Before we continue, some remarks concerning the previous considerations should be

added.

First of all, we have used very often complement bases. How does one find a comple-
ment basis say for the inclusion U; C Uy 7 Just in the same way as one would construct
a basis of Us (and a basis of Us is of course a complement basis for 0 in Us): One starts
with a set of vectors which generate together with U; the subspace Us, and looks whether
any non-trivial linear combination of these elements belongs to U;. If there is such a linear
combination, then one can delete one of the elements (occurring with non-zero coefficient
in the linear combination) and still deals with a set of vectors which generate together
with U; the subspace Us,. If there is no non-trivial linear combination which belongs to
U1, then we deal already with a complement basis for Uy in Us.

Second, let us analyze our proof of theorem 1 in the case t =3, ¢/ = 1.
(1) We have chosen 8 different complement bases. What is the meaning of the number 8 7

(2) Is there a unified formulation for which pairs of subspaces we have to choose comple-
ment bases?

Let us recall which pairs we have used:

0 cC UnU U,NU c U
UnNnUC U,NU Ui+ UsnU) C U,
UsNnU C UsNU Us+(UsnNU) C Us
UsNnU C U Us+U c v

Let us write as before U = Uy, and also Uy = U} = 0, Uy = Uj = V. Then we can say: the
left pairs are all concerned with the inclusions U, _1 C U, for 1 < i < t+1, and the inclusion
U, C Uy, whereas the right side deals with the inclusions U; 1y C U; for 1 <i <t¢+1, and
the inclusion U] C Uj}. We can rewrite the list above as follows:

(UyNnUY) C UynUy (U )+ (U1NU7) €
(UL NUY) C UsnUY (ULHES + (U, N UY) C
(U N U C UsnUY (Ua 58 + (Us N UY) C
(Us N U yC UinU! (Us 58 + (UsnUY) C

(in order to improve the comparison with the list above, we have shaded some parts which
provide no information: this concerns, on the left, the addition of 0, whereas, on the right,
two columns concern the intersection with V).

In this way, we see that the number 8 has to be considered as 8 =t x2 = (t+1)(t'+1).

In general, the subspace pairs to be considered are those of the form

(UisaNUj) + (UsNUj_,) € U;NUj, 1<i<t+1, 1<j<t'+1.
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In the case t = 3, t = 1 no term looks as complicated as the general term. The first
situation where the general term does not shrink occurs for ¢ = ¢/ = 2; in that case, the
“subspace lattice” generated by the subspaces U; C Uy and U{ C U} looks as follows:

UQ Ué U2 Ué
Uy Uj Uy Uy
Uy NUJ Us NUY

On the right, the bullets mark the two relevant subspaces

(UlﬁUé)-}-(UQﬂU{) - UQﬂUé.

In general, theorem 1 can be strengthened as follows:

Theorem 1'. Given two chains U;, 0 <i <t+1, and U, 0 < j <t'+1, of subspaces
of V., with Uy = Uy = 0 and Uy = U/, ., =V, then the union of complement bases for

(Ui NU) +(UiNU;_y) € U;NU;, 1<i<t4+1,1<j<t'+1
1 a basis of V' which is compatible with all the subspaces U;, UJ'-.
There are several ways to prove this result.
e One may work in the same way as we did when looking at the case t = 3, t' = 1.

e In this course, we will obtain the result by looking at representations of quivers of type
A,,, more precisely at A; 1.

e One may also use the “butterfly lemma” as in the proof of the Schreier theorem which

asserts that any two filtrations of a vector space have a common refinement (see for
example Ringel-Schréer, section 8: Filtration of modules).
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2. Quivers and representations of quivers.

A quiver @@ (sometimes also called a directed graph) consists of vertices and oriented
edges (arrows): loops and multiple arrows are allowed. An arrow goes from some vertex
(its tail) to some vertex (its head), if we denote the tail of the arrow « by t(«), the head
by h(a), we see that we deal with two set-theoretical maps

t7h': Ql — Q07

where )y denotes the set of vertices, (1 the set of arrows. Here is the formal definition of
a quiver Q = (Qo,Q1,t, h): there are given two sets Qo, Q1 and two maps h,t: Q1 — Qo,
the elements of @)y are called wvertices, the elements of ()1 are called arrows, and for every
arrow a € Q1, there is defined its tail t(«) and its head h(a). One depicts this in the usual
way:

t(a) = h(a). oralso a:t(a)— h(a).

Given a quiver (), one may delete the orientation of the arrows and obtains in this way the
underlying graph @, this is the triple consisting of the two sets Qu, Q1 and the functions
which attaches to a € @1 the set {t(a), h(c)} (this means that one does no longer distin-
guish which one of the vertices is the head and which one is the tail. The reverse process
will be called choosing an orientation.

The wording was chosen by Gabriel (1972): “quiver” means liter-
ally a box for holding arrows. Before Gabriel, quivers were called
“diagram schemes” by Grothendieck.

Here is a collection of typical quivers, with the names which are now usually attached,
often these names refer just to the underlying graph.

o—>0 A, 0o—s>0—>o0 Aj o—s>o0<—o0 Aj
o o o o
Es
ANV |
o o o o o o

loo
P 0o —> o Kronecker
;
- quiver
(@]

Of course, one may consider much more complicated quivers, say with 1000 vertices
and 7000 arrows, but the representation theory already of quite small quivers usually turns
out to be quite complicated. There are quivers with many edges which we will deal with,
for example

o

o

O— «-- — 0

o A,
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with n vertices, usually labeled 1,2, ..., n, and with n — 1 arrows «; with {t(a;), h(a;)} =
{i,i+1}.

A representation of the quiver @) is of the form M = (M, M)y o, where M, is a vector
space, for every vertex x € Qo, and My : My) — My is a linear map, for every a € Q1;
instead of M, one often writes just . Thus, representations of quivers are nothing else
than collections of vector spaces and linear maps between these vector spaces.

Why do we use the letter M for a representation of a quiver? The
representations of a quiver M may be considered as the “modules”
over the “path algebra” of Q.

Of course, for any quiver there is defined the corresponding zero representation (or
“trivial” representation) with all the vector spaces being zero (and all the maps being zero
maps). The zero representation is usually just denoted by 0.

Looking back at section 1, we observe that there we have implicitly dealt with some
non-trivial representations. For example, the 3-subspace warning concerns the following
representation of a quiver of type Dy:

N ANV

with A = {(z,z) | z € k} and all the maps being the corresponding inclusion maps. The
calculation presented there asserts that “this is an indecomposable representation” (but
we did not yet define what means “indecomposable”).

Also, in section 1 we were considering a vector space V with 4 subspaces Uy, Us, Uz, U

such that U; C U C Us. Such a system can be considered as a representation of the
following quiver of type Ay

o o o o o A5

namely as
Uj—-U;—-U3—V <— U

where again all the maps are the inclusion maps.

Given a representation M of a quiver @), a direct sum decomposition of M is of the
following form: for every x € @, there is given a direct sum M, = M. & M/ and for
every a: x — y, one has M, (M;) C M, and M,(M,) € M,. One may denote the
restriction of M, to M, by M, : M; — M,, and similarly, the restriction of M, to M}
by My : My — M,. One obtains in this way representations M’ = (My, M), » and
M" = (M2, M), and one writes M = M' & M".
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The representation theory of quivers is concerned with the following question: given a
representation M of some quiver @), is it possible to decompose the representation? If there
is no non-trivial decomposition and M is non-zero, then M is said to be indecomposable: To
repeat: M is indecomposable if and only if M # 0 and for any decomposition M = M'@&M”,
either M’ =0 or M" = 0.

Of course, there is the corresponding question: describe all the indecomposable rep-
resentations of a given quiver. For some (quite small) quivers, this will be possible (and
indeed for all the examples exhibited above), but in general it seems to be impossible (there
is a notion of “wildness”: nearly all the large quiver are wild and one does not expect that
there is a decent way to classify all the indecomposable representations of any wild quiver).

Let us consider the quiver Ay, we label the vertices 1 and 2 so that the unique arrow
is a: 1 — 2. The representations of @) are of the form M = (M;, Ms, M,,), where My, My
are vector spaces and M, : M; — My is a linear map, we will denote M just by writing
M = (M, : My — Ms;). There are three indecomposable representations of V' which are
easy to describe:

0—=k), (k—0), (1g:k—k).

(and later it will turn out that these are the only indecomposable representations “up to
isomorphism” — but at the moment the notion of an isomorphism of representations of
a quiver has not yet been defined). Why are these representations indecomposable? This
should be clear for the first two representations, thus let us look at the third one: write it as
M = (M, : My — M) with M; = My = k and M, the identity map. What is important
is only that M, # 0. Assume we have given a direct decomposition M = M’ & M", thus
M, = M{ @ M{, My = M}, @ MY, such that M, (M) C M) and M, (M) C M} . Since
M, = k is one-dimensional, we must have M| = 0 or M{ = 0. Without loss of generality,
we can assume that M{ = 0, thus M| = M;. Now M, is non-zero and maps M/ into M},
therefore also M} # 0. Since My = M4 & MY is one-dimensional and M} # 0, it follows
that MY = 0. Thus M"” = 0.

If M, M’ are representations of the quiver @, a homomorphism f: M — M’ is of the
form f = (fz), with linear maps f,: M, — M. for all x € Qo such that the following

diagrams commute:

M, —f= M

v | |

M, L My

(the “commutation” of this square means that the equality M/ f, = f,M, holds). Of
course, given a representation M, there is always the identity homomorphism 1,,: M — M

with (1p7), the identity map of M,. Also, for any pair M, M’ of representations, there is
the zero homomorphism 0: M — M’ (with 0,: M, — M/ being the zero map).

Consider the three representations
0—k), (k—=0), (Qgx:k—k),
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and let us determine whether there are non-zero homomorphisms M — M’ or not. Of
course, If M = (0 — k) and M’ = (k — 0), there cannot be a non-zero homomorphism
f: M — M, since f = (f1, f2) and for fi: My — M/ and for fo: My — MY there only
exist the zero maps. Now let M = (0 — k) and M’ = (1: k — k), and look for pairs
f = (f1, f2) with f1: M7 — M{ and fy: My — MJ. For f; the only possibility is the zero
map, whereas for fo: k — k& we may try to take any scalar multiplication, say take the
multiplication by ¢ € k (as a map k — k). But of course, we have to check whether the
following diagram is commutative:

0 —— &k

oo

k—— k
it always is, thus there are non-zero homomorphisms (0 — k) — (1: k — k). (Note that
in this square, as well as in the following ones, the vertical maps are those of the form
M,,, M, whereas the horizontal ones are those of the form f; and f2.) On the other hand,
if we are looking for homomorphisms (1: £ — k) — (0 — k), we have to deal with the
diagram

Ek—— 0

L

k—— k
and here it turns out that the diagram commutes only in case ¢ = 0, thus there is no
non-zero homomorphism (1: k — k) — (0 — k).

In a similar way, one deals with homomorphisms between (kK — 0) and (1: k — k).
The only homomorphism (kK — 0) — (1: & — k) is the zero homomorphism, since the
following diagram on the left commutes only for ¢ = 0.

E——— k E——— k
N I
0 —— &k k —— 0

On the other hand, the above diagram on the right commutes for all ¢, thus thus any ¢ € k
defines a homomorphism (1: k — k) — (k — 0).

Exercise 6. Consider the following quiver of type As
1—2-—3—4—75

For every pair of integers 7, 7 with 1 <1¢ < j <5 define a representa-
tion M[i, j] with M[i, j], = kifi <z < j and M[i, j], = 0 otherwise,
and such that M[i, j], is the identity map whenever possible.
(a) Show that all representations M|i, j| are indecomposable.
(b) Determine the pairs (i, 7) and (7, j) such that there is a non-zero
homomorphism

Mli, 5] — M, 7'].
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