Example 4: Changing the orientation of an arm.

In section 3, we were looking at quivers () with an arm attached at a vertex m, and
we claimed that for classifying the indecomposable representations of ) with M,,, # 0, one
may restrict to deal with the subspace orientation of the arm. Using reflection functors,

one obtains a proof of this claim, as follows:

Let us consider the following arm:

Q

1 2 3 4 Q"

Using a sequence Y. of reflection functors a,!;" with y € {1,2,3}, we want to change the
orientation in order to deal with the subspace orientation

%Q

Obviously, we can take

B
Y =o0,050]03,

The effect of the various reflections is best envisioned by considering the quivers ) and
Y@ as subquivers of the following quiver

o
N/
,
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Going from right to left, we decrease in any step the shaded area:

oy oy of o3
-~ P P -~

\ N - .
3 3 3 3 s
\, \, \, \, v
>

xQ Q

> provides a bijection between the indecomposable QQ-modules M with My # 0 and the
indecomposable X.Q)-modules N with Ny # 0.

Proof: We only have to observe that the representations we are dealing with are
indecomposable and non-zero at the vertex x, thus they are y-reduced, for any sink y in
question (the sinks y we are working with, are either 1, 2 or 3).

Let us provide more details on this correspondence. Now we start with @), thus with
the subspace orientation of the arm, and we assume that the subspaces Uy C Uy C Uz of
V' = M, have been given:

2Q
U1—>U2—>U3—>V Q”

Here are the vector spaces which we have to use if we apply a sequence of reflection functors
o, for a source sequence using only vertices y € {1,2, 3} (thus reversing what for example
the reflection functor ¥ did). Note the maps are inclusion and projection maps with an
appropriate choice of signs +1 in order to obtain the exact sequences which are needed;
but observe that finally the signs do not matter.
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For the quiver () we started with, we obtain in this way

Q
Us/Us < Us/Ur > V/Us <— V Q"

7. The Kronecker quiver.

This is the quiver with two vertices, say labeled 1 and 2 and two arrows 1 — 2, say
labeled a and S.

The representations of the Kronecker quiver are often called Kronecker modules. Let
us repeat the basic definitions for this special case:

A Kronecker module is of the form M = (M, Ma; M,, Mg) where M; and M, are
k-spaces, whereas M, and Mg are k-linear maps M; — My, instead of M, and Mg,
we usually will write just o and (3, respectively. The dimension vector dim M of M is
by definition the pair dim M = (dim M;, dim Ms). There is the zero Kronecker module
0 = (0,0;0,0), and there are the simple Kronecker modules S(1) = (k,0;0,0) and S(2) =
(0,k;0,0). Besides Ry = (k,k;1,0) and R = (k, k;0,1) (which correspond in some sense
to the arrows) there are further indecomposable Kronecker modules with dimension vector
(1,1), namely R. = (k, k;1,c) with 0 # ¢ € k, and all the R, with ¢ € kU{oo} are pairwise
non-isomorphic.

Two Kronecker modules M, M’ are isomorphic, provided there are isomorphisms

f1 M1—>M{ and fQ:MQ—)Mé
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of vector spaces such that the following two equalities hold:
foMo = M), f1, and foMg= Mjf.

In this case, one calls f = (f1, f2): M — M’ an isomorphism (of Kronecker modules) and
if such an isomorphism exists, then we write M = M’.

If two Kronecker modules M, M’ are given, the direct sum M @ M’ is defined as follows:
M &M = (My & Mj, My & My; Mo, & M), Mg & Mj),

If M® with 1 < i < t are Kronecker modules, then we write MDY @ ... M® or also
@2:1 M for the direct sum of these Kronecker modules.

A Kronecker module M is said to be indecomposable provided it is non-zero and if for
any isomorphism M = M’ & M" one of M', M" is zero.

The aim of this section is to classify the indecomposable Kronecker modules, at least
in case k is an algebraically closed field.

We will use reflection functors, but here we are in a very special situation. In contrast
to most other quivers, the quivers o1} and o2() have the same shape as ), thus, after
renaming the vertices, we can identify them with (). Also, Q has precisely one sink and
precisely one source, thus dealing with the reflection functors, we do not have to mention
the vertex used. The definition is as follows:

Let M be a Kronecker module. Define o™ M by (67 M)s = M; and by (o M); being
given as the kernel appearing in the following exact sequence

()

0= (ot M) =25 My o My 20

Ms.

Similarly, we define 0~ M by (6~ M), = M, and by (0~ M), being exhibited as the cokernel
given by the exact sequence

()

M1—>M2@M2(a—ﬂ)>

(O’+M)2 — 0.

If we are using these reflection functors iteratively, we write o ™*M = (¢7)!M and 0™ 'M =
(o)t M.

Proposition 1. For every natural number n > 0, there is a unique indecomposable
Kronecker module with dimension vector (n,n + 1), namely P, = 0~"5(2) and a unique
indecomposable Kronecker module with dimension vector (n+1,n), namely Q,, = o+t S(1).
The remaining indecomposable Kronecker modules have a dimension vector of the form
(n,n) with n > 1.
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The Kronecker modules P, are called preprojective, the Kronecker modules Q,, prein-
jective. An indecomposable Kronecker module M will be said to be regular provided
dim M; = dim Ms. In general, direct sums of indecomposable regular Kronecker modules
will be said to be regular.

We introduce the defect 0 M of a Kronecker module M as

Thus, regular Kronecker modules always have defect 0, but the converse is true only for

indecomposable Kronecker modules. A typical Kronecker module with zero defect but not
being regular is S(1) & S(2) = (k, k;0,0).

The theorem asserts, in particular, that |JM| < 1 for all indecomposable Kronecker
modules and that the indecomposable Kronecker modules of non-zero defect are uniquely
determined by their dimension vectors.

Proof of proposition 1. Instead of 2-reduced, we say sink-reduced, instead of 1-reduced,
we say source-reduced. For a sink-reduced Kronecker module, there is the following exact
sequence

0— (o M), ﬁ>MleaMl P gy 0,
thus we get a formula for the dimension vectors:

dimo™M = (dim(c™ M), dim(c™ M),
= (2dim M; — dim My, dim M)
= (dim Ms + dM,dim Ms + 6 M)
=dim M + (6M)(1,1)

and similarly, for a sink-reduced Kronecker module M, we get

(a) dimo M =dim M — (6M)(1,1)

Note that this implies
(b) §(ct M) =86M = §(c™ M)
Also, (a) shows: If M is regular (thus automatically sink-reduced and source-reduced),

then
dimoc™M =dim M = dimo~ M.

Now assume that M is indecomposable and has negative defect. If all the Kronecker
modules oM with t > 0 would be sink-reduced, the formula would yield

dimo ™M = dim M + t(6M)(1,1)
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for all ¢, but this is impossible for § < 0, since dimension vectors have non-negative
coordinates. It follows that there is some minimal ¢ such that oM is not sink-reduced,
and therefore isomorphic to S(2). But then M is isomorphic to o to™* M = ¢7'5(2). Now
dim S(2) = (0,1) and §5(2) = —1, thus

dim M = dimo~'5(2) = dim S(2) — t45(2)(1,1) = (0,1) + (t, ) = (¢t,t + 1).

Similarly, if M is indecomposable and has positive defect, then M has to be isomorphic
to oT*S(1) for some t and therefore dim M = (1,0) + ¢(1,1) = (¢t + 1, ¢).

In this way, we have found all indecomposable Kronecker modules with non-negative
defect. The remaining ones are regular, by definition.

Recall that the Jordan blocks are (n x n)-matrices of the form

A1 0
Jomy=|. ],

: o1

0o ... A

this is a square matrix with only eigenvalue A. If A = 0, we obtain the nilpotent matrix

N(m) = J(0,m).

Proposition 2. Let M be an indecomposable Kronecker module which is regular.
Then either M is isomorphic to Roo[m| = (K™, k™; N(m), 1) or else M, is bijective.

Before we present the proof, some remarks may be of interest.

The essential assertion of Proposition 2 is the following: If M s an indecomposable
Kronecker module which is regular, then at least one of the maps M, or Mg is bijective.

There is the following Lemma:

Lemma. Let M = (M, M2; M, Mg) be a Kronecker module with M, bijective. Then
M is isomorphic to M’ = (My, My1; 1, M Mg); here, the map M/, = 1 is the identity map
of M1 .

Proof of Lemma: Define an isomorphism f = (f1, fo) : M’ — M by taking f; = 1, the
identity map of M7, and fo = M,. Note that

faM], = Mo = Mqf1, and  foMp = MM, Mg = Mg = Mgf.

Recall that two endomorphisms ¢, ¢’ of a vector space V are called similar, provided
there is an automorphism f of V' such that f¢ = ¢'f.
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Up to isomorphism, the Kronecker modules M in R’ are of the form (V,V, 1, ¢), where
¢: V — V is an endomorphism.

Exercise 22. Let V be a vector space, and ¢, ¢’ endomorphisms of
V. Then (V,V, 1, ¢) is isomorphic to (V,V,1,¢’) if and only if ¢ and

¢ are similar.

If k is algebraically closed, then the indecomposable endomorphisms of a vector space
V,say V = k", are classified by the Jordan normal forms. Thus we see:

Proposition 2. Let k be an algebraically closed field. Let M be an indecompos-
able Kronecker module which is regular. Then either M s isomorphic to R[m] =
(K™, k™; N(m), 1) withm > 1, or else to a Kronecker module of the form (k™, k™; 1, J(A,m))
with A € k and m > 1.

Note that we have to distinguish the Kronecker modules R..[m] = (k™ k™; N(m), 1)
and (K™, k™;1, N(m)); not that they are not isomorphic.

In the proof of Proposition 2, we will deal with submodules of regular Kronecker
modules. We will need the following criterion:

Submodule characterization of the regular Kronecker modules. A Kronecker
module M with zero defect is regular if and only if )N < 0 for any submodule N of M.

Proof. First, consider the case of M being regular. If N is a submodule of M with
positive defect, Then (¢7)"N is a submodule of (¢+)"M for all . However the dimension
vector of (¢7)"N properly increases with 7, whereas dim(c+)"M = dim M for all r.

The reverse implication is trivial: If we assume that all submodules N of M satisfy
ON <0, and N is a direct summand of M, say M = N & N’, then 0 = M = 6N + 6N’
implies that both N =0 = §N’.

Corollary. Let M be a regular Kronecker module. Any submodule N of M of defect
zero 1s reqular.

Proof of proposition 2. We denote by R’ the class of Kronecker modules M with M,
being bijective; and by R the class of Kronecker modules isomorphic to direct sums of
Kronecker modules of the form R.[m], these are the indecomposable Kronecker modules
M with Mg bijective and (Mg) ™' M, nilpotent. Of course, all the Kronecker modules in
R’ as well as in R, are regular. We may reformulate Proposition 2 as follows:

Proposition 2. Any regular Kronecker module M is the direct sum of a Kronecker
module in R’ and a Kronecker module in Ro.

The proof is by induction on the dimension of M = (My, My, o, 5). If dim M = 0,
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nothing has to be shown, since the zero module belongs both to R, as well as to R'.
Thus assume that M is not the zero module. If M, is invertible, then M belongs to R'.
Thus we assume that « is not invertible. Since dim My = dim M;, this means that « is
not surjective. Let Na be a subspace of codimension 1 of My which contains the image of
M,. Let Ny = 37 1(Ny), this is a subspace of M;. Obviously, the map 3 induces a map

BZ Ml/Nl — MQ/NQ,

and f3 is injective, since Ny = 371(NN3). Now, by assumption, dim Ms/N, = 1. Note that
M is sink-reduced, thus aM; + M, = Ms, in particular M is not contained in Ny and
therefore B # 0. This shows that dim M;/N; = 1. Therefore dim N; = dim N». Since by
construction alNy C Ny, SN2 C N3, we have constructed a submodule N = (Ny, Ny) of M
of defect zero. By the corollary above, N itself is regular.

By induction, we write N = N’ @ N” with N’ € R’ and N” € Ro. We claim that
there exists © € M; \ N7 such that ax € NJ. Namely, choose = € M; \ N7 and consider au.
Now ax € Ny = Nj + NJ/ | thus we write ax = ¢/ + 3" with ' € N} and 3" € NJ. Since «
is bijective for M’, there exists ' € N; with a(z’) = y' and therefore a(x —2') =y € NJ.
Note that with = also  — 2’ belongs to M; \ N;. Thus replace z by x — 2.

Now, starting with an element x € M; \ N7 such that az € N/, we define a submodule
M" = (M{, ML) of M as follows:

M{ = N{ +kx, and Mj = Nj + k(Bx)
(it is obvious that this is a submodule). Note that
(%) N{+ M{ = Nj + N{ + kx = Ny + kx = M.

It follows that Sz ¢ N, since otherwise (Mj, N3) would be a submodule of positive
defect. In particular, Sz ¢ NJ, and therefore 3: M{ — MJ} is invertible. Also, since
B7ra(z) € Ny and B~ la is nilpotent on N{', we see that S~ 1« is nilpotent on M{'. This
shows that M” belongs to Rao.

If follows from (%) and dim M; = dim N{ 4 dim M7, that N7 N M{ = 0. Similar, we
have
N+ MY = Nj + NJ + k(Bx) = Nao + k(Bx) = Mo

and dim My = dim NV} + dim MY, thus N; N M} = 0.

Altogether we see that M = N’ @ M"”, where N’ € R’ and M € R,. This completes
the proof.

Proposition 2 is an essential part of our discussion of the Kronecker modules. However, the rather
clumsy proof presented here disguises some very clear assertions concerning the structure of the category R

of all regular Kronecker modules. First of all, R is (considered as a category in its own right) an “abelian”
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category (this is an immediate consequence of the submodule characterization of regular Kronecker mod-
ules), so that the simple objects of R have to be of interest. Note that these are the non-zero regular
Kronecker modules with zero as the only proper regular submodule, typical examples are the Kronecker
modules R. with cekUco. What is shown in our proof is mainly the following: If S is a simple object
in R, and not isomorphic to R.., then Ext!(Ro,S)=0=Ext'(S,R). It is an obvious consequence of the
vanishing of these Ext-groups that any regular Kronecker modules decomposes into the direct sum of a
Kronecker module with a filtration with all factors being R, (this part belongs to R~ ) and a Kronecker
module with a filtration where all factors are simple regular Kronecker modules and none is isomorphic to
R (this part belongs to R').

Proposition 3. The Kronecker module P, is isomorphic to (k™, k™! «, 3), where
a, B are obtained by adding to the (n x n)-identity matriz one additional zero row: for «
the additional row is added as the last row, for B as the first row:

1 0 0o - 0
5 1 0
o = N =
0 1
0 0 0 1

The Kronecker module Q,, is isomorphic to (k"™ k™, «, B), where
0 1 0 1 0 0
0 0 1 0 1 0
(here, «, 8 are obtained by adding to the (n xn)-identity matrix one additional zero column:

for a the additional column is added as the first column, for 8 as the last column).

Proof of proposition 3, using induction. We start with (k'~!, k%; a, 8) with a, 8 being
matrices as specified above, thus

. -
N 0 1
...... _ 0 -~~~ 0
5 L

0 1

(here, the upper and the lower blocks both are the (¢t — 1) x (f — 1)-identity matrix,
altogether there are 2t rows and t — 1 columns. We have to determine the cokernel q of the
corresponding map k'~! — k2! given by this matrix. The cokernel g is the map k?* — ki*!
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with the following matrix

0 0 -1 0
1 0

. 0 —1
0 1 0 0

(here, on the left side one deals with a zero row above the ¢ x t-identity matrix, on the
right side one deals with a zero row below the negative of the ¢ x t-identity matrix). It is
sufficient to check that the composition of the matrices is zero and that the new matrix
has rank ¢ 4+ 1 (the latter is seen by looking just at the first ¢ + 1 columns).

Now the matrix for the cokernel is not yet what we want — we have to construct new
bases of k* and k! so that the maps a = ¢iy, 8 = qio are given by the required matrices:
we have to renumber the given bases and multiply any second element with —1. Here are
the corresponding matrix calculations:

1 r 1' 1 -0 AAAAAAAA O
L 1 1
B 1
1 = 1
1
1
_0 ........ 0_ i ] i ] 1_
-O AAAAAAAA 0- r - i 1- -_1 i
1 _11 -1
1 = 1
1
1
1
i 1_ L i i -0 ........ 0-

String modules and band modules. Some Kronecker modules can be visualized
quite well, namely the so called string modules. For example, consider the following labeled
graph:

YANEY7ANE 72N

This means the following: The upper bullets symbolize the basis vectors of the vector
space V', the lower ones the basis vectors of the vector space W, the edges are considered
as arrows pointing downwards. There is just one arrow labeled « starting at the first upper
bullet: this means that this vector is sent under « to the basis vector represented by the
bullet where the arrow ends (here: the first bullet in the lower row). If we label the basis
vectors of V' and of W from left to right, we see that we obtain the following matrices:

1 0 0 0 0 0
0 1 0 1 0 0
0 0 1}” b 0 1 0
0 0 O 0 0 1



This Kronecker module is just Py = (k3, k% «, B).

Similarly, consider the following labeled graph:

15} a f a (B « Qs
Again, the upper bullets symbolize the basis vectors of the vector space V', the lower ones
the basis vectors of the vector space W. Since there is no arrow labeled « starting at the
first upper bullet, the corresponding vector is sent under « to zero, and so on. Thus, here
we deal with the Kronecker module

01 00 1 000
Qs= (k" k%[0 0 1 0|,[0 1 0 0])
00 0 1 00 10

There are two other sequences of string modules, those of the form Ry[m] and R..[m],
and with m > 1. For example, for m = 3, these are given by the graphs

Ro[3] R3]

The general definition is as follows:
Ro[m] = (K™, k™, I,,, N(m)), Rs[m]= (K", k™, N(m), L),

where I, is the (m x m)-identity matrix and N(m) is the (m x m)-Jordan block with
eigenvalue 0.

In the structure theorem above, the string modules Rg[m] did not play a role, they
are just special elements of R’, those with nilpotent Jordan blocks.

Here is the formal definition: An indecomposable Kronecker module M is said to be
a string module provided M it is isomorphic to P,, @, Ro[m| of R..[m] for some n > 0 or
m > 1. An Kronecker module M is called a band module provided both maps M, Mg are
bijective. The essential result concerning Kronecker modules is the following:

Any indecomposable Kronecker module is either a string module or a band module.

Exercise 23. Here is the outline of a proof: As before, let R, be
the class of Kronecker modules isomorphic to direct sums of Kro-
necker modules of the form R.,[m]. Similarly, let Ry be the class of
Kronecker modules isomorphic to direct sums of Kronecker modules
of the form Ry[m]. Show that any regular Kronecker module is the
direct sum of Kronecker modules in R, and in Ry and a Kronecker
module M which is a band module.
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The structure of the category of Kronecker modules: We denote the class of
regular Kronecker modules by R. The picture which one always has to have in the mind,
is the following:

Py P P P P R Qi Qt—1 Q2 Q1 Qo
preprojectives preinjectives
regular
negative defect zero defect positive defect

here, the action of o™ on the preprojective part as well as on the preinjective part is the
shift to the left, thus

ot (P) =Py for t>1
0+(Qt) = Qt—|—1 for t >0

whereas o~ is the corresponding shift to the right. On the regular part, both ¢ and o~
provide permutations of the isomorphism classes.

Actually, this picture describes the global structure of the category of Kronecker mod-
ules: non-zero homomorphisms go from left to right. To be precise: there are no non-zero
homomorphisms from a regular or a preinjective Kronecker module to a preprojective
Kronecker module, and also none from a regular to a preprojective. Also inside the pre-
projective part, as well as inside the preinjective part, non-zero homomorphisms only go
from left to right: If Hom(P,, P,,) # 0, then n < m, if Hom(Q,,, @,,) # 0, then n > m.

Linear relations on a vector space. As we have mentioned, the concept of a
“relation” is very basic in mathematics. Modern mathematics is usually formulated in
terms of sets and maps between sets, but actually the (set-theoretical) maps are defined
as special relations. Recall that a relation between two sets W7 and W5 is just a subset of
W1 x Wa, and the graph I'(f) of a (set-theoretical) map f: W7 — Ws is such a relation.
Of course, special attention deserve endo-maps (these are such maps with W7 = Ws), the
graph of an endo-map f: W — W is a subset of W x W, and an arbitrary subset of W x W
(with W a set) is called an endo-relation, or just a relation on the set W.

Similarly, in the linear world, we should look not only at linear transformations, but
more generally at “linear relations”, a linear relation between two vector spaces Wy, Ws is
by definition a subspace U of W1 & Ws. And a linear relation on a vector space W is by
definition just a subspace of V @ V.

Proposition. The linear relations on vector spaces are nothing else than the source-
reduced Kronecker modules.
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