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1. INTRODUCTION

The importance of the representation finite Artin algebras for the whole
representation theory of Artin algebras is well understood and there is
much literature on the subject (see [1, 6, 12]). These are Artin algebras such
that every indecomposable module is finitely generated and every module
is a direct sum of indecomposable modules. Moreover there is a bijective
correspondence between the class of representation finite Artin algebras
and that of Artin algebras with global dimension of at most 2 and with
dominant dimension of at least 2. This result was established by Auslan-
der in [1]. Motivated by this correspondence, Auslander introduced the
concept of representation dimension for Artin algebras to study the con-
nection of arbitrary Artin algebras with representation finite Artin algebras.
“It is hoped that this notion gives a reasonable way of measuring how far
an Artin algebra is from being representation finite type” [1, p. 134].

Representation dimension is a Morita-invariant of Artin algebras and
its definition involves homological dimensions and modules which are both
generators and cogenerators. Unfortunately, little seems to be known about
representation dimension. So there are a lot of essential questions on this
invariant. Dealing with the computation and estimation of the representa-
tion dimension of an Artin algebra, there are a few cases known: Auslander
proved that the representation dimension of an Artin algebra is two if and
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only if the algebra is representation finite, and that the global dimension
being at most 1 implies that the representation dimension is at most 3.
Later, Fossum et al. proved in [5] that for the 2 × 2 triangular matrix al-
gebra over an algebra A the representation dimension is upper bounded
by the representation dimension of A plus 2 (see Theorem 7.3 in [5]). The
goal of this note is to enlarge the knowledge of representation dimensions.
More precisely, in Section 3 we are going to study the representation di-
mension of the tensor product of two algebras and give a upper bound of
the representation dimension for tensor products. From this we obtain that
the representation dimension of an n× n triangular matrix algebra over an
algebra A is still bounded by the representation dimension of A plus 2.
In Section 4 we investigate the representation dimensions of algebras and
their factor algebras by powers of the radicals. In Section 5 we consider the
relationship of the representation dimension and the global dimension of
an algebra. In the last section we discuss a special case of algebras which
are one-point extensions. (Note that it is not yet known whether the repre-
sentation dimension of an algebra is finite.)

Throughout this paper we work with Artin algebras which are finite di-
mensional k-algebras over a fixed field k with the identity 1. By a module
we mean a finitely generated left module. The global dimension of an alge-
bra A is denoted by gl.dim(A). By D we denote the duality Homk�−; k�,
and by A-mod the category of all A-modules. Given two homomorphisms
f :L −→ M and g:M −→ N , the composition of f and g is a homomor-
phism from L to N and is denoted in the paper by fg.

2. PRELIMINARIES AND DEFINITIONS

In this section we recall the definition of representation dimension from
[1] and some relevant notion as well as some results which we need later.

Given a finite dimensional algebra A, we say that A has dominant di-
mension greater than or equal to n, denoted by dom:dim�A� ≥ n, if there
is an exact sequence

0 −→A A −→ X1 −→ X2 −→ · · ·

of A-modules such that Xi is projective and injective for i = 1; : : : ; n. We
denote by I0�A� the module X1.

For a representation finite Artin algebra, Auslander proved that the en-
domorphism algebra of the direct sum of all non-isomorphic indecompos-
able modules has global dimension of at most two and dominant dimension
of at least two. More precisely, Auslander proved the following theorem,
which motivated him to introduce the notion of representation dimension
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as a way of measuring how far a finite dimensional algebra is from being
representation finite type.

Theorem 2.1. Suppose A is a finite dimensional algebra with gl:dim�A�
≤ 2. If P is a projective and injective A-module, then EndA�P� has repre-
sentation finite type. Further, up to Morita equivalence, all finite dimensional
algebras of representation finite type are obtained in this way.

The representation dimension is defined as follows.

Definition 2.2. Let A be a finite dimensional algebra over a field k.
Consider the finite dimensional algebra 3 of dominant dimension of at least
two such that End3�I0�3�� is Morita equivalent to A. Then the representa-
tion dimension of A is defined to be the minimum of the global dimension
of all possible 3, and denoted by rep:dim�A�.

In fact, Auslander also proved in [1] that the above definition is equiva-
lent to the following definition:

rep:dim�A� = inf�gl:dim�EndA�M�� �M is a generator-cogenerator�:
Note that an A-module M is called a generator-cogenerator if every in-
decomposable projective module and also every indecomposable injective
module is isomorphic to a summand of M .

The following lemma collects some known results on the representation
dimension which we shall need in the sequel.

Lemma 2.3. Let A be a non-semisimple k-algebra. Then

(1) rep:dim�A� = 2 if and only if A is representation finite.
(2) If A is a selfinjective algebra, then rep:dim�A� ≤ LL�A�, where

LL�A� stands for the Loewy length of A.
(3) If gl:dim�A� ≤ 1, then rep:dim�A� ≤ 3.
(4) Let T2�A� denote the 2 × 2 triangular matrix algebra over A. Then

rep:dim�T �A�� ≤ rep:dim�A� + 2.

Statements (1)–(3) are proved in [1], and statement (4) was shown in
[5, p. 115].

3. REPRESENTATION DIMENSION OF TENSOR PRODUCTS

Given two finite dimensional k-algebras A and B, we may form the tensor
product A ⊗k B of A and B over k, which is still a finite dimensional
k-algebra with the multiplication

�a⊗ b��a1 ⊗ b1� = aa1 ⊗ bb1

for all a; a1 ∈ A and b; b1 ∈ B. Here we write ⊗ for ⊗k.
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For any A-module M and B-module N , we have an �A ⊗ B�-module
M ⊗ N given by �a ⊗ b��m ⊗ n� = am ⊗ bn for all a ∈ A;b ∈ B;
m ∈ M , and n ∈ N . For �A ⊗ B�-modules obtained in this way, we have
the following properties.

Lemma 3.1. Suppose that M is an A-module and N is a B-module. Then

(1) If M is a projective A-module and N is a projective B-module, then
M ⊗N is a projective �A⊗ B�-module.

(2) If M is an injective A-module and N is an injective B-module, then
M ⊗N is an injective �A⊗ B�-module.

Proof. (1) follows immediately from proposition 2.3 of Chapter IX
in [3].

(2) Since D�A ⊗ B� = Homk�A ⊗ B;k� ∼= �DA� ⊗ �DB�, we see
that the tensor product of the injective A-module DA and the injective
B-module DB is an injective �A⊗ B�-module. This implies statement (2).

One may consider the functor AM ⊗ −:B-mod −→ �A⊗ B�-mod. The
following lemma shows that this functor has some nice properties.

Lemma 3.2. For A-modules X;Y and B-modules M;N , we have

HomA�X;Y � ⊗HomB�M;N� ∼= HomA⊗B�X ⊗M;Y ⊗N�

(as an isomorphism of vector spaces).

For the proof of this lemma, see [3, Chap. XI, Theorem 3.1, pp. 209–210].
From this lemma we get the following corollary.

Corollary 3.3. EndA⊗B�X ⊗M� = EndA�X� ⊗ EndB�M�.
The following result on the global dimension is well known.

Lemma 3.4. Suppose k is a perfect field. Let A;B be two finite dimen-
sional k-algebras. Then

gl:dim�A⊗ B� = gl:dim�A� + gl:dim�B�:

Now let us prove the following result.

Theorem 3.5. Suppose k is a perfect field. Let A and B be two finite
dimensional k-algebras. Then

rep:dim�A⊗ B� ≤ rep:dim�A� + rep:dim�B�:
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Proof. Let M be an A-module which contains each indecomposable
projective module and each indecomposable injective module as a direct
summand such that rep:dim�A� = gl:dim�EndA�M��. Let N be a such
B-module with the same property that rep:dim�B� = gl:dim�EndB�N��.
Then there are natural numbers m and n such that A is a direct sum-
mand of Mm and such that B is a direct summand of Nn. Similarly, there
are natural numbers m′ and n′ such that DA is a direct summand of
Mm′ and such that DB is a direct summand of Nn′ . Clearly, Mm+m′ ⊗
Nn+n′ contains A⊗ B as a direct summand and also contains D�A⊗ B� ∼=
�DA� ⊗ �DB� as a direct summand. Let X = Mm+m′ and Y = Nn+n′ .
Then X ⊗ Y is a generator-cogenerator for the �A ⊗ B�-mod. Note that
gl:dim�EndA�Mm+m′ �� = gl:dim�EndA�M�� and gl:dim�EndA�Nn+n′ �� =
gl:dim�EndA�N��. Thus

rep:dim�A⊗ B� ≤ gl:dim�EndA⊗B�X ⊗ Y ��
= gl:dim�EndA�X� ⊗ EndB�Y ��
= gl:dim�EndA�X�� + gl:dim�EndB�Y ��
= gl:dim�EndA�M�� + gl:dim�EndB�N��
= rep:dim�A� + rep:dim�B�:

As a consequence of the above result, we have the following corollary.
Of course, statement (1) of the corollary is a generalization of Theorem 7.3
in [5].

Corollary 3.6. Suppose k is a perfect field. Let A be a finite dimensional
k-algebra.

(1) Let Tn�A� be the n× n triangular matrix algebra with entries in A:

Tn�A� =


A A : : : A
0 A : : : A
:::

:::
: : :

:::
0 0 : : : A

 :
Then rep:dimTn�A� ≤ rep:dim�A� + 2.

(2) If B is a selfinjective k-algebra with LL�B� = m, then rep:dim�A⊗
B� ≤ rep:dim�A� +m.

Proof. (2) follows from 2.3(2) and 3.5. As to (1), just note that
Tn�A� = Tn�k� ⊗A and that rep:dimTn�k� = 2 for n ≥ 2 and rep:dim
T1�k� = 0.

Clearly, we have that rep:dim�A⊕ B� = max�rep:dim�A�; rep:dim�B��.
So if B is a direct sum of matrix algebras over an arbitrary field k, then,
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by definition, rep:dim�B� = 0. In this case, we have rep:dim�A ⊗ B� =
rep:dim�A� + rep:dim�B�. If B is not semisimple, the upper bound may
not be attained. This can be seen from the following examples which show
also that in general one cannot hope to have the equality in 3.5:

(1) If A = B = T2�k�, then rep:dim�A ⊗ B� = 2 = rep:dim�A�
by 2.3.

(2) If A = k�T �/�T 2�, then since the Loewy length of A⊗A is 3, we
have rep:dim�A⊗A� = 3, but rep:dim�A� = 2 again by 2.3.

Proposition 3.7. Let A and B be two selfinjective algebras over an arbi-
trary field k such that A/rad�A� or B/rad�B� is separable. Then

rep:dim�A⊗ B� ≤ LL�A� + LL�B� − 1;

where LL�A� denotes the Loewy length of A.

Proof. Suppose A/rad�A� is separable, that is, for any extension field
L of k, the L-algebra L⊗ �A/rad�A�� is semisimple. Then the radical of
A ⊗ B is rad�A� ⊗ B +A ⊗ rad�B� (see [4, p. 116]). One can verify that
the Loewy length of A ⊗ B is LL�A� + LL�B� − 1. Thus the proposition
follows from 2.3 since the tensor product of two selfinjective algebras is
again selfinjective by a result in [10].

One special case of tensor products is that one of the algebras A and B
is a field extension of k. The following lemma is true by [8].

Lemma 3.8. Let L be a finite dimensional separable extension of a field k.
We denote by rep:dimk�A� the representation dimension of the k-algebra A.
Then rep:dimk�A� = 2 if and only if rep:dimL�L⊗A� = 2.

Usually, the representation dimension of A changes when we change the
base field. This can be seen by the following example.

Let k be a non-perfect field of characteristic p. Then there is an extension
field of k which is not separable. So there is a purely inseparable extension
L of k of exponent one (i.e., L = k�α� with α /∈ k and αp ∈ k�. Then,
by [7, p. 491], the tensor product L ⊗ L has a nilpotent element, so the
L-algebra L ⊗ L is not semisimple. Note that L is a finite dimensional
semisimple k-algebra. Thus rep:dimL�L ⊗ L� ≥ 2 and rep:dimk�L� = 0.
For other examples one may see [8].

Remark. It is unknown whether over a perfect field k the tensor prod-
uct of two algebras A and B has a representation dimension of at least
max�rep:dim�A�; rep:dim�B��.
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4. REPRESENTATION DIMENSION AND THE RADICAL
OF AN ALGEBRA

Auslander proved in [1] that if rep:dim�A/radn−1�A�� ≤ 2, then
rep:dim�A� ≤ 3. And then he asked a question whether rep:dim�A� ≤
rep:dim�A/radn−1�A�� + 1 holds, where n is the nilpotent index of the rad-
ical rad�A�. Motivated by this question we shall provide a related bound in
this section. The main result in this section is the following theorem which
can be used to estimate the upper bound for representation dimensions of
certain “complicated” algebras.

Theorem 4.1. Let A be a finite dimensional k-algebra with Jacobson rad-
ical N of nilpotence index n, that is, Nn = 0 6= Nn−1. Suppose that for each
indecomposable injective A-module I with Nn−1I 6= 0 the indecomposable di-
rect summands of I/Nn−1I are either injective A/Nn−1-modules or projective
A/Nn−1-modules, then rep:dim�A� ≤ rep:dim�A/Nn−1� + 3.

Before we give the proof of this theorem, let us first recall some defini-
tions and facts needed.

Let X be a full subcategory of A-mod which is closed under direct sums
and isomorphisms, and X;M ∈ A-mod. A homomorphism f :X −→ M
is called minimal if an endomorphism g:X −→ X is an automorphism
whenever f = gf . The morphism f is called a right X-approximation of M
if X ∈ X and for each homomorphism g:Y −→ M with Y ∈ X there is a
homomorphism h:Y −→ X such that g = hf . If in addition f is minimal
then we call f a minimal right X-approximation of M .

The following lemma is true (see, for example, [2]).

Lemma 4.2. Let X be an additive and full subcategory of A-mod closed
under direct sums and isomorphisms. If there are only finitely many indecom-
posable A-modules in X (up to isomorphisms), then for every A-module M
in A-mod there is a minimal right X-approximation of M . If AA ∈ X then
each minimal right X-approximation is surjective.

Let M be an A-module. We denote by add�M� the full subcategory of
A-mod whose objects are isomorphic to direct summands of direct sums of
finite copies of M .

Let C be a skeletally small category. We denote by Cop the opposite cat-
egory of C and by Funct�Cop;Ab� the abelian category of all functors from
Cop to the category Ab of abelian groups. Let Ĉ be the full subcategory of
Funct�Cop;Ab� consisting of all coherent functors G, that is, those functors
G for which there is a morphism C1 −→ C2 in C such that the sequence

�; C1� −→ �; C2� −→ G −→ 0
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is exact. Here and in the sequel we denote by �; C� the Hom functor
HomC�; C�: Cop −→ Ab for C ∈ C.

The following lemma is proved in [1].

Lemma 4.3. Let M be in A-mod. Then the category ̂add�M� and
End�M�-mod are equivalent. In particular,

gl:dim�EndA�M�� = gl:dim� ̂add�M��:
Note that for each module X ∈ A-mod the functor �;X� belongs tôadd�M� by 4.2.

Now we prove Theorem 4.1.
Let B = A/Nn−1 and V0 be a B-module such that gl:dim�EndB�V0�� =

rep:dim�B�. We may assume that rep:dim�B� = m <∞. (Otherwise there
is nothing to prove.) Let P1; : : : ; Pt be a complete set of non-isomorphic
indecomposable projective A-modules and I1; : : : ; Is a complete set of non-
isomorphic indecomposable injective A-modules. Put V x= V0 ⊕

⊕t
i=1 Pi ⊕⊕s

j=1 Ij and define X= add�V0�. We want to show that gl:dim�EndA�V �� ≤
rep:dim�B� + 3.

Suppose M is an indecomposable A-module. We show that there is an
exact sequence 0 −→ Xm+3 −→ · · · −→ X3 −→ X2 −→ M −→ 0 with all
Xi ∈ add�V � such that the induced sequence

0 −→ �X;Xm+3� −→ · · · −→ �X;X3� −→ �X;X2� −→ �X;M� −→ 0

is exact for all X ∈ add�V �.
(1) If M ∈ add�V � then we simply define X2 = M and X3 = · · · =

Xm+3 = 0 and the morphism X2 −→M the identity.
(2) Suppose that M is not in add�V �. There are two cases to be

considered.

The first case. M is a B-module. Then we consider the functor �;M�:
Xop −→ Ab. Since gl:dim�EndB�V0�� = gl:dim� ̂add�V0�� = m by 4.3, we
have a minimal projective resolution for �;M�,

0 −→ �;Xm+2� −→ · · · −→ �;X3� −→ �;X2� −→ �;M� −→ 0

with all Xi ∈ X . Since B ∈ X , we have an exact sequence of B-modules

0 −→ Xm+2 −→ · · · −→ X3 −→ X2 −→M −→ 0:

We will show that this is a desired sequence . If X is a projective A-module,
then the sequence

�∗� 0 −→ �X;Xm+2� −→ · · · −→ �X;X3� −→ �X;X2� −→ �X;M� −→ 0
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is exact. Now assume that X is an indecomposable injective A-module. If X
is also a B-module, then X is a direct summand of V0, thus in X . So there is
nothing to prove. We assume that X is not a B-module. Then 0 6= Nn−1X is
the socle of X and X/Soc�X� is either an injective or a projective B-module
by assumption. Since V0 contains all indecomposable injective B-modules
and �X;M1� = �X/Soc�X�;M1� for any indecomposable B-module M1, we
see that �∗� is exact if X is an indecomposable injective A-module with
Nn−1X 6= 0. Hence for all X ∈ add�V � the sequence �∗� is exact.

The second case. M is not a B-module. We take M ′ = �m ∈M � Nn−1m =
0�. Then M ′ is a B-module. Suppose that l:X0 −→ M ′ is a right minimal
X-approximation of M ′; g:P −→M/M ′ is a projective cover of A-module,
and h:P −→ M is a lifting such that g = hπ, where π is the canonical
homomorphism M −→M/M ′. Define f :X0⊕P −→M by �x;p� 7→ l�x�+
h�p�. If �x;p� ∈ Ker�f � with x ∈ X0 and p ∈ P then p ∈ Ker�g�. Since P
is a projective cover, we have Ker�g� ⊂ NP . Hence Ker�f � is a B-module
because Nn−1�x;p� ⊂ �Nn−1x;Nn−1p� = 0. Now we show that for any X ∈
add�V � the induced map �X;X0 ⊕ P� −→ �X;M� is surjective. If X ∈ X
then the image of any homomorphism from X to M is a B-module, and thus
lies in M ′. This implies that the induced map is surjective. If X is projective
then there is nothing to show. So we assume that X is an indecomposable
injective A-module not in X . Since X contains all indecomposable injective
B-modules, we know that X is not a B-module and hence Nn−1X 6= 0. Let
g′ be a homomorphism from X to M . Then g′ is not injective. Otherwise
we would have M ∼= X ∈ add�V �. This yields that Nn−1X = Soc�X� ⊂
Ker�g′�. Hence �X;M� = �X/Soc�X�;M� = �X/Soc�X�;M ′�. Since every
homomorphism from X/Soc�X� to M ′ factors through l:X0 −→ M ′, it
follows that the map �X;X0 ⊕ P� −→ �X;M� is surjective. Hence we have
proved that for all X ∈ add�V � the induced map is surjective.

Now by the previous result we have an exact sequence

0 −→ Xm+3 −→ Xm+2 −→ · · · −→ X3 −→ Ker�f � −→ 0

with all Xi ∈ X ⊂ add�V � such that for all X ∈ add�V � the sequence

0 −→ �X;Xm+3� −→ �X;Xm+2� −→ · · · −→ �X;X3�
−→ �X;Ker�f �� −→ 0

is exact. Define X2 x= X0 ⊕ P , then we obtain an exact sequence

0 −→ �X;Xm+3� −→ �X;Xm+2� −→ · · · −→ �X;X3�
−→ �X;X2� −→ �X;M� −→ 0

for all X ∈ add�V �, where all Xi are in add�V �.



representation dimension 341

Now we establish that gl:dim� ̂add�V �� ≤ m + 3. Take a functor G in̂add�V �. Then there is a morphism f :X1 −→ X0 in add�V � such that
�;X1� −→ �;X0� −→ G −→ 0 is exact. Letting M = Ker�f �, we know
that there is an exact sequence

0 −→ Xm+3 −→ Xm+2 −→ · · · −→ X2 −→M −→ 0

with all Xi ∈ add�V � such that the induced sequence

0 −→ �X;Xm+3� −→ �X;Xm+2� −→ · · · −→ �X;X2� −→ �X;M� −→ 0

is exact for all X ∈ add�V �. Thus the sequence

0 −→ �;Xm+3� −→ · · · −→ �;X2� −→ �;X1� −→ �;X0� −→ G −→ 0

is exact in add�V �. This shows that proj:dim�G� ≤ m + 3. By 4.3, we get
gl:dim�EndA�V �� ≤ m+ 3 = rep:dim�B� + 3. Thus the proof is completed.

Remark. From the proof we may formulate the following fact: Let M be
an A/Nn−1-module such that rep:dim�A/Nn−1� = gl:dim�EndA/Nn−1�M��.
If each injective indecomposable A-module I with Nn−1I 6= 0 has the factor
module I/Nn−1I in add�M�, then rep:dim�A� ≤ rep:dim�A/Nn−1� + 3. In
particular, if rep:dim�A/Nn−1� ≤ 2, then rep:dim�A� ≤ 5. (Compare this
with Auslander’s result.)

As a consequence of the theorem, we obtain the following result of Aus-
lander [1].

Corollary 4.4. Let A be a finite dimensional k-algebra. If rad2�A� = 0,
then rep:dim�A� ≤ 3.

Finally, let us give an example of a finite dimensional algebra satisfying
the condition in Theorem 4.1.

Example. Consider the k-algebra A with the quiver

with relations αβ = αγ = γβ = βγ = 0 and β2 = γ2. Thus we have the
following decomposition of the regular module AA x

AA =
1 2

1 1 ⊕ 1
1

:
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Then the injective module D�AA� appears as follows:

D�AA� =
1

1 1 2 ⊕ 2
1

:

We can see that the condition in 4.1 is satisfied. Hence rep:dim�A� ≤
rep:dim�A/N2� + 3. It follows further from 2.3 that rep:dim�A� ≤ 6.

5. REPRESENTATION DIMENSION AND GLOBAL DIMENSION

In this section we will discuss the relationship between the global dimen-
sion and the representation dimension of a finite dimensional algebra under
certain conditions. Our result generalizes a result of Auslander which says
that if gl:dim�A� ≤ 1 then rep:dim�A� ≤ 3.

Let M be an A-module. We denote by Fac�M� the full subcategory of
A-mod consisting of all modules which are generated by M . Recall that a
full subcategory of A-mod closed under direct summands is said to be of
finite type if it contains only finitely many indecomposable A-modules (up
to isomorphisms).

Theorem 5.1. Let A be a finite dimensional algebra. If Fac�D�A�� is of
finite type and if HomA�X;M� = 0 for all X ∈ Fac�D�A�� and all indecom-
posable modules M /∈ Fac�D�A��, then rep:dim�A� ≤ gl:dim�A� + 2.

Proof. Let P1; : : : ; Pt be a complete set of all non-isomorphic indecom-
posable projective A-modules. Since Fac�D�A�� is of finite type, we may
assume that �N1; : : : ;Ns� is a complete set of non-isomorphic indecompos-
able modules in Fac�D�A��. Define V = P1 ⊕ · · · ⊕ Pt ⊕N1 ⊕ · · · ⊕Ns. Let
M be an A-module. We decompose M into M1 ⊕M2 where M2 ∈ add�V �,
and M1 has no indecomposable direct summands in add�V �. We take a pro-
jective cover P0�M1� −→ M1 and define X2 = P0�M1� ⊕M2 as well as the
canonical surjective homomorphism f2:X2 −→ M . We demonstrate that
for any indecomposable X ∈ add�V � the induced map �X;X2� −→ �X;M�
is surjective. If X is projective there is nothing to prove. Now let X be
some module Ni. Since M1 does not belong to add�V �, we know that
Hom�Ni;M1� = 0 by the hypothesis. So each homomorphism from Ni to
M is, in fact, a homomorphism from Ni to M2; this implies that for X = Ni
the induced map is surjective. Hence for all X ∈ add�V � the induced map
is surjective. Note that the module P0�M1� is a direct summand of the pro-
jective cover P0 of M .

We can assume that gl:dim�A� = m < ∞. To prove the theorem, we
show that for each module M we can find an exact sequence

0 −→ Xm+2 −→ Xm+1 −→ · · · −→ X3 −→ X2 −→M −→ 0
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with all Xi ∈ add�V � such that for each X ∈ add�V � the induced sequence

0 −→ �X;Xm+2� −→ �X;Xm+1� −→ · · · −→ �X;X3�
−→ �X;X2� −→ �X;M� −→ 0

is exact.
Let M be an A-module, and let 0 −→ Pm −→ · · · −→ P1 −→ P0 −→

M −→ 0 be a minimal projective resolution for M . We have defined the
module X2 and the homomorphism f2:X2 −→ M . Consider the kernel of
f2. This kernel is in fact the first syzygy of M1. Replacing M by the kernel
of f2 and repeating the above procedure, we define a module X3 and the
corresponding homomorphism f3:X3 −→ Ker�f2�. All these datums have
the desired properties. Note again that P0�Ker�f2�1� is a direct summand
of P1. Since the global dimension of A is m, the above procedure must stop
at most after m steps, so we have an exact sequence

0 −→ Xm+2 −→ Xm+1 −→ · · · −→ X3 −→ X2 −→M −→ 0

with Xi ∈ add�V � and the desired property.
As in the proof of 4.1, we get that rep:dim�A� ≤ m+ 2 = gl:dim�A� + 2.

The proof is finished.

Let us mention that hereditary algebras and tame concealed algebras
satisfy the conditions in Theorem 5.1.

Corollary 5.2. (1) If A is a hereditary algebra, then rep:dim�A� ≤ 3.

(2) If A is a tame concealed algebra, then 3 ≤ rep:dim�A� ≤ 4.

For the definition of tame concealed algebras and also the definition of
tubular algebras below, we refer to [11].

Finally, we mention another bound of the representation dimension re-
lated to the global dimension.

Proposition 5.3. Let A be a finite dimensional k-algebra. If
HomA�D�A�;A� = 0, then rep:dim�A� ≤ 1 + 2 gl:dim�A�. In particu-
lar, the representation dimension of a tubular algebra is at most 5.

Proof. One just needs to take the module A ⊕ D�A� as generator-
cogenerator and to use a result in [9, p. 246] to compute the global di-
mension of its endomorphism algebra.
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6. REPRESENTATION DIMENSION OF ONE-POINT EXTENSIONS

In this section we shall consider the representation dimension of algebras
which are one-point extensions. These are algebras of the form

A = 3�M� =
(
3 M
0 k

)
;

where 3 is a finite dimensional k-algebra, and M is a 3-module. The mul-
tiplication and the addition are defined as the usual ones of matrices. This
algebra A is called the one-point extension of 3 by the 3-module M (see
[11, p. 90]).

While we cannot say much about the bounds of the representation di-
mension for arbitrary one-point extensions, we get some results when we
impose certain conditions on M . Our result in this direction is

Proposition 6.1. Let 3 be a finite dimensional algebra over an arbitrary
field k, and let M be a 3-module. Suppose A is the one-point extension of 3
by M . If M is a simple injective 3-module, then

rep:dim�3� ≤ rep:dim�A� ≤ rep:dim�3� + 2:

Proof. Let X be a 3-module such that rep:dim�3� = gl:dim�End3�X��.
Let P�ω� be the projective A-module with rad�P�ω�� =M . Then P�ω�/M
is an injective A-module; we denote this simple injective module by I�ω�.
Now set Y = X ⊕ P�ω� ⊕ I�ω� and consider the endomorphism algebras
of AY . An easy computation shows that

EndA�Y � =
End3�X� Hom3�X;P�ω�� 0

0 k k
0 0 k

 :
Let B be the algebra T2�k�, and V be the End3�X�-B bimodule
�Hom3�X;P�ω��; 0�. Then we can rewrite EndA�Y � as

EndA�Y � ∼=
(

End3�X� V
0 B

)
:

By Proposition 5.1 of [9, p. 246], we have

gl:dim EndA�Y � ≤ max�gl:dim End3�X� + proj:dimVB + 1; gl:dim�B��
≤ max�rep:dim�3� + 1+ 1; 1� = rep:dim�3� + 2:

Note that the last inequality follows from the fact that gl:dim�B� = 1. Note
that the condition on M implies that each indecomposable injective A-
module is either an injective 3-module or isomorphic to P�ω�, or I�ω�.
Since Y contains all non-isomorphic indecomposable projective A-modules
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and all indecomposable injective A-modules as direct summands, we have
rep:dim�A� ≤ gl:dim�3� + 2 by definition.

To prove the first inequality of the theorem, we note that if X0 is an
indecomposable A-module with composition factors I�ω� then the top
X0/rad�X0� of X0 lies in add I�ω� and the radical of X0 has no com-
position factor isomorphic to I�ω�. Hence any generator-cogenerator for
the A-mod is of the form Y = X ⊕ P�ω� ⊕ I�ω� ⊕ X0, where X is a
generator-cogenerator for 3-mod and where X0 is a direct sum of in-
decomposable A-modules such that X0 has no direct summand isomor-
phic to P�ω� or I�ω� and such that each direct summand of X0 has its
top in add I�ω�. Let us consider the endomorphism algebra of Y . Since
HomA�X0;X� = 0 = HomA�I�ω�;X0� and HomA�X0; P�ω�� = 0, the en-
domorphism algebra of Y is isomorphic to the triangular matrix algebra:

End3�X� Hom3�X;P�ω�� 0 Hom3�X;X0�
0 k k HomA�P�ω�;X0�
0 0 k 0
0 0 HomA�X0; I�ω�� EndA�X0�

 :
Again by [9, p. 246], it holds that gl:dim EndA�Y � ≥ gl:dim End3�X�.
This implies that gl:dim EndA�Y � ≥ rep:dim�3� and that rep:dim�A� ≥
rep:dim�3� because Y is an arbitrary generator-cogenerator. The proof is
finished.

Dually, we have the notion of one-point coextension [M]3 of 3 by a
3-module M defined by

A x= �M�3 =
(
k DM
0 3

)
∼= �3op�DM��op;

where 3op denotes the opposite algebra of 3. In this case, we have the
same statement as in the above proposition. This follows from the fact that
rep:dim�A� = rep:dim�Aop� for all finite dimensional algebras A.

Proposition 6.2. If M is a simple projective 3-module, then

rep:dim�3� ≤ rep:dim�M�3 ≤ rep:dim�3� + 2:
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