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0. Recollections: Vector spaces.

Always, k is a fixed field, usually arbitrary (but later we sometimes may assume that
k is algebraically closed, in order to avoid some complications). All the considerations in
these lectures concern linear algebra problems, thus they require from the start that a field
is given, but the actual structure of k£ will not play a role. Thus, one may stick to a field
with which one feels comfortable, such as R, or C, or Q. On the other hand, for actual
calculations, it may be quite convenient to work say with the field Fy with two elements.

We consider vector spaces (that means k-spaces), usually they will be assumed to be
finite dimensional. If V' is a vector space, we will write 1y, : V' — V (or also just 1) for the
identity map (this is the map which sends v € V' to v itself, thus 1y (v) = v).

We assume that the following notions and constructions are known:

If U is a subspace of V', then one can form the factor space V/U.

If U,U’ are subspaces, one can form U NU’ and U + U’. We sometimes will write
U @ U’ instead of U + U’ provided U N U’ = 0 (the symbol & is called direct sum).

Linear transformations (or just linear maps) f: V — W. Given f, one may consider
its kernel Ker f and its image Im f, but also the cokernel Cok f = W/Im f.

The dual space V* of V, dual map f* of f: V — W.

Basis of a vector space, matrix presentation of a linear map f: V' — W (as soon as
bases of V, W are chosen). As much as possible, we will avoid the use of bases, but in
section 1 we will stress that sometimes nice bases may exist.

Dimension of a vector space.

Any basis of a subspace U of V' can be extended to a basis of V. We will use the
following notions:
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If uy,...,us is a basis of U and vq,...,v; extends this to a basis of V', then we call
v1,...,0 a complement basis for U in V (it is just a basis of a complement for U in V; a
complement C' for U in V is by definition a subspace of V with V =U & C.)

We call a basis B of V' compatible with the subspace U of V provided BN U is a basis
of U.

There are obvious relations between these notions: If B is a basis of V' compatible with
the subspace U, then B\ U is a complement basis for U in V. If we take the union of a
basis of U and a complement basis for U in V', we obtain a basis of V which is compatible
with U.
Exercise 1: Show the following: If B is a basis of a finite-dimensional

vector space V', then only finitely many subspaces of V' are compat-
ible with B. Provide a formula for the number of such subspaces.

Intersection dimension formula. If U, U’ are subspaces of V', then

dim(UNU") =dimU + dim U’ — dim(U + U").

We recall the essential step of the proof:
Important. Let vy,...,v, be a basis of UNU’, let uq,...,us be a complement basis
for UNU" in U, and let u},...,u., be a complement basis for UNU' in U’, then the

elements of the form v;,u;,u; are a basis for U +U’.

Reformulation. If U, U’ are subspaces of V', then there is a basis B of V' compatible
both with U and U’.

Proof: Extend the basis of U + U’ consisting of the elements of the form v;, u;, u, to
a basis B of V.
v

U+U'

Uunu’

We say that two subspaces U, U’ are comparable provided U C U’ or U’ C U.
y p
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A sequence
UpCU:C---CU;

of subspaces U; of a vector space V is called a chain of subspaces of V or also a filtration of
V. Thus, a chain consists of a finite set of subspaces which are pairwise comparable (and
conversely: a finite set of subspaces which are pairwise comparable can be labeled in such
a way that we deal with a chain).

1. Vector spaces with two chains of subspaces.

Theorem 1. Given two chains U;; 1 < i <t and U/, 1 < i <t of subspaces of V,
then there exists a basis of V which is compatible with all these subspaces.

We will give here the proof for ¢ = 1 (and arbitrary ¢), the general case will be
considered later. Before we start with the proof, let us mention a warning, a proposition
and a general observation.

The 3-subspace warning. Let U = k2, U; = k0, Uy = 0k, Us = {(z,2) | € k},
then there is no basis of V' compatible with Uy, Us, Us.

Proof: Let B be a basis of V' compatible with Uy, Us. Then BN U; consists of a single
element, say by, with 0 # by € k0. Similarly, B N Us consists of a single element, say bo,
with 0 # by € 0k. In particular, by # bo. Since dimV = 2, we see that B = {b1,b2}. It
follows that BN Us = (), thus it is not a basis of Us.

Picture in case £ = R. We deal with the real plane, the coordinate axes and the

diagonal:
Y

Exercise 2. Given a basis B of a vector space V' of dimension at least
2, exhibit explicitly a subspace of V' which is not compatible with
this basis.

Proposition. Given a finite set of subspaces of U, then either there are three of these
subspaces which are pairwise incomparable, or else the subspaces can be indexed in such a
way that they form at most two chains.



Proof, by induction on the number s of given subspaces. If s < 2, nothing has to be
shown.

Let s > 3 and assume that there is given a family S of s subspaces of V' such that in
any triple of these subspaces, two of them are comparable.

Choose an element U € § of maximal dimension.

Apply induction to the remaining elements of S. Thus, we index them in such a way
that we deal with at most two chains. If it is a single chain, then we consider U as a second
chain, and we are done. Thus, we assume that S\ {U} is given by the two chains

U,CU,C---CU, U CUC---CU

If U;, U], are incomparable, then at least one of them, say U; has to be comparable
with U, and since U has maximal dimension, U; C U. Thus we extend the first chain by
U

UL CUC---CUCU

and see that also S consists of two chains.

Thus, we can assume that Uy, U/, are comparable, say U/, C U;. We may assume
that t is as large as possible (if one of the elements U J’ is comparable to all the subspaces
Ui,...,U;, we add UJ'- to the first chain).

In particular, U}, is not comparable with all the subspaces Uy, ..., U, and we choose i
be minimal with U/, C U;. Note that ¢ > 1, since otherwise U/, would be comparable with
all the U;.

We consider the tripel U, U;, U/_;. The subspaces U;_1,U], are incomparable (by
construction of ¢, we know that U;, € U;, and U; C U, would imply that U}, is comparable
with the whole first chain). Also the subspaces U, U], are incomparable, it follows that
U,U,;_1 are comparable, and by the maximality of the dimension of U, we see that U;_1 C
U. Thus, there are the following two chains:

UyCU, C---CU;_1CU, U/ CUyC---CU,CU; C---CUs.
U




This completes the proof of the proposition.
Finally, we insert the following general observation:

Modular law. Let U,U;,Us be subspaces of V' with Uy C Us, then
U1+(UﬁU2>: (U1+U>ﬂU2.

Proof: The inclusion C is trivial, since U; C U,. The other inclusion is really in-
teresting, but has to be calculated: Take an element of the right side, it is of the form
Uy + u = ug, with u; € Uy,u € U,us € Us. Now u = uy — uq belongs not only to U, but
also to Uy, since uy, ug are in Uy, thus u € U N Uy and therefore u; +u € Uy + (U N Uy).

Note that, without the assumption U; C Us, the assertion would not be true. Example:
the 3-subspace warning! We have

U1+(U2ﬁU3):U1+0:U1
(U1 +U)NUs =V NU3 = Us.

Now we provide a proof of Theorem 1 under the assumption that ¢ = 1. We write
U instead of U], thus we deal with a single subspace as well as a chain of subspaces. The
case of general t’ will be considered later. Actually, instead of looking at a general ¢, we
deal with the case t = 3.

1) We consider first the filtration
0 C UinU C UNU C UsnNU C U

and choose a basis of U compatible with this filtration.

v
Us
U, U
UsnU
Uy U, NU
UinNnU
0

In particular, we have given in this way a basis of U compatible with U; N U. Taking
a complement basis for U; in Uy NU, we obtain a basis of U; + U which is compatible with
Ui (as well as with Uy NU, UsNU, UsNU, U).



2) Next, we want to extend this basis to a basis of Uy + U which is compatible with
U,, thus we want to deal with the following part:

We need to know that the given basis of Uy + U is compatible with W = U, N (U + U)
(the encircled bullet), because then we can take a complement basis of W in Us.

The picture suggests that this is the case, however any picture may be misleading.
What we know is that our basis of Uy 4+ U is compatible with U; and with U, "U and thus
with Uy + (U N Uy).

Fortunately, the modularity asserts:

W=U+U)NU; =U; + (UNUy).

Thus, we take a complement basis for W in U, and obtain a basis of U +Us compatible
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with U1+U7 U2+U7 U3+U7 U7 U17 U2~

3) The third step should be clear: we want to extend this partial basis in order to
obtain also a basis of Uz. This time, we have to look at

W' = Uy +U)NUs =Us + (UNUs).
Here, the second equality sign holds again according to the modular law.

Thus, we take a complement basis for W’ in Us and obtain a basis of U +Us compatible
with Us (as well as with U, Uy, Us).

4) It remains to add a complement basis for Us + U in V. This completes the proof.
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Altogether we use the following complement bases:

|4

Exercise 3. a) Explain the modular law for the subspaces U and
Uy C U, of V using the following illustration:

v

U,

Ui

0

b) Given the subspaces U and U; C Us, use the operations + and N
as often as possible. How many subspaces of V' can be obtained in
this way?

Exercise 4%, for courageous students: Given three arbitrary sub-
spaces Uy, Uy, Us, use the operations + and N as often as possible.
How many subspaces of V' can be obtained in this way? Draw a
corresponding picture.

Exercise 5%, for courageous students: Provide a proof of Theorem 1
for the case t = 2, t’ = 2 along the lines of the proof for t =3, ¢/ =1
given above.



