Appendix 1. Subspace triples of vector spaces.

Subspace triples of vector spaces have been considered in these lectures at various
stages, in particular see section 7, Example 1. As before, we will write (V; Uy, Uz, Us) in
case Uy, Uy, Us are subspaces of the vector space V. Here, we want to outline in which way
the classification of the indecomposable subspace triples can be proven directly, without
the use of reflection functors. This turns out to be quite involved, but we obtain on the
way valuable information concerning the lattice £L(V'; Uy, Us, Us). Of course, this subspace
lattice may always be calculated without problems, once we have available the list of all
indecomposable subspace triples.

Let us start with an arbitrary subspace triple (V; Uy, Us, Us), we want to show that it
is the direct sum of copies of the following subspace triples:

5(0) = (k;0,0,0), P(1) = (k;k,0,0), P(2)=(k;0,k,0), P(3)=(k;0,k,0)
R = (k% k0,0k,A), N(1)= (k;0,k, k), N(2)=(k;k,0,k), N(3)=(k;k, k,0)
I = (k:k, k, k)
with A = {(z,z) | # € k} C k. As we know, all these subspace triples are indecomposable,

and we want to see that they are the only ones. But actually, we want to achieve more:
we want an algorithms for decomposing the given triple (V; Uy, Uy, Us) effectively.

Before we consider decompositions in general, let us show that subspace triples which
are direct sums of copies of R can be identified as follows:

Lemma: Let (V;U;,Us, Us) be a subspace triple such that V = U; & U; for all pairs
i # j. Let U = Uy. Then (V;Uy,Us, Us) is isomorphic to (U @ U;U @ 0,0 ® U, {(u,u) |
ueU}).

Proof: By assumption, V = U; & U, and we know that Us = I'(f) for some invertible
linear map f: U; — Us. Define F: U @ U — Uy @ Uy by F(u,u') = (u, f(u')). Then we
see that

F:UeU;Us0,00U,{(u,u) |lueU}) — (V;U,Us, Us)

is an isomorphism.

Of course, taking a basis by, ...,b,, of U, we can write the triple (U @ U;U @ 0,0 ®
U,{(u,u) | u € U}) as a direct sum of m copies of R = (k?; k0, 0k, {(z,z) | * € k}). This
completes the proof of the lemma.

Now we return to consider an arbitrary subspace triple (V; Uy, Us, Us).

(1) We can assume that > U; = V, otherwise we get direct summands of the form

S(0).
See Exercise 13.
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(2) We split off copies of I = (k; k,k, k) and then we can assume that (\U; = 0.
Proof: Let J =(U; and V = J @& C. Then
(V;Ur,Us, Us) = (J; J, 0, J) @ (C; U1 N C, U2 N C,U3 N C).

Namely, by definition, the direct sum assertion is true for the total space V. But also
U, =J® (U;NC) since J C U; (this was discussed as a consequence to the modular law).

(3) We split of copies of N(3) = (k; k, k,0) and then we can assume that Uy N Uz = 0.

Proof. Write U2 = Uy N Us, and let C be a complement for U3 + Uz in V. Since
U12NUs = 0, the subspace Uy + Us is the direct sum Ujo @ Us, thus V = (Ujo®Us) ®C =
Ur2®(Us+C). Write V! = Uy, V" = Us+C. We claim that the decomposition V = V'@V
is compatible with all the subspaces U;. This is clear for Us, since Uz is contained in the
second summand V", and for Uy, Us it follows from the modular law, since V' is contained
in U1 and also in UQ. Of course, (V/;Ul N V/,UQ N V/,Ug N V/) = (U12;U12,U12,0> is
isomorphic to a direct summand of copies of N(3), whereas (V'; U NV" UsNV" UsNV")
satisfies (U1 NV")N (U2 NV") =U2N (Us + C) = 0.

Similarly, we can split off copies of N(1) and N(2) and can assume that we also have
UgﬂngOand UlﬂU;),:O.

Actually, it is worthwhile to look at E& = Ujp 4 U3+ Uas, where we write U;; = U; NU;
for ¢ # j.

(4) IfUl NU;NU3z =0, then E = U5 @ Uy @ Uss.

Proof: Let u;; € U;; and assume w12 + u13 + u23 = 0. Then w12 = —u13 — ug3 and the
right hand side element lies in Us, the left hand side element in U; N Us, thus this element
lies in Uy NUs NU3 = 0. Similarly, also u13 = 0 = uss.

(5) Also, let D = (U1 + UQ) N (U1 + U3) N (UQ + U3). Then E C D.

Proof: E is the sum of Uys,Uys, Uss. Let us show that say U;o € D. But Ups is a
subset of Uy, thus of (Uy + Us) N (Uy + Us), and it is a subset of Uy, thus also of Us + Us.

Now let us assume that E = 0 (this has been achieved after splitting off copies of I
and of N(1), N(2),N(3)).

(6) Let C; be a complement for U; N D in U;, thus (U; N D) ® C; = U;. Then V =
DaCyaCyd Cs.

Proof. Since U; C D+ C}, for all i, we see that V = > U; C C'+ > U;, thus it remains

to show that this sum is a direct sum. Let d € D and ¢; € C;, for 1 <i < 3., and assume
that d + ¢; + ¢co + ¢3 = 0. Then ¢4 = —d — ¢ — c3 is an element which belongs to C}
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(according to the left side) as well as to Us + Us (according to the right hand side), thus
also to Uy N (Uy + Us) C D, thus to (U N D) N Cy = 0. Similarly, ¢ = 0 and ¢3 = 0,
therefore also d = 0.

(7) The decomposition V.= D®C1 ®Cy®C3 is compatible with the subspaces Uy, Us, Us
and yields a decomposition of V' into direct summands of the form R, P(1), P(2), P(3).

Proof: The decomposition is compatible with Uy, since
(UlﬂD)@(Ulﬁ01>@(U1ﬁCQ>@(U1ﬂ03) = (UlﬁD)@Cl ®0p0=U;.

Similarly, one sees that the decomposition is compatible with Us; and with Us.

Now we claim that (D;U; N D,Us N D,Us N D) is a subspace triple with 0 = (U; N
D)n(U;N D) and D = (U;N D)+ (U; N D) for all i # j. The first property is trial, since
we even have U; NU; = 0 for ¢ # j. In order to see the second property, let us consider the
case i = 1,j = 2. We start with the direct decomposition V = D & C; & Cy @ C3 and look
at the corresponding decomposition of the subspaces Uy = (U1ND)®C; 00 and Uy =
(UsND)®B0dCy @0, thus Uy +Us = (UyND)+(U2ND)dC1 & Cy®0. But by the definition
of D, we know that D C Uy + Us, thus D000 C (U1ND)+ (UoND)HCL HCyd0
and therefore D C (U N D) + (Us N D), thus D = (U; N D) + (Uy N D). We now use the
lemma at the beginning of the section in order to conclude that (D;U;ND,UsND,UsND)
is isomorphic to a direct sum of copies of R.

Of course, the remaining summands (C;; UyNC;, UsNC;, UsNC;) clearly are isomorphic
to direct sums of copies of P(i), for 1 < i < j. This completes the proof of (7).

Altogether we have seen how we can decompose any subspace triple (V; Uy, Uy, Us)
into a direct sum of copies of S(0), P(1), P(2), P(3), R,N(1),N(2), N(3), 1.

Let us look at the subspace lattices L(V; Uy, Us, Us) where (V; Uy, Uy, Us) is a subspace
triple. Recall that £(V;U;,Us,Us) is the smallest set of subspaces of V' which contains
the three given subspaces U;, Us, Us and is closed under intersections and sums. We claim
that the most complicated lattice which we can obtain in this way is the following lattice
L3, it occurs in case (V;U;y,Us, Us) has all possible indecomposable subspace triples as
direct summands:
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Indeed, first consider the case of (V; Uy, Uy, Us) being the direct sum of one copy of
each of S(0),P(1),P(2),P(3),R,N(1),N(2),N(3),I, thus V is a 10-dimensional vector
space and there is a basis eq,...,e1g of V such that

Ul - <627 €5, €8, €9, 610>7
U2 - <€37 €6, €7, €9, 610>7
Us = (es, €5+ €6, €7, €5, €10)-

Let us mark some of the edges of the lattice £L(V; Uy, Uy, Us), say that for the interval
U’ C U”, with an appropriate element e € U” \ U’.
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If we consider a direct sum of only some of the possible indecomposable subspace
triples, then the lattice obviously will shrink: if the basis element e; is missing, then
the corresponding edge will turn out to be contracted to a point. On the other hand,
if we use several copies, say t copies, of one of the indecomposable subspace triples as
direct summands, the subspace lattice will not change (we only would have to replace a
vector which had been used as a label for some edge by a set of ¢ elements, or say by a
t-dimensional complement C' for the corresponding inclusion U’ C U”.

One can show that L3 is the “free modular lattice in 3 generators”: the lattice generated freely by
three elements subject to the modularity rule. The free modular lattice was determined first by Dedekind
in 1900 (Uber die von drei Moduln erzeugte Dualgruppe, Math. Ann. 53 (1900), 371-403).

Gian Carlo Rota wrote in 1997: The free modular lattice with three generators (which has twenty-
eight elements) is a beautiful construct that is presently exiled from textbooks of linear algebra. Too bad,
because the elements of this lattice explicitly describe all projective invariants of three subspaces. He writes

“28 elements”, since he does not take into account the zero subspace 0 and the total space V.

In order to stress the 3-fold symmetry of L3, it may be worthwhile to draw the attention
to the three wings given by Uy, Us, Us. Since the wing for Us is somewhat hidden, some
shading may be helpfull:
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Fur a better understanding of L3, let us now shade also some other parts which deserve
special attention.

On the left, we have shaded two parts which are genuine cubes (standing on a vertex),
in particular, these are distributive sublattices. The upper cube corresponds to the di-
rect sums of copies of P(1), P(2), P(3), the lower cube to the direct sums of copies of
N(1),N(2),N(3). On the right, the central part has been shaded: the interval between E
and D, this concerns the direct sums of copies of R. Note that the interval between E and
D shows in an nutshell that £3 is not distributive.

In addition, let us mark the so called perfect elements in L3, these are the subspaces
U of V such that (U;U; NU, U, NU,UsNU) is a direct summand of (V; Uy, Us, Us).

U, Us

There have been attempts to describe also the free modular lattice £4 with four generators, for example
by Gelfand and Ponomarev, but only very little is known about £4 at present. This is an infinite lattice with
obviously a very complicated structure. Note for example that already L£(k*;k00,0k0,00k,{(z,z,z)|z€k}))
turns out to be quite intricate: it is isomorphic to the lattice of all subspaces of a 3-dimensional vector
space over the corresponding prime field ko, thus infinite in case the characteristic of k is equal to zero.

The perfect elements of £3 are known: they form a sublattice which still is infinite.
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