
Remark. One may reconsider (5) and (5′) as follows: Assume that y is a sink of Q and
let us look at the y-reduced representationsM of Q, and at the y-reduced representations N
of σ+

y Q. Up to isomorphism, it is enough to consider only those y-reduced representations
M of Q such that the map (αi)i :

⊕

iMxi
→ My is the projection onto a factor space

of
⊕

i Mxi
, let us call them for “normalized”, and similarly, it is enough to consider only

those y-reduced representations N of σ+
y Q such that the map (βi)i : Ny →

⊕

i Mzi is the
inclusion map of a subspace, let us call them again “normalized”. Then we see: The
reflection functors yield inverse bijections

{M | normalized y-reduced rep of Q} {N | normalized y-reduced rep of σ+
y Q}

σ+
y

.................................................................................................. ............

..............................................................................................................

σ−
y

since for normalized representations we really have σ−
y σ+

y M = M and σ+
y σ

−
y N = N

(equality, not only isomorphy).

Exercise 18. Let y be a sink of Q and M a representation of Q.
Show that there is a canonical monomorphism f : σ−

y σ+
y M → M and

that its image M ′ is a direct summand of M ; thus, there is a direct
decomposition M = M ′ ⊕ M ′′ of representations of Q. What does
one know about M ′′ ?
Dually, if y is a source of Q and N a representation of Q, then show
that there is a canonical epimorphism g : N → σ+

y σ
−
y N , and that its

kernel N ′′ is a direct summand. What does one know about N ′′ ?

There are two consequences of (5):

(6) Let y be a sink for Q. If M is an indecomposable y-reduced representation of Q,
then σ+

y M is again indecomposable.

Proof: LetM be an indecomposable y-reduced representation ofQ, and σ+
y M = N⊕N ′

a direct decomposition. according to (5), M is isomorphic to

σ−
y σ+

y M = σ−
y (N ⊕N ′) = σ−

y N ⊕ σ−
y N ′

where we have used (4′). Since M is indecomposable, one of these direct summands, say
σ−
y N ′ has to be zero. By (1), we know that σ+

y M is y-reduced, thus also N ′ is y-reduced
and therefore σ−

y N ′ = 0 implies N ′ = 0.

(7) Let y be a sink for Q. If M,M ′ are non-isomorphic y-reduced representations of
Q, then also σ+

y M and σ+
y M

′ are non-isomorphic.

Proof. Let M,M ′ be y-reduced representations of Q and assume that σ+
y M and

σ+
y M

′ are isomorphic. According to (3′) and (5) it follows that the representations
M,σ−

y σ
+
y M,σ−

y σ
+
y M

′,M ′ are isomorphic.
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Similarly, there are the dual assertions (with corresponding proofs):

(6′) Let y be a source for Q. If N is an indecomposable y-reduced representation of Q,
then σ−

y N is again indecomposable.

(7′) Let y be a source for Q. If N,N ′ are non-isomorphic y-reduced representations of
Q, then also σ−

y N and σ−
y N ′ are non-isomorphic.

Two further properties of the reflection functors should be added.

(8) Let y be a sink. Let M be a representation of Q and M ′ a subrepresentation of M .
Then σ+

y M
′ is a subrepresentation of σ+

y M .

Proof: The construction of σ+
y M and σ+

y M
′ and the inclusion maps fx : M

′
x → Mx

yield the following commutative diagram

0 −−−−→ (σ+
y M

′)y
u

−−−−→
⊕

i M
′
xi

(αi)i
−−−−→ M ′

y

(fxi
)i





y





y

fy

0 −−−−→ (σ+
y M)y

u
−−−−→

⊕

i Mxi

(αi)i
−−−−→ My

and this implies that (σ+
y M

′)y is mapped under (fxi
)iu into (σ+

y M)y, say with inclusion
map f∗

x :

0 −−−−→ (σ+
y M

′)y
u

−−−−→
⊕

i M
′
xi

(αi)i
−−−−→ M ′

y

f∗

y





y

(fxi
)i





y





y

fy

0 −−−−→ (σ+
y M)y

u
−−−−→

⊕

i Mxi

(αi)i
−−−−→ My

Since the left square commutes, we see that σ+
y M

′ is a subrepresentation of σ+
y M.

(9) Let y be a sink and M a y-reduced representation of Q. Let α1, . . . , αs be the arrows
with h(αi) = y and let xi = t(αi) for 1 ≤ i ≤ s. Then

dim(σ+
y M)y = − dimMy +

∑s

i=1
dimMxi

.

Proof. This follows directly from the exact sequence

0 −→ (σ+
y M)y

(α∗

i )i−−−→
⊕

i

Mxi

(αi)i
−−−→ My −→ 0.

For many assertions one needs to assume that one deals with a y-reduced representa-
tion. In case one considers indecomposable representations, there is the following numerical
criterion for y-reducibility:
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Lemma. Let y be a sink of Q and let α1, . . . , αs be the arrows with h(αi) = y and
let xi = t(αi) for 1 ≤ i ≤ s. Let M be an indecomposable representation of Q. Consider
d = − dimMx +

∑s

i=1 dimMx. If d = −1, then M is isomorphic to S(y), otherwise M is
y-reduced and d = dim(σ+

y M)y.

Proof. If M = S(y), then dimMy = 1 and dimMxi
= 0 for 1 ≤ i ≤ s, thus d =

−1. Otherwise, M is y-reduced and according to (9) we know that d = dim(σ+
y M)y, in

particular d ≥ 0. This completes the proof.

Exercise 19. Assume that y is a source. Formulate and prove the
corresponding assertions (8′) and (9‘) as well as a numerical criterion
for y-reducibility.

The chapter has been labeled reflection functors. What are functors? In the frame of this course, the

reflection functors just have to be considered as construction, which allow to obtain new representations

starting from given ones. Some properties of these constructions will be used, all will be shown without

reference to what is called functoriality.

Whoever is familiar with the basic concepts of category theory will immediately realize that the so-

called reflection functors are obviously functors, and indeed for y a sink in Q, the functor σ+
y is a functor

from the category of representations of Q to the category of representations of Q′=σ+
y Q which is right

adjoint to the functor σ−

y ). These functors have been introduced by Bernstein-Gelfand-Ponomarev in

1982, this was the origin of a very fruitful development leading to what now is known as the general tilting

theory.

The basic feature of the reflection functor σ+
y is the following. Let us denote by F the category of

all representations of Q which are direct sums of copies of S(y) and by G the category of all y-reduced

representations of Q. Similarly, we denote by X the category of all representations of Q′ which are direct

sums of copies of S(y) and by Y the category of all y-reduced representations of Q′ (following the usual

convention now when dealing with tilting functors). The functor σ+
y is an equivalence from the category

G onto the category Y, with inverse σ−

y . The functor σ+
y can be written in the form Hom(T,−), where T is

a tilting module, and the corresponding derived functor Ext1(T,−) furnishes an equivalence from F onto

X . Also, (F,G) is a torsion pair in the category of representations of Q, and (Y,X ) is a torsion pair in the

category of representations of Q′, in this case both torsion pairs are split. But be aware that looking at the

torsion pairs (and the equivalences of categories mentioned) the order is surprising: it is the torsion class

G of the first torsion pair is equivalent to the torsionfree call F of the second torsion pair, the torsionfree

class F of the first torsion pair is equivalent to the torsion class X of the second torsion pair. It is this

flip-flop which is one of the reasons for using the name “tilting”.

5. Iteration.

Some of the observations in the last section can be formulated in the following way:

Proposition. Let y be a sink of the quiver Q and let M (1), . . . ,M (m) be a set of
pairwise non-isomorphic indecomposable representations of Q. Then at most one of the
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representations σ+
y M

(i) is zero, the remaining ones are indecomposable and pairwise non-
isomorphic.

Proof: If all the M (i) are y-reduced, then the representations σ+
y M

(1), . . . , σ+
y M

(m)

are indecomposable and pairwise non-isomorphic. Otherwise, one of the representations
M (i), say M (m) will be isomorphic to S(y), but the remaining ones are y-reduced. Then
σ+
y M

(m) = 0, and σ+
y M

(1), . . . , σ+
y M

(m−1) are indecomposable and pairwise non-isomorphic.

Of course, there is the corresponding assertions also for y a source.

A sink sequence y1, . . . , yr (or a (+)-admissible sequence) is a sequence of vertices of
Q which starts with a sink y1 and such that for all i ≥ 2 the vertex yi is a sink for the
quiver σ+

yi−1
· · ·σ+

y1
Q (that means: we start with a sink y1, change the orientation of all the

arrows ending in y1, take a vertex y2 which now is a sink, change now also the orientation
of all the arrows ending in y2, look again for a sink, and so on.)

Corollary. Let y1, . . . , yr be a sink sequence for the quiver Q and let Σ = σ+
yr

· · ·σ+
y1
.

Let M (1), . . . ,M (m) be a set of pairwise non-isomorphic indecomposable representations
of Q. Then at most r of the representations ΣM (i) are zero, the remaining ones are
indecomposable and pairwise non-isomorphic.

Proof, by induction on r. The case r = 1 is just the proposition. Let r ≥ 2,
and let Σ′ = σ+

yr
· · ·σ+

y2
, so that ΣM = Σ′σ+

y M for any representation M of Q. If

none of the representations σ+
y M

(i) is zero, then by the proposition, the representations

σ+
y M

(1), . . . , σ+
y M

(m) are indecomposable and pairwise non-isomorphic. By induction at

most r − 1 of the representations Σ′σ+
y M

(1), . . . ,Σ′σ+
y M

(m) are zero, the remaining ones

are indecomposable and pairwise non-isomorphic. If one of the representations σ+
y M

(i) is

zero, say σ+
y M

(m) = 0, then the representations σ+
y M

(1), . . . , σ+
y M

(m−1) are indecompos-
able and pairwise non-isomorphic and we apply Σ′ to these representations.

We should add a remark concerning quivers with several sinks (or several sources). If
y1, y2 are different sinks of Q, then σ+

y1
σ+
y2

= σ+
y2
σ+
y1

for quivers as well as representations.
Indeed, σ+

y1
σ+
y2
Q = σ+

y2
σ+
y1
Q is obtained from Q by changing the orientation of all the

arrows α with head y1 or y2, this we can do in one step. Similarly, for M a representation
of Q, we have

σ+
y1
σ+
y2
M = σ+

y2
σ+
y1
M,

again the replacement of the vector spaces My1
and My2

as well as the corresponding maps
can be done simultaneously.

Often it will be reasonable to consider all the sinks at the same time and to invoke the
reflection functors for all the sinks at once (see for example the discussion of the 3-subspace
quiver Q in the next section: we denote by 0 its sink, by 1, 2, 3 its sources. First, we apply
σ+
0 , thus changing the direction of all the arrows, we obtain in this way the quiverQ′ = σ+

0 Q
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with 0 now being a source and with three sinks 1, 2, 3. Under the reflection functor σ+
0 ,

the simple representation S(0) of Q is sent to zero, whereas the 0-reduced representations
of Q correspond bijectively to the 0-reduced representations of Q′. Now we look at Q′ and
its representation. As we have mentioned, Q′ has the three sinks 1, 2, 3 and we will apply
σ+
3 σ

+
2 σ

+
1 to the quiver Q′ as well as to the representations of Q′. Applying σ+

3 σ
+
2 σ

+
1 to

the quiver Q′, we again change the direction of all the arrows and obtain Q back. Under
the reflection functor σ+

3 σ
+
2 σ

+
1 , the simple representations S(1), S(2), S(3) of Q′ are sent

to zero, whereas the representations of Q′ which are i-reduced for i = 1, 2, 3 correspond
bijectively to the representations of σ+

3 σ
+
2 σ

+
1 Q

′ = Q which are i-reduced for i = 1, 2, 3.

6. Star quivers with subspace orientation.

Let Q be a star quiver with center c and with subspace orientation. Let I = I(Q) be
the representation with I(0)x = k for all vertices x and Iα = 1 for all arrows α. Thus
I is thin, indecomposable and has full support (its support is Q0). Conversely, any thin
indecomposable representation with full support is isomorphic to Q.

Theorem. Let Q be a star quiver with center c and with subspace orientation. Let
I = I(Q). If there is a sink sequence y1, . . . , yr such that σ+

yr
· · ·σ+

y1
I = 0, then Q has at

most r isomorphism classes of indecomposable subspace representations.

Proof: First, let us observe that the direct sum In of n copies of I is the representation
with (In)x = kn (or a fixed n-dimensional vector space V ) for all vertices x and (In)α the
identity map for all arrows α.

We start with the following lemma.

Lemma. Let Q be a star quiver with center c and with subspace orientation. A
representation M of Q is a subspace representation if and only if M is a subrepresentation
of a direct sum of copies of I(Q).

Proof: If M is a subrepresentation of In for some n, then all the maps Mα are re-
strictions of identity maps, thus they are inclusion maps. This means that all the vector
spaces Mx must be subspaces of Mc (and Mc is a subspace of (In)c), in particular, M is
a subspace representation.

Conversely, assume that M is a subspace representation of Q, thus all the vector spaces
Mx are subspaces of Mc and the maps Mα are corresponding inclusion maps. Let us
denote by ux : Mx → Mc the given inclusion map. Let M ′ be the representation of Q with
M ′

x = Mc for all vertices x (thus Mx is a fixed vector space for all x), and M ′
α the identity

map for all arrows α. Then M ′ is a direct sum of copies of I and u = (ux)x M → M ′ is
an embedding of representations, thus M is a subrepresentation of M ′.

Proof of Theorem. Let y1, . . . , yr such that ΣI = 0, where we write Σ = σ+
ym

· · ·σ+
y1
.
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If M is a subrepresentation of In for some n, then ΣM is a subrepresentation of Σ(In) =
(ΣI)n = 0, according to properties (8) and (4) for the reflection functors, but this means
that ΣM = 0.

According to the corollary in section 5, we know that there are at most r isomorphism
classes of indecomposable representations M of Q with ΣM = 0. This completes the proof.

Example 1: The 3-subspace quiver D4.

The 3-subspace quiver Q is the following quiver (of type D4), and we use the labels
0, 1, 2, 3 for the vertices.

◦

◦ ◦ ◦
......................................................................... .......

.....

....................................................................
.....
............

.................................................
......
......
......

0

1 2 3

Dealing with a subspace-representation M of Q, we just write M = (M0;M1,M2,M3).

Proposition. There are, up to isomorphism, precisely 9 indecomposable subspace
representations of Q, namely the following:

S(0) =
(k; 0, 0, 0)

P (1) =
(k; k, 0, 0)

P (2) =
(k; 0, k, 0)

P (3) =
(k; 0, k, 0)

R =
(k2; k0, 0k,∆)

N(1) =
(k; 0, k, k)

N(2) =
(k; k, 0, k)

N(3) =
(k; k, k, 0)

I =
(k; k, k, k)

here, ∆ = {(x, x) | x ∈ k} ⊂ k2.

Before we prove the proposition, let us mention the following consequence:

Corollary. Any quiver of type D4 has precisely 12 isomorphism classes of indecom-
posable representations.

Proof. First we deal with the subspace orientation as considered above. Besides the
subspace representations we also have to take into account the indecomposable represen-
tations M with M0 = 0, thus those living at one of the three arms. Such a representation
M is simple, namely one of the representations S(1), S(2), S(3). Any other orientation is
obtained by changing the orientation of the arms. But such a change of orientation does
not change the number of isomorphism classes of indecomposable representations.

Proof of proposition: It is clear that the representations listed are pairwise non-
isomorphic. The indecomposability is clear for the thin representations, and the 3-subspace
warning just asserts that also R is indecomposable.
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It remains to show that there are no other indecomposable subspace representations.
According to the Theorem, it is sufficient to look at the representation I = I(Q) Since 0
is a sink for Q and 1, 2, 3 are sources, it is obvious that the sequence 0, 1, 2, 3, 0, 1, 2, 3, 0 is
a sink-sequence.

Claim:

σ+
0 σ

+
3 σ

+
2 σ

+
1 σ

+
0 σ

+
3 σ

+
2 σ

+
1 σ

+
0 I = 0.

For this calculation we propose to use a special arrangement of vector spaces and linear
maps (and as we will note below, one actually only has to look at the dimensions of the
vector spaces, thus at natural numbers). We start with the given representation I on the
right, and form inductively kernels of appropriate linear maps. Let us draw a sequence
of pictures which shows step by step some representations obtained by applying reflection
functors; in practice one will just produce a single picture, working from right to left (we
will exhibit it below).
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We exhibit in this way the representations I(0), I(2), I(4) of Q as well as the represen-
tations I(1), I(3), I(5) of σ+

0 Q.

Note that here the individual maps which have to be used have not been specified; it
may be sometimes quite cumbersome, to write such maps explicitly, but for our purpose
one is not forced to do so. As we already have mentioned, the important information are
the various vector space dimensions due to property (9).

Here is the combined picture, with all the zeros deleted:
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As we have mentioned, it is sufficient to record the dimension of the vector spaces, thus to
produce the following picture:
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This picture is called a “hammock”.

Hammocks have been introduced by Sheila Brenner in 1986, and have to be considered as an important

combinatorial stucture arising in representation theory. Note: it is not an accident that the hammock

picture which we have constructed here resembles the arrangement of the 9 indecomposable subspace

representations. In fact, the so-called Auslander-Reiten quiver of the category of subspace representations

of Q looks as follows:

S(0)

P (1)

P (2)

P (3)

R

N(1)

N(2)

N(3)
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....................................................... ............

................................................................ .......
.....

and the numbers 1 and 2 are just the numbers M0=dimHom(S(0),M) for any vertex labeled by the repre-

sentation M .

Example 2: The subspace quivers of type An.

Let us deal with the star quivers Tt1,t2 with subspace orientation.

Let us consider the special case t1 = 3, t2 = 4. We use the following labels for the
vertices:

◦ ◦ ◦ ◦ ◦ ◦....................................................... ............ ....................................................... ............ ................................................................... ................................................................... ...................................................................

1 2 3 4 5 6
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thus the branching vertex c = 3 is the unique sink.

Claim:
σ+
4 σ

+
5 σ

+
6 σ

+
3 σ

+
4 σ

+
5 σ

+
2 σ

+
3 σ

+
4 σ

+
1 σ

+
2 σ

+
3 I(Q) = 0.

Exercise 20. Proof this assertion, by constructing the following
“hammock”:
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It follows that Q can have, up to isomorphism, at most 12 indecomposable subspace
representations. Of course it is easy to exhibit 12 thin indecomposable subspace represen-
tations.

More generally one shows:

Proposition. Let Q be the quiver of type Tt1,t2 with subspace orientation. Then there
is a sink sequence y1, . . . , yr with r = t1t2 such that

σ+
yr

· · ·σ+
y1
I(Q) = 0.

Since Q has t1t2 isomorphism classes of thin indecomposable representations, it follows
that any indecomposable subspace representation of Q is thin.

This provides a new proof of Theorem 1: Given a vector space V with two chains of
subspaces, there is a basis of V which is compatible with all the subspaces.

Example 3: The 4-subspace quiver.

Let Q be the quiver of type T2,2,2,2 with subspace orientation (it is called the 4-
subspace quiver). its subspace representations are written in the form (V ;U1, U2, U3, U4)
and are called subspace-quadruples (here, U1, . . . , U4 are subspaces of the vector space V ).

Proposition. For any natural number n there is one (and only one) indecomposable
subspace-quadruples (V ;U1, U2, U3, U4) with dimV = 2n + 1 and dimUi = n + 1 for 1 ≤
i ≤ 4.
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Proof, by induction on n. For n = 0, we take the representation M(0) = I(Q).
Of course, this is the only thin indecomposable representation with full support. Now
assume, we have already constructed M(n− 1) = (V ;U1, U2, U3, U4) with dimV = 2n− 1
and dimUi = n for 1 ≤ i ≤ 4, for some n ≥ 1. Let

M(n) = σ+
4 σ

+
3 σ

+
2 σ

+
1 σ

+
0 M(n− 1).

Then

dimM(n)0 = dim(σ+
4 σ

+
3 σ

+
2 σ

+
1 σ0M(n− 1))0

= dim(σ0M(n− 1))0

= − dimM(n− 1)0 +
∑4

i=1
dimM(n− 1)i

= −(2n− 1) + 4n = 2n+ 1,

and

dimM(n)1 = dim(σ+
4 σ

+
3 σ

+
2 σ

+
1 σ0M(n− 1))1

= dim(σ+
1 σ0M(n− 1))1

= − dim(σ0M(n− 1))1 + (σ0M(n− 1))0

= −n + (2n+ 1) = n+ 1.

and similarly for i = 2, 3, 4.

Remark. As before, these calculations are best remembered using the following picture:
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Exercise 21. Why are all indecomposable representations M of Q
with dimM0 = 2n+1 and dimMi = n+1 for 1 ≤ i ≤ 4 isomorphic?
Use induction and the reflection functors!

In particular, we see:

Proposition. The 4-subspace quiver is representation-infinite.

A quiver Q is said to be representation-finite provided there are only finitely many iso-
morphism classes of indecomposable representations, otherwise it is called representation-
infinite.

As we have seen earlier, the quivers of type An as well as those of type D4 are
representation-finite.
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