Usually one restricts the attention to connected quivers: a quiver is *connected*, provided for any decomposition $Q_0 = Q_0' \cup Q_0''$, with $Q_0' \cap Q_0'' = \emptyset$ and both Q_0' and Q_0'' non-empty, there is an arrow between Q_0' and Q_0'' (that means: there is an arrow $\alpha \colon x \to y$ in Q_1 with $x \in Q_0'$ and $y \in Q_0''$ or else with $x \in Q_0''$ and $y \in Q_0''$).

Exercise 9. Let Q be a quiver and assume that ther are given subquivers Q', Q'' of Q with $Q_0 = Q'_0 \cup Q''_0$, and $Q'_0 \cap Q''_0 = \emptyset$, and such that also $Q_1 = Q'_1 \cup Q''_1$. Show that any representation of Q can be decomposed into a representation with support in Q'_0 , and a representation with support in Q''_0 . (Here, we use the following terminology: The *support* of a representation M of Q is the set of all vertices $x \in Q_0$ such that $M_x \neq 0$.)

Exercise 10. Show that a quiver with n vertices is a tree quiver if and only if it is connected and there are precisely n-1 arrows.

A representation M of Q is thin, provided any vector space M_x is at most 1-dimensional, for $x \in Q_0$.

Exercise 11. Let M be a thin representation of a connected quiver Q and assume that all the maps M_{α} are non-zero, for all $\alpha \in Q_1$. Show that M is indecomposable.

Lemma. Let Q be a tree quiver. If M is a thin indecomposable representations of Q, then there is an isomorphism $f: M \to M'$, such that $M'_x = k$, if $M_x \neq 0$, and such that $M'_{\alpha} = 1_k$ if $M_{\alpha} \neq 0$ (where $x \in Q_0$ and $\alpha \in Q_1$). In particular, the isomorphism class of a thin indecomposable representation is uniquely determined by the support.

Proof. We use induction on the number of vertices of the tree quiver Q. If Q is of type \mathbb{A}_1 , nothing has to be shown. Now assume that Q is obtained from a tree quiver Q'' with $n-1 \geq 1$ vertices by attaching an arm of the form \mathbb{A}_2 at the vertex a, say

Let M be a thin indecomposable representation of Q. We can assume that $M_{\beta} \neq 0$, since otherwise the support of M is either $\{b\}$ or it is contained in Q'', and in both cases the assertion follows by induction. By induction, we replace M by a representation M'' which has the required property for the vertices x and the arrows α belonging to Q''. We look now at the arrow β . If $\beta \colon b \to a$, then we replace M_b'' by the image of M_β'' and M_β'' by the inclusion map; if $\beta \colon a \to b$, then we replace M_b'' by $M_a'' / \text{Ker}(M_\beta'')$ and M_β'' by the corresponding projection map, as we know this yields a representation M' isomorphic to

M'', thus to M, and actually we have now also $M'_b = k$, and $M'_{\beta} = 1$. This completes the proof.

If Q is not a tree, then there are additional indecomposable representations which are thin. Consider for example the cyclic quiver C_n with vertices 1, 2, ..., n and arrows $\alpha_i \colon i \to i+1$ for $1 \le i \le n-1$ and $\alpha_n \colon n \to 1$ (this quiver is also called the quiver of type $\widetilde{\mathbb{A}}_{n-1}$ with cyclic orientation). Let us consider the thin indecomposable representations with $M_x = k$ for all vertices x. There are n such representations M such that $M_\alpha = 0$ for precisely one arrow α . For the remaining representations M, we may assume that $M_{\alpha_i} = 1_k$ for $i \le i \le n-1$. Then the map M_{α_n} can be an arbitrary scalar multiplication [c] with $c \in k \setminus \{0\}$, and these representations are pairwise non-isomorphic.

Exercise 12. Proof the last assertion.

3. Arms.

Let Q be a quiver which is obtained from a quiver Q'' by attaching an arm at the vertex m, say

$$1 - 2 - \cdots - m$$
 Q''

A representation M of Q is said to be decreasing on the arm provided the following holds for any arrow $\alpha \colon x \to y$ of the arm: If x = i and y = i + 1, then M_{α} is injective. If x = i + 1 and y = i, then M_{α} is surjective. In particular, this means that

$$\dim M_1 \leq \dim M_2 \leq \cdots \leq \dim M_m$$

and that all the maps M_{α} have full rank.

If we deal with an arm attached at the vertex m, and if the arrows of the arm are of the form $x \to x+1$, for $1 \le x \le m-1$, then we say that this is an arm with subspace orientation. If a representation M is decreasing on an such an arm with subspace orientation, then up to isomorphism we can assume that the vector spaces M_x with $1 \le x \le m-1$ are subspaces of $V = M_m$, and that the maps on the arm are inclusion maps.

Let us discuss now all the possible orientations of an arm of the form \mathbb{A}_m , say for m=3. There are $4=2^{m-1}$ different orientations. Assume that there is given a representation M which is decreasing on the arm, then (up to isomorphism) the vector spaces V_1 and V_2 on the arm are given by a chain of two subspaces $U_1 \subseteq U_2$ of the vector space $V = M_3$ as follows:

$$U_1 \longrightarrow U_2 \longrightarrow V \qquad M|Q''$$

$$U_2/U_1 \leftarrow U_2 \longrightarrow V \qquad M|Q''$$

$$U_2/U_1 \rightarrow V/U_1 \leftarrow V \qquad M|Q''$$

$$V/U_2 \leftarrow V/U_1 \leftarrow V \qquad M|Q''$$

We also should mention the converse procedure, starting with a representation M of Q which is decreasing on an arm attached at the vertex m. How does one describe the subspace chain in $V = M_m$? Again we consider the case m = 3. Given an arrow γ , we write γ instead of M_{γ} .

One sees in this way that dealing with a representation M which is decreasing on an arm attached at the vertex m, the relevant information concerning the vector spaces M_x on the arm is a chain $(U_i)_i$ of subspaces of the vector space M_m . Looking at representations which are decreasing on an arm attached at m, we may assume that we actually deal with a corresponding chain of subspaces, thus that we consider the subspace orientation of the

arm. Such changes of orientation of parts of a quiver will be discussed later in more detail, under the name of "reflection functors".

Theorem 2. Let Q be a quiver which is obtained from a subquiver by attaching an arm at the vertex m. Let M be an indecomposable representation of Q with $M_m \neq 0$. Then M is decreasing on the arm.

The proof will use Theorem 1 with t'=1.

Proof, using induction on m.

First, consider the case that the last arrow of the arm is of the form $\alpha \colon m-1 \to m$. If $M_{m-1} = 0$, then the indecomposability implies that $M_x = 0$ for all $x \le m-1$, thus nothing has to be shown. Thus we assume that $M_{m-1} \ne 0$ and use induction: we see that M is decreasing on the arm

$$1 - 2 - \cdots - m - 1$$

and, as we have seen, the relevant information is a chain of subspaces U_i of $V = M_{m-1}$. Thus, we deal with a chain of subspaces U_i , for $1 \le i \le m-2$, of V and in addition we have to consider a further subspace of V, namely $U' = \operatorname{Ker} M_{\alpha}$. We can apply Theorem 1 to these subspaces and conclude that there exists a basis \mathcal{B} of V which is compatible with all the subspaces U_1, \ldots, U_{m-2} as well as U'. For $1 \le i \le m-1$, let \mathcal{B}_i be the set of elements of \mathcal{B} which belong to U_i and not to U', and let \mathcal{B}'_i be the set of elements of \mathcal{B} which belong to U_i as well as to U'. Then, for $1 \le i \le m-1$, we have a direct sum decomposition of U_i , namely

$$U_i = \langle \mathcal{B}_i \rangle \oplus \langle \mathcal{B}_i' \rangle$$

and of course, the inclusion maps $U_i \to U_{i+1}$ yield inclusions

$$\langle \mathcal{B}_i \rangle \subseteq \langle \mathcal{B}_{i+1} \rangle$$
 and $\langle \mathcal{B}'_i \rangle \subseteq \langle \mathcal{B}'_{i+1} \rangle$.

Observe that $\langle \mathcal{B}'_{m-1} \rangle$ is just the kernel of M_{α} . Thus, looking at the subspace orientation of the arm, we deal with

$$U_1 \longrightarrow U_2 \longrightarrow \cdots \longrightarrow V \stackrel{M_{\alpha}}{\longrightarrow} M_m \qquad M|Q''$$

and we obtain a direct decomposition of this representation into the following two repre-

sentations:

$$\langle \mathcal{B}_1 \rangle \longrightarrow \langle \mathcal{B}_2 \rangle \longrightarrow \cdots \longrightarrow \langle \mathcal{B}_{m-1} \rangle \longrightarrow M_m \qquad M|Q''$$

$$\langle \mathcal{B}_1' \rangle \longrightarrow \langle \mathcal{B}_2' \rangle \longrightarrow \cdots \longrightarrow \langle \mathcal{B}_{m-1}' \rangle \longrightarrow 0 \qquad \text{zero}$$

Since M is indecomposable and $M_m \neq 0$, it follows that the lower representation is zero, thus $B'_{m-1} = \emptyset$ and therefore $\text{Ker}(M_{\alpha}) = 0$. This shows that M_{α} is injective, as we wanted to show. (If we want to consider the other orientations explicitly, we have to consider corresponding subfactors of $V = M_{m-1}$.)

As second case, we have to assume that the last arrow is $\beta \colon m \to m-1$. As above, we deal with a chain of subspaces $U_i = M_1$, for $1 \le i \le m-2$, and in addition we consider the subspace $U' = \text{Im}(M_\beta)$. As before, Theorem 1 yields a basis \mathcal{B} compatible with these subspaces. For $1 \le i \le m-1$, let \mathcal{B}_i be the set of elements of \mathcal{B} which belong to U_i as well as to U', and let \mathcal{B}'_i be the set of elements of \mathcal{B} which belong to U_i and not to U'. We obtain a direct decomposition into the following two representations:

$$\langle \mathcal{B}_1 \rangle \longrightarrow \langle \mathcal{B}_2 \rangle \longrightarrow \cdots \longrightarrow \langle \mathcal{B}_{m-1} \rangle \stackrel{M_{\beta}}{\longleftarrow} M_m \qquad M|Q''$$

$$\langle \mathcal{B}_1' \rangle \longrightarrow \langle \mathcal{B}_2' \rangle \longrightarrow \cdots \longrightarrow \langle \mathcal{B}_{m-1}' \rangle \longleftarrow 0 \qquad \text{zero}$$

As in the first case, the indecomposability of M implies that one of the summands is zero, and again it has to be the second. It follows that M_{β} is surjective, and this is what we wanted to prove.

Theorem 3 (Classification of the indecomposable representations of an \mathbb{A}_n -quiver). Every indecomposable representation of a quiver of type \mathbb{A}_n is thin.

Proof: We consider a quiver Q with underlying graph

$$1 - 2 - \cdots - n$$

and an indecomposable representation M of Q. We can assume that $M_1 \neq 0$ and $M_n \neq 0$ (otherwise we replace Q by a suitable subquiver). We can apply theorem 2 both for m=n as well as for m=1 and conclude that all the maps M_{α} are bijective, in particular $\dim M_1 = \cdots = \dim M_n = t$ for some $t \geq 1$. But if t > 1, then we choose a basis of M_1 and use the maps M_{α} (or their inverses) in order to create corresponding bases in the vector spaces M_i with $1 \leq i \leq n$. This leads to a direct decomposition of M_i into M_i indecomposable representations. Our assumption that M_i is indecomposable implies that M_i is independent M_i in M_i in

To be more precise, let us exhibit a complete list of representatives for the isomorphism classes of the indecomposable representations of Q, where Q is a quiver of type \mathbb{A}_n , say with underlying graph

$$1 - 2 - \cdots - n$$

For $1 \leq i \leq j \leq n$, define a representation M[i,j] of Q as we did for the special case of linear orientation: We put $M[i,j]_x = k$ provided $i \leq x \leq j$, and zero otherwise, and we use as maps $M[i,j]_{\alpha}$ the identity map of k, whenever this is possible. Then:

Theorem 3'. Let Q be a quiver of type \mathbb{A}_n . The representations M[i,j] with $1 \leq i \leq j \leq n$ form a complete set of representatives of the indecomposable representations of Q.

(This means: these representations are indecomposable, they are pairwise non-isomorphic, and any indecomposable representation is isomorphic to one of these representations.)

As an immediate consequence of Theorem 3, we obtain a proof of theorem 1, or even theorem 1', looking at the quivers of type \mathbb{A}_n .

Proof of Theorem 1 with t, t' arbitrary.

Proof: We assume that there are given two chains of subspace of a vector space V:

$$U_1 \subseteq U_2 \subseteq \cdots \subseteq U_t$$
 and $U_1' \subseteq U_2' \subseteq \cdots \subseteq U_{t'}'$

we want to show that there exists a basis \mathcal{B} of V which is compatible with all these subspaces. Consider the quiver Q of type \mathbb{A}_n with n = t + t' + 1 and with the following orientation:

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow t \longrightarrow t+1 \longleftarrow t+2 \longleftarrow \cdots \longleftarrow t+t' \longleftarrow t+t'+1.$$

The given vectorspace V, the various subspaces U_i , U'_j and the inclusion maps yield a representation M of this quiver:

$$U_1 \longrightarrow U_2 \longrightarrow \cdots \longrightarrow U_t \longrightarrow V \longleftarrow U'_{t'} \longleftarrow \cdots \longleftarrow U'_2 \longleftarrow U'_1$$

write this representation as a direct sum of indecomposable representations M[i,j], say

$$M = M^{(1)} \oplus \cdots \oplus M^{(s)}$$

where any $M^{(r)}$ is of the form M[i,j] for some pair $i \leq j$ (depending on r), and actually we must have $i \leq t+1 \leq j$ (since $M[i,j]_{t+1} \neq 0$). Now choose a non-zero element b_r in $(M^{(r)})_{t+1}$, for $1 \leq r \leq s$. Then $\mathcal{B} = \{b_1, \ldots, b_s\}$ is the required basis.

Actually, a more detailed analysis of this direct decomposition

$$M = M^{(1)} \oplus \cdots \oplus M^{(s)}$$

with $M^{(r)}$ isomorphic to $M[i_r, j_r]$ provides a proof of Theorem 1'. Namely, we can use this decomposition in order to derive a rule how to choose the various complement bases needed: the rule formulated in Theorem 1'.

We should mention that Theorem 3 above is not only a consequence of Theorem 2, but also that **Theorem 3 implies Theorem 2:**

Proof: If Q' is an arm of Q attached at the vertex m, and M is an indecomposable representation of Q with $M_m \neq 0$, then we consider the restriction M' of M to the subquiver Q'. According to Theorem 3, we may decompose M' into a direct sum of thin indecomposables, and we consider the question whether the vertex m belongs to the support of such an indecomposable or not. Write $M' = X' \oplus Y'$, where X' is a direct sum of thin indecomposables $N^{(i)}$ such that $(N^{(i)})_m \neq 0$, whereas $Y'_m = 0$. It follows that $M = X \oplus Y$, where the restriction of X to Q' is X', the restriction of Y to Q' is Y', and the restriction of X' to Q'' is the same as that of M to Q'' (and the restriction of Y to Q'' is zero). Since $X \neq 0$ and M is indecomposable, it follows that Y = 0. It remains to look at X', this is the direct sum of indecomposable representations Z of Q' which are thin and satisfy $Z_m \neq 0$. Clearly, for these representations Z, we know: If X = i and X = i + 1, then $X_{\alpha} = i + 1$ and X = i + 1 and X = i + 1. Then $X_{\alpha} = i + 1$ is injective, if X = i + 1 and X = i + 1 and X = i + 1. Then $X_{\alpha} = i + 1$ is surjective. This completes the proof.

Remark. The representation theory of quivers of type \mathbb{A} (which has been the main target of our considerations up to now) is one of the basic topics of the representation theory of quivers: The indecomposable representations of such a quiver are easy to write down, and there is only a finite number of isomorphism classes of indecomposable representations (therefore, these quivers are said to be *representation-finite*).

We have derived Theorem 3 from the special case of Theorem 1 (namely dealing with a chain of subspaces and one additional subspace), whereas Theorem 1 may be (and should be) considered as a useful application of Theorem 3, as we have pointed out.

Many different proofs of Theorem 3 are known, all seem to be of interest in their own and shed some light on this situation.