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The representation dimension of a finite dimensional algebra has been introduced
by Auslander in his Queen Mary College notes [1]. Rouquier [8] has shown that the
representation dimension of the exterior algebra of an n-dimensional vector space is
n+1, thus giving the first example of an algebra known to have representation dimen-
sion strictly larger than 3. To do so, he proved that the representation dimension is
bounded below by the dimension of the stable module category plus two, and analyzed
the latter with the help of Koszul duality. In characteristic 2, the exterior algebra is
just kCn

2 , so Rouquier in particular has determined the representation dimension of
these algebras. He pointed out that his result implies the case p = 2 of the following
conjecture of Benson. The Loewy length of a block of a group algebra in characteristic
p is strictly larger than the p-rank of its defect group.

Here we generalize Rouquier’s result to group algebras of elementary abelian
groups. More precisely we will prove the following:

Theorem Let k be a field of characteristic p, Cn
p the elementary abelian group of order

pn. Then

dim kCn
p -mod ≥ n − 1.

One crucial idea of the proof of the p = 2 case in [8] is to transfer the problem to
commutative algebra with the help of Koszul duality. In contrast, we will work directly
in the module category and show that certain morphisms vanish in the stable category.

By Rouquier’s result mentioned above the following lower bound for the repre-
sentation dimension follows:

Corollary 1 Let k be a field of characteristic p. Then repdim kCn
p > n.

Following arguments due to Rouquier, we can deduce a lower bound for the rep-
resentation dimension of any block of a group algebra. The p-rank of a group G is the
maximal n, such that G has an elementary abelian subgroup of order pn.
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Corollary 2 Let k be a field of characteristic p. Let G be a finite group, B a non-semi-
simple block of kG and D a defect group of B. Then

repdim B > p -rank(D).

Finally, by an argument of Auslander, the representation dimension of a self-injec-
tive algebra is bounded above by its Loewy length, that is the minimal n such that
Radn vanishes. Using this, Benson’s conjecture follows.

Corollary 3 (Benson’s conjecture) Let k be a field of characteristic p. Let G be a finite
group, B a block of kG, ll B its Loewy length, and D a defect group of B. Then

ll B > p -rank(D).

In the first section we will recall the definitions and some basic properties of the
representation dimension (due to Auslander) and the dimension of a triangulated
category (due to Rouquier).

In the second section we explain the idea of the proof of the Theorem. We will
assume to have a module M generating (as will be defined in Sect. 1) the stable module
category in a finite number of steps. We will explain a method to show that another
object N is not in the category generated by M in a fixed number of steps. To apply
this method, we need to find a module N with a certain chain of endomorphisms
having a non-zero composition in the stable module category, but such that every
single endomorphism in the chain annihilates all morphisms from M.

For an infinite field, we will in Sect. 3 explicitly find a module N and endomorphisms
meeting our requirements. More precisely, we will construct a family of modules in
such a way that we can, depending on M, choose an adequate N (Proposition 11). We
will show that this module N cannot be in the category generated by M in to few steps.
This provides the lower bound for the dimension of the stable module category.

In the fourth section we will show that our result also holds for a finite field. We
look at the algebraic closure, where we may use the result for infinite fields, and then
see that everything actually happens in a finite extension of the given field.

Finally, in Sect. 5, we will see that our result also induces a lower bound for the
representation dimension of any block of a group algebra. This implies Benson’s
conjecture.

1 Definitions of the dimensions

Representation dimension: Recall that the global dimension of an algebra, denoted
by gld, is the maximum of the projective dimensions of the modules.

Definition Let � be a finite dimensional algebra. Then the representation dimension
of � is defined to be

repdim� = min{gld End�(M) | M generates and cogenerates � -mod}.
The representation dimension of a finite dimensional algebra has been introduced
by Auslander [1] in order to measure how far an algebra is from being represen-
tation finite. He showed that an algebra is representation infinite if and only if its
representation dimension is at least three. To date, no general method is known for
calculating the representation dimension of a given algebra, and in fact the only
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examples known by now to have representation dimension greater than three are the
exterior algebras [8] and the algebras in the family considered by Krause and Kussin
[6]. However, it has been shown by Iyama [5], that the representation dimension is
always finite.

Since we know the module category of � better than the one of End�(M), the
following lemma may help us to understand the representation dimension.

Lemma 4 [4, Lemma 2.1] Let � be a non-semisimple algebra, let M ∈ � -mod be a
generator and cogenerator, n ∈ N. Then the following are equivalent:

1. gld End�(M) = n
2. For every N ∈ � -mod there is an exact sequence

0 � Mn−2 � · · · � M0 � N � 0,

such that the induced sequence

0 � Hom�(M, Mn−2) � · · · � Hom�(M, N) � 0

is also exact. Such a sequence will be called a universal M-resolution of N.

This means, that the representation dimension of a non-semisimple algebra can
also be defined to be the minimal n, such that there is a generator cogenerator M
having the property that every module has a universal M-resolution of length at most
n − 2.

In order to get upper bounds for the representation dimension of some algebra, one
can choose a generator cogenerator M and calculate the maximal length of a universal
M-resolution of a module. The following lemma is an example of this technique.

Lemma 5 ([1, III.5, p. 55] and [8, Proposition 3.9]) Let � be self-injective. Then

repdim� ≤ ll�,

where ll� is the Loewy length of �.

Proof Take M = ⊕
i�/Radi�. Let us denote for a moment the kernel of the uni-

versal M-cover (that is the first morphism of the minimal universal M-resolution)
of a module N by �MN. Now note that in every step of the resolution, the Loewy
length of the module decreases by at least one, that means ll�i+1

M N ≤ ll�i
MN − 1. If

N is projective then it is in add M, therefore we may assume that ll N < ll�. Putting
this together we find ll�ll�−1

M N = 0, so �ll�−1
M N = 0. Therefore repdim� ≤ ll� as

claimed.
Alternatively, see [1, III.5, p. 55], but note that if the Loewy length of the module

is ll�, then the module is projective, so this case can be excluded. ��
Dimension of a triangulated category: The notion of dimension of a triangulated
category has been introduced by Rouquier in [7].

Let T be a triangulated category, I ⊂ Ob T . Then let 〈I〉 be the full subcategory
of T of all direct summands of finite direct sums of shifts of objects in I. For two
subclasses I1, I2 ⊂ Ob T let I1 ∗ I2 be the full subcategory of all extensions between
them, that is the objects of I1 ∗ I2 are exactly the M, such that there is a distinguished
triangle M1 � M � M2 � M1[1] in T with Mi ∈ Ii. Now set

I1 
 I2 = 〈I1 ∗ I2〉
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and

〈I〉0 = 0,

〈I〉1 = 〈I〉
〈I〉i+1 = 〈I〉i 
 〈I〉 .

Definition The dimension of a triangulated category T is the minimal d such that there
is an object M ∈ T with T = 〈M〉d+1.

The following lemma is an immediate consequence of this definition:

Lemma 6 [7, Lemma 3.4] Let S F� T be a triangle functor between two triangulated
categories. Assume any object in T is a direct summand of an object in the image of F.
Then

dim T ≤ dim S.

Here we will only be looking at the case T = � -mod of the stable module category
of a self-injective algebra �. Since short exact sequences in � -mod become triangles
in� -mod, any N having an M resolution of length n is contained in 〈M〉n+1. Therefore
we have the following lemma:

Lemma 7 [8, part of Proposition 3.6] Let� be a non-semisimple self-injective algebra.
Then

repdim� ≥ dim� -mod + 2.

In particular this shows that the Theorem implies Corollary 1.

2 Outline of the proof of the Theorem

Let k be a field of characteristic p, V an n-dimensional k-vector space. Let

� = S(V)/(vp | v ∈ V)

be the symmetric algebra modulo all p-th powers. Then � ∼= kCn
p.

We will use the following lemma to get a lower bound for the dimension of� -mod:

Lemma 8 ([6, Lemma 2.3], [7, Lemma 4.11]) Let T be a triangulated category and let

H1
f1� H2

f2� · · · fn−1� Hn−1
fn−1� Hn

be a sequence of morphisms between cohomological functors T op � Ab. For every i,
let Ii be a subcategory of T closed under shifts and on which fi vanishes. Then f1 · · · fn−1
vanishes on I1 
 · · · 
 In−1.

Proof This can easily be shown by induction on n. See [6] or [7]. ��
To make use of it, we let M ∈ Ob (� -mod) such that M realizes the minimal d in

the definition of dim� -mod, so 〈M〉dim(� -mod)+1 = � -mod. We will find a module N,

depending on M, and morphisms fi : N � N such that Hom(−, N)
fi∗� Hom(−, N)

is 0 on 〈M〉 but f1 · · · fn−1 �= 0. Thus, by the above lemma, 〈M〉n−1 cannot be the entire
stable category. Therefore dim(� -mod)+ 1 > n − 1.
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3 Proof of the Theorem in the case k is infinite

In this section we assume the field k to be infinite. Whenever we are talking about
open or closed sets we are referring to the classical Zariski topology.

Lemma 9 Let Y ⊂ mod-� be a finite set of right �-modules. Then there is an open,
nonempty subset U ⊂ V, such that for any u ∈ U , any y ∈ Y ∈ Y , and any 1 ≤ s < p
we have

yu = 0 ⇒ y · Rads� ⊂ Yus.

Proof Fix 1 ≤ s < p and Y ∈ Y . Any v ∈ V induces a linear map

ρs
v : Y � Y : y � yvs.

Now we can find a set with the desired property for our fixed s and Y:

Us,Y = {v ∈ V | rk ρs
v maximal}.

By choosing a basis for V and Y, the maps ρs
v induce a polynomial map

kdim V ∼= V � Endk Y ∼= kdim Y×dim Y .

We then compose this map with taking subdeterminants of size r, where r is the maxi-
mal rank in the definition of Us,Y above. This results in polynomial maps kdim V � k,
such that Us,Y is just the set where not all of these polynomials are zero. Thus Us,Y is
open and obviously it is non-empty.

Now fix u ∈ Us,Y . Let {ai | 1 ≤ i ≤ A} be a basis of Ker ρ1
u, complement it to a basis

{ai, bj | 1 ≤ i ≤ A, 1 ≤ j ≤ B} of Ker ρs
u, and finally to a basis {ai, bj, cl | 1 ≤ i ≤ A, 1 ≤

j ≤ B, 1 ≤ l ≤ C} of Y.
Let v ∈ V. The rank of ρs

u is maximal, so in particular rk ρs
u+εv ≤ rk ρs

u for any ε.
Fix 1 ≤ i ≤ A. Therefore, for all ε, the tuple

(
aiρ

s
u+εv, c1ρ

s
u+εv, . . . , cCρ

s
u+εv

)

is linearly dependent. Since aiu = 0, for ε �= 0 the tuple
(
aiρ

s
v, c1ρ

s
u+εv, . . . , cCρ

s
u+εv

)

also is linearly dependent. But the set of all ε such that it is linearly dependent is
closed (the subdeterminants of

(
aiρ

s
v, clρ

s
u+εv

)
are polynomials in ε), hence it has to

be all of k. Therefore, especially (aiρ
s
v, clρ

s
u | 1 ≤ l ≤ C) is linearly dependent, so

aiρ
s
v ∈ 〈

clρ
s
u | 1 ≤ l ≤ C

〉
. But the vs generate Rads� as a k-vector space, since s is

strictly smaller than p.
Finally set U = ⋂

Y∈Y
⋂p−1

s=1 Us,Y . ��
Lemma 10 Let X ⊂ � -mod be a finite set of �-modules. Then there is an open, non-
empty subset U ⊂ V, such that for any u ∈ U , any ϕ ∈ Hom�(X,�) with X ∈ X , and
any 1 ≤ s < p we have

ϕu = 0 ⇒ ϕ · Rads� ⊂ Hom�(X,�)us.

Proof Set Y = {Hom�(X,�) | X ∈ X } in Lemma 9. ��
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Proposition 11 Let X ⊂ � -mod be a finite set of �-modules. Let u ∈ U of Lemma 10,

N =�up−1. Then, for any X ∈X and any f ∈Radp−1�, any composition X �N
·f� N

factors through � -proj.

Proof Fix X ∈ X . Since N is a submodule of �, we may identify

Hom�(X, N) = {ϕ ∈ Hom�(X,�) | ϕ(X) ⊂ N}
= {ϕ ∈ Hom�(X,�) | ϕ(X) ⊂ �up−1}
= {ϕ ∈ Hom�(X,�) | ϕ(X)u = 0}.

Let ϕ ∈ Hom�(X, N), that is ϕ ∈ Hom�(X,�) with ϕu = 0. Then, by Lemma 10,
ϕf ∈ Hom�(X,�)up−1.

The projective cover of N is induced by the endomorphism up−1 of �. Therefore,
the maps X � N factoring through a projective module are exactly the elements
of Hom�(X,�)up−1. ��

Proposition 12 Let v ∈ V \ {0}, N = �vp−1. Then the composition

N �� hd N ∼= k ∼= Soc N� � N

does not factor through � -proj.

Proof Let {v1, v2, . . . , vn} be a basis of V, v1 = v. Then the composition above is (up
to a scalar) multiplication with

∏
i�=1 vp−1

i . Let f be any map � � N. It is defined
by the image of 1� in N ⊂ �, which we will also call f . Now assume that the following
diagram commutes.

N

∏
i�=1 vp−1

i � N

�����
f

�

�
�

∩

The image of vp−1 has to be the same on both ways, that is vp−1f = ∏
i vp−1

i . Therefore

f − ∏
i�=1 vp−1

i is a multiple of v. Since f ∈ N, f is also a multiple of v. So
∏

i�=1 vp−1
i

would be a multiple of v, but that is not true in �.
Therefore the morphism cannot factor through � -proj. ��

Proof of the Theorem for infinite fields Let M be a�-module realizing the minimal d
in the definition of the dimension of the stable module category. Let X = {M, �M},
where � is the cosyzygy functor, which is the shift in the stable category. Then choose
u ∈ U as in Lemma 10, and complement it to a basis {u1, . . . un} of V with u1 = u.
Let N = �up−1. Then we have the following sequence of cohomological functors
� -mod � k -mod.

Hom�(−, N)
·up−1

2� Hom�(−, N) · · · ·up−1
n� Hom�(−, N)

Its composition is nonzero by Proposition 12. So by Lemma 8 we only need to show

that Hom�(�
iM, N)

·up−1
j� Hom�(�

iM, N) is zero for any i ∈ Z and any 2 ≤ j ≤ n.



A lower bound for the representation dimension of kCn
p 487

The following diagrams have short exact rows and commute for any f ∈ �.

N� � � �� �/(up−1) �/(up−1)�
·u � �

·up−1
�� N

N

·f
�
� � �

·f
�

�� �/(up−1)

·f
�

�/(up−1)

·f
�

�·u � �

·f
� ·up−1

�� N

·f
�

Therefore �N ∼= �/(up−1), �(�/(up−1)) ∼= N and �(
·f� ) ∼= ·f� . So there is a

commutative diagram

Hom�(�
iM, N)

·up−1
j � Hom�(�

iM, N)

Hom�(�
i+2nM, �2nN)

∼=
�

�
2n(·up−1

j )
� Hom�(�

i+2nM, �2nN)

∼=
�

Hom�(�
i+2nM, N)

∼=
� ·up−1

j � Hom�(�
i+2nM, N)

∼=
�

By choosing n appropriately we can get i + 2n ∈ {0, 1}, so �
i+2nM ∈ X and the claim

follows from Proposition 11. ��

4 The case of a finite field

Now let k be finite, k an algebraic closure. Denote by � = k ⊗k � the induced
algebra. For any �-module X let X = k ⊗k X ∈ � -mod, and for X ⊂ � -mod let
X = {X | X ∈ X }. Whenever we are talking about an extension field k̂ of k let �̂, X̂
and X̂ be the obvious variations of the above.

Lemma 13 Let X ⊂ � -mod be finite. Then there is a finite extension k̂ of k and u ∈ V̂
such that any ϕ ∈ Hom�̂(X̂, �̂) with X ∈ X , and any 1 ≤ s < p we have

ϕu = 0 ⇒ ϕ · Rads �̂ ⊂ Hom�̂(X̂, �̂)up−1.

Proof By Lemma 10 there is u ∈ V such that for any ϕ ∈ Hom�(X,�) and any 1 ≤
s < p we have ϕu = 0 ⇒ ϕ ·Rads� ⊂ Hom�(X,�)us. Choose k̂ finite over k such that
u ∈ V̂. Since k⊗k̂ Hom�̂(X̂, �̂) = Hom�(X,�) [3, 29.5], we may identify Hom�̂(X̂, �̂)
with the subset of morphisms in Hom�(X,�) mapping X̂ to �̂. Therefore, for any
ϕ ∈ Hom�̂(X̂, �̂) with ϕu = 0, we have ϕ · Rads �̂ ⊂ Hom�(X,�)us ∩ Hom�̂(X̂, �̂) =
Hom�̂(X̂, �̂)us. The right equality holds because �̂ is a direct summand of � as
�̂-module. ��
Proposition 14 Let X ⊂ � -mod be finite, u and k̂ as in Lemma 13, and set N = �̂up−1.

Then, for any X ∈ X and any f ∈ Radp−1 �̂, any composition X̂ � N
·f� N of

�̂-morphisms factors through �̂ -proj.
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Proof This is just the proof of Proposition 11, replacing the reference to Lemma 10
by a reference to Lemma 13. ��
Proposition 15 Let X ⊂ � -mod finite, u and k̂ as in Lemma 13, and set N = �̂up−1.

Then, for any X ∈ X and any f ∈ Radp−1 �̂, any composition X � N
·f� N of

�-morphisms factors through � -proj.

Proof Any �-morphism ϕ : X � N lifts to a �̂-morphism ϕ̂ : X̂ � N as
indicated in the following diagram.

N
up−1

i � N

�
�
�
�
�
�
�
�

ϕ

�

X̂

ϕ̂

�

� �̂

��

�
�

�
�

�	

X

The dashed arrow now exists by Proposition 14 making the square commutative, so
the composition factors through �̂. Clearly this is a projective �-module. ��

We note that Proposition 12 does not depend on the field at all. To see that the
morphism is non-zero in � -mod, not just in �̂ -mod, we need to recall the following
lemma.

Lemma 16 Let � ⊂ �̂ be finite dimensional algebras. Assume �̂ is projective as
�-module and a direct summand of �̂ ⊗� �̂ as (�̂, �̂)-bimodule. Then restriction
induces an injective map Hom�̂(X, Y) � Hom�(X, Y).

Proof Assume a �̂-morphism ϕ : X � Y vanishes in Hom�(X, Y). Then it factors
through a finite number of copies of �, as indicated in the following diagram.

X
ϕ � Y






� �

�
�

�n

Let �̂
� ι���

π
�̂⊗� �̂ be the maps inducing the direct sum decomposition of �̂⊗� �̂.

Tensoring the above diagram with �̂ we find the triangle in the following diagram.
The rest of the diagram commutes since tensoring commutes with direct sums.

�̂⊗�̂ X ======== X
ϕ � Y ======== �̂⊗�̂ Y

�̂⊗� �̂⊗�̂ X

ι⊗ 1
�

== �̂⊗� X
1 ⊗ ϕ� �̂⊗� Y == �̂⊗� �̂⊗�̂ Y

π ⊗ 1 �






� �

�
�

�̂n
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Therefore ϕ also vanishes in Hom�̂(X, Y). ��
Corollary 17 Let k̂ be a finite extension field of k, v ∈ V̂. Then the composition
ψ : �̂vp−1 � k̂ � �̂vp−1 does not factor through a projective �-module.

Proof Since k is a finite field the extension is separable. Therefore, by [3, Corollary
69.8] k̂ is a direct summand of k̂ ⊗k k̂ as (̂k, k̂)-bimodule. Tensoring with � we find
that the assumptions of Lemma 16 are satisfied. ��
Proof of the Theorem for finite fields The argument is the same as the one in the
proof of the Theorem for infinite fields at the end of Sect. 3, with references to
Propositions 11 and 12 replaced by references to Proposition 15 and Corollary 17,
respectively. However, when we choose M as before and set X = {M, �M}, we need
to check that X̂ is indeed {M̂, ��̂M̂}, or, in other words, that taking cosyzygies and
tensoring with k̂ commutes. This is the case because tensoring with k̂ is exact and
k̂ ⊗� is projective over itself. ��

5 Applications

The applications here are obtained by applying the ideas of [8] to the more general
result.

Proposition 18 (implicit in [8, Theorem 4.9]) Let H ≤ G be finite groups. Then

dim kG -mod ≥ dim kH -mod .

Proof We have the exact functors

res : kG -mod � kH -mod and

ind : kH -mod � kG -mod .

Since both of them map projective modules to projective ones there are induced tri-
angle functors kG -mod �� kH -mod. By Lemma 6, it suffices to show that every
kH-module is a direct summand of a module in the image of res. But kH is a
direct summand of kG as kH–kH-bimodule, so 1kH -mod is a direct summand of
res ◦ind. ��
Corollary 19 Let G be a finite group, k a field of characteristic p, such that p devides
the order of G. Then

ll kG ≥ repdim kG ≥ dim kG -mod +2 > p -rank(G).

Proof The first inequality is Lemma 5, the second one is Lemma 7. The third inequal-
ity follows from the Theorem and Proposition 18. ��
Proposition 20 [8, Proposition 4.7] Let G be a finite group and B a block of kG. Let
D be a defect group of B. Then dim B -mod = dim kD -mod.

The proof is similar to the one of Proposition 18. See [8].

Corollary 21 Let G be a finite group, B a non-semisimple block of kG, char k = p. Let
D be a defect group of B. Then

ll(B) ≥ repdim B ≥ dim B -mod + 2 = dim D -mod + 2 > p -rank(D).
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