. Xi: On the representation dimension of finite dimensional algebras. J. Algebra 226 (2000), no. 1, 332–346. MR 2001d:16027
- [X2] C. C. Xi: Representation dimension and quasi-hereditary algebras, to appear in Adv. Math.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO, 606-8502, JAPAN *E-mail address*: iyama@kusm.kyoto-u.ac.jp

 $Current \ address:$ Department of Mathematics, Himeji Institute of Technology, Himeji, 671-2201, Japan

E-mail address: iyama@sci.himeji-tech.ac.jp

1014