Usually one restricts the attention to connected quivers: a quiver is connected, provided
for any decomposition Qo = QU Qf, with Q; N Qf = 0 and both Qf, and Qf non-empty,
there is an arrow between @) and @) (that means: there is an arrow «: z — y in @1 with
x € Q) and y € Q or else with x € Qf and y € Qp).

Exercise 9. Let (Q be a quiver and assume that ther are given
subquivers @', Q" of @ with Qy = Q, U Qf, and Q) N Q = 0, and
such that also @1 = Q] U QY. Show that any representation of @
can be decomposed into a representation with support in Qf, and
a representation with support in Qf. (Here, we use the following
terminology: The support of a representation M of () is the set of all
vertices x € Qg such that M, # 0.)

Exercise 10. Show that a quiver with n vertices is a tree quiver if
and only if it is connected and there are precisely n — 1 arrows.

A representation M of Q) is thin, provided any vector space M, is at most 1-dimensional,
for x € Q.

Exercise 11. Let M be a thin representation of a connected quiver
() and assume that all the maps M, are non-zero, for all a € Q7.
Show that M is indecomposable.

Lemma. Let () be a tree quiver. If M is a thin indecomposable representations of @,
then there is an isomorphism f: M — M’, such that M. =k, if M, # 0, and such that
M! =1y if My # 0 (where x € Qp and o € Q1). In particular, the isomorphism class of
a thin indecomposable representation is uniquely determined by the support.

Proof. We use induction on the number of vertices of the tree quiver Q. If @) is of type
A+, nothing has to be shown. Now assume that @ is obtained from a tree quiver Q" with
n — 1 > 1 vertices by attaching an arm of the form A, at the vertex a, say

bia Q//

Let M be a thin indecomposable representation of (). We can assume that Mg # 0, since
otherwise the support of M is either {b} or it is contained in @”, and in both cases the
asserrtion follows by induction. By induction, we replace M by a representation M" which
has the required property for the vertices x and the arrows « belonging to @Q”. We look
now at the arrow §. If 8: b — a, then we replace M by the image of Mg and Mj by
the inclusion map; if 8: a — b, then we replace M, by M, /Ker(Mg) and Mg by the
corresponding projection map, as we know this yields a representation M’ isomorphic to
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M", thus to M, and actually we have now also M; = k, and My = 1. This completes the
proof.

If @ is not a tree, then there are additional indecomposable representations which
are thin. Consider for example the cyclic quiver C,, with vertices 1,2,...,n and arrows
a;:i—i+1for 1 <i<n-—1and a,: n— 1 (this quiver is also called the quiver of type
,&n_l with cyclic orientation). Let us consider the thin indecomposable representations
with M, = k for all vertices x. There are n such representations M such that M, = 0
for precisely one arrow «. For the remaining representations M, we may assume that
M,, =1} for s <7 <n—1. Then the map M,, can be an arbirtrary scalar multiplication
[c] with ¢ € k\ {0}, and these representations are pairwise non-isomorphic.

Exercise 12. Proof the last assertion.

3. Arms.

Let Q be a quiver which is obtained from a quiver Q" by attaching an arm at the
vertex m, say

1—2— - —m Q//

A representation M of @ is said to be decreasing on the arm provided the following holds
for any arrow a: x — y of the arm: If x = ¢ and y = i+ 1, then M, is injective. If x =141
and y = 1, then M, is surjective. In particular, this means that

dim M; < dim M, < --- < dim M,,,
and that all the maps M, have full rank.

If we deal with an arm attached at the vertex m, and if the arrows of the arm are of the
form x — z+1, for 1 <z < m—1, then we say that this is an arm with subspace orientation.
If a representation M is decreasing on an such an arm with subspace orientation, then up
to isomorphism we can assume that the vector spaces M, with 1 < x < m—1 are subspaces
of V.= M,,, and that the maps on the arm are inclusion maps.

Let us discuss now all the possible orientations of an arm of the form A,,, say for m = 3.

There are 4 = 2™~ ! different orientations. Assume that there is given a representation M
which is decreasing on the arm, then (up to isomorphism) the vector spaces V; and V5, on
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the arm are given by a chain of two subspaces U; C U, of the vector space V = M3 as

follows:

Ur

— Uy ——>
UQ/U1<— U2 I

UQ/Ul —> V/U1 <

V/UQ < V/U1 <

MiQ"

M|Q//

M|Q//

M‘Q“

e

We also should mention the converse procedure, starting with a representation M of
() which is decreasing on an arm attached at the vertex m. How does one describe the
subspace chain in V' = M,,, 7 Again we consider the case m = 3. Given an arrow -, we

write v instead of M.

nun e |
ndus e |
nu e |
ndu e |

O!(Mg)

aB(M)

One sees in this way that dealing with a representation M which is decreasing on an
arm attached at the vertex m, the relevant information concerning the vector spaces M, on
the arm is a chain (U;); of subspaces of the vector space M,,. Looking at representations
which are decreasing on an arm attached at m, we may assume that we actually deal with
a corresponding chain of subspaces, thus that we consider the subspace orientation of the
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arm. Such changes of orientation of parts of a quiver will be discussed later in more detail,
under the name of “reflection functors”.

Theorem 2. Let Q be a quiver which is obtained from a subquiver by attaching an
arm at the vertex m. Let M be an indecomposable representation of Q with M,, # 0. Then
M is decreasing on the arm.

The proof will use Theorem 1 with ¢’ = 1.
Proof, using induction on m.

First, consider the case that the last arrow of the arm is of the form o: m—1 — m. If
M,,—1 = 0, then the indecomposability implies that M, = 0 for all x < m—1, thus nothing
has to be shown. Thus we assume that M,, ;1 # 0 and use induction: we see that M is
decreasing on the arm

and, as we have seen, the relevant information is a chain of subspaces U; of V. = M,,, 1.
Thus, we deal with a chain of subspaces U;, for 1 < i < m — 2, of V and in addition we
have to consider a further subspace of V, namely U’ = Ker M,,. We can apply Theorem
1 to these subspaces and conclude that there exists a basis B of V' which is compatible
with all the subspaces Uy, ...,U,—2 as well as U’. For 1 < i < m — 1, let B; be the set
of elements of B which belong to U; and not to U’, and let B, be the set of elements of
B which belong to U; as well as to U’. Then, for 1 < i < m — 1, we have a direct sum
decomposition of U;, namely

U, =(B;)® (BZ)

and of course, the inclusion maps U; — U,y yield inclusions

(Bi) € (Bix1)  and  (B) C (Bj,4).

of the arm, we deal with

Observe that (B), ;) is just the kernel of M,. Thus, looking at the subspace orientation

U1 —_— U2 _— .. — —>Mm M|Q//

and we obtain a direct decomposition of this representation into the following two repre-
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sentations:

(Bl —> (BY) —> - —> (B 1) — OQ

Since M is indecomposable and M, # 0, it follows that the lower representation is zero,
thus B!, _; = 0 and therefore Ker(M,) = 0. This shows that M, is injective, as we wanted
to show. (If we want to consider the other orientations explicitly, we have to consider
corresponding subfactors of V. = M,,,_;.)

As second case, we have to assume that the last arrow is f: m — m—1. As above, we
deal with a chain of subspaces U; = My, for 1 < ¢ < m — 2, and in addition we consider
the subspace U’ = Im(Mp). As before, Theorem 1 yields a basis B compatible with these
subspaces. For 1 <17 < m — 1, let B; be the set of elements of B which belong to U; as
well as to U’, and let B; be the set of elements of B which belong to U; and not to U’. We
obtain a direct decomposition into the following two representations:

Mg
(B1) — (By) —> -+ —>{(B,,_1)<— M,, M|Q"

As in the first case, the indecomposability of M implies that one of the summands is zero,
and again it has to be the second. It follows that My is surjective, and this is what we
wanted to prove.

Theorem 3 (Classification of the indecomposable representations of an A,,-
quiver). FEvery indecomposaable representation of a quiver of type A, is thin.

Proof: We consider a quiver () with underlying graph
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and an indecomposable representation M of (). We can assume that M; # 0 and M,, # 0
(otherwise we replace @) by a suitable subquiver). We can apply theorem 2 both for
m = n as well as for m = 1 and conclude that all the maps M, are bijective, in particular
dimM; = --- = dim M,, =t for some ¢t > 1. But if t > 1, then we choose a basis of M;
and use the maps M, (or their inverses) in order to create corresponding bases in the
vector spaces M; with 2 < ¢ < n. This leads to a direct decomposition of M into ¢ thin
indecomposable representations. Our assumption that M is indecomposable implies that
t=1.

To be more precise, let us exhibit a complete list of representatives for the isomorphism
classes of the indecoomposable representations of (), where () is a quiver of type A,,, say
with underlying graph

For 1 < i < j < n, define a representation M|i, j| of @ as we did for the special case of
linear orientation: We put M[i, j], = k provided i < x < j, and zero otherwise, and we
use as maps M]i, j|, the identity map of k, whenever this is possible. Then:

Theorem 3'. Let Q be a quiver of type A,,. The representations M[i, j] with 1 < i <
7 < n form a complete set of representatives of the indecomposable representations of Q.

(This means: these representations are indecomposable, they are pairwise non-isomorphic,
and any indecomposable representation is isomorphic to one of these representations.)

As an immediate consequence of Theorem 3, we obtain a proof of theorem 1, or even
theorem 1’, looking at the quivers of type A,,.

Proof of Theorem 1 with ¢,¢' arbitrary.
Proof: We assume that there are given two chains of subspace of a vector space V:
Uy CU,C---CU;  and Uy CU;C---CUy,
we want to show that there exists a basis B of V' which is compatible with all these

subspaces. Consider the quiver @ of type A,, with n = ¢+ ¢ + 1 and with the following
orientation:

I — 2 t t+1 t+2 o< -t <t 41

The given vectorspace V', the various subspaces U, UJ’. and the inclusion maps yield a
representation M of this quiver:

U1 U2 e /> Ut — V t/’ o <— Ué < U{
write this representation as a direct sum of indecomposable representations M|i, j], say
M=MVDVg... M
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where any M (") is of the form M[i, j] for some pair i < j (depending on r), and actually
we must have i <t +1 < j (since M[i,j]t+1 # 0). Now choose a non-zero element b, in
(M(T))H_l, for 1 <r <s. Then B = {by,...,bs} is the required basis.

Actually, a more detailed analysis of this direct decomposition
M=MVDg...g M

with M) isomorphic to M [ir, jr] provides a proof of Theorem 1’. Namely, we can use
this decomposition in order to derive a rule how to choose the various complement bases
needed: the rule formulated in Theorem 1'.

We should mention that Theorem 3 above is not only a consequence of Theorem 2,
but also that Theorem 3 implies Theorem 2:

Proof: If @ is an arm of ) attached at the vertex m, and M is an indecomposable
representation of @@ with M,, # 0, then we consider the restriction M’ of M to the
subquiver Q’. According to Theorem 3, we may decompose M’ into a direct sum of
thin indecomposables, and we consider the question whether the vertex m belongs to the
support of such an indecmposable or not. Write M’ = X’ &Y', where X' is a direct sum
of thin indecomposaables N®) such that (N®)),, # 0, whereas Y/, = 0. It follows that
M = X @Y, where the restriction of X to Q' is X', the restriction of Y to @’ is Y’, and
the restriction of X’ to Q" is the same as that of M to Q" (and the restriction of Y to Q"
is zero). Since X # 0 and M is indecomposable, it follows that Y = 0. It remains to look
at X, this is the direct sum of indecomposable representations Z of ()’ which are thin and
satisfy Z,, # 0. Clearly, for these representations Z, we know: If x =7 and y = i+ 1, then
Z, is injective, if x =i+ 1 and y = i, then Z, is surjective. Since X' is the direct sum of
such representations, we see: If x = ¢ and y = i+ 1, then X/ = M, is injective, if z =i +1
and y = i, then X/ = M, is surjective. This completes the proof.

Remark. The representation theory of quivers of type A (which has been the main target of our con-
siderations up to now) is one of the basic topics of the representation theory of quivers: The indecomposable
representations of such a quiver are easy to write down, and there is only a finite number of isomorphism

classes of indecomposable representations (therefore, these quivers are said to be representation-finite).
We have derived Theorem 3 from the the special case of Theorem 1 (namely dealing with a chain
of subspaces and one additional subspace), whereas Theorem 1 may be (and should be) considered as a

useful application of Theorem 3, as we have pointed out.

Many different proofs of Theorem 3 are known, all seem to be of interest in their own and shed some

light on this situation.
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