From Toda's book: Composition Methods in Homotopy Groups of Spheres
In the following table,
n=1 |
n=2 |
n=3 |
n=4 |
n=5 |
n=6 |
n=7 |
n=8 |
n=9 |
n=10 |
n=11 |
n=12 |
n=13 |
n=14 |
n=15 |
n=16 |
n=17 |
n=18 |
n=19 |
n=20 |
n>k+1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
πk+1(S1) → | πk+2(S2) → | πk+3(S3) → | πk+4(S4) → | πk+5(S5) → | πk+6(S6) → | πk+7(S7) → | πk+8(S8) → | πk+9(S9) → | πk+10(S10) → | πk+11(S11) → | πk+12(S12) → | πk+13(S13) → | πk+14(S14) → | πk+15(S15) → | πk+16(S16) → | πk+17(S17) → | πk+18(S18) → | πk+19(S19) → | πk+20(S20) → | πkS | |
k=0 |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
infty |
k=1 |
1 |
infty |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
k=2 |
1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
k=3 |
1 |
2 |
4+3 |
infty+4+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
k=4 |
1 |
4+3 |
2 |
22 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
k=5 |
1 |
2 |
2 |
22 |
2 |
infty |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
k=6 |
1 |
2 |
3 |
8+3+3 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
k=7 |
1 |
3 |
3+5 |
3+5 |
2+3+5 |
4+3+5 |
8+3+5 |
infty+8+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
k=8 |
1 |
3+5 |
2 |
2 |
2 |
8+2+3 |
23 |
24 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
k=9 |
1 |
2 |
22 |
23 |
23 |
23 |
24 |
25 |
24 |
infty+23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
k=10 |
1 |
22 |
4+2+3 |
8+4+2+32+5 |
8+2+9 |
8+2+9 |
8+3+2 |
82+2+32 |
8+2+3 |
4+2+3 |
22+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
k=11 |
1 |
4+2+3 |
4+22+3+7 |
4+25+3+7 |
8+22+9+7 |
8+4+9+7 |
8+2+9+7 |
8+2+9+7 |
8+2+9+7 |
8+9+7 |
8+9+7 |
infty+8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
k=12 |
1 |
4+22+3+7 |
22 |
26 |
23 |
16+3+5 |
1 |
1 |
1 |
4+3 |
2 |
22 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
k=13 |
1 |
22 |
2+3 |
8+22+32 |
22+3 |
2+3 |
2+3 |
22+3 |
2+3 |
2+3 |
22+3 |
22+3 |
2+3 |
infty+3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
k=14 |
1 |
2+3 |
2+3+5 |
8+22+9+3+5+7 |
22+3 |
4+2+3 |
8+4+3 |
16+8+4+32+5 |
16+4 |
16+2 |
16+2 |
16+4+2+3 |
16+2 |
8+2 |
4+2 |
22 |
22 |
22 |
22 |
22 |
22 |
k=15 |
1 |
2+3+5 |
2+3+5 |
2+3+5 |
22+3+5 |
4+2+32+5 |
8+23+3+5 |
8+25+3+5 |
16+23+3+5 |
16+22+3+5 |
16+2+3+5 |
16+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
infty+32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
k=16 |
1 |
2+3+5 |
22+3 |
23+32 |
22 |
8+22+9+7 |
24 |
27 |
24 |
16+2+3+5 |
2 |
2 |
2 |
8+2+3 |
23 |
24 |
23 |
22 |
22 |
22 |
22 |
k=17 |
1 |
22+3 |
4+22+3 |
8+42+22+32 |
4+22 |
24 |
24 |
25+3 |
24 |
23 |
23 |
24 |
24 |
24 |
25 |
26 |
25 |
infty+24 |
24 |
24 |
24 |
k=18 |
1 |
4+22+3 |
4+22+3 |
8+4+25+32+5 |
8+22+3 |
8+22+32 |
8+22+3 |
82+2+9+3+7 |
8+2+3 |
8+22+3 |
8+4+2 |
32+42+2+3+5 |
82+2 |
82+2 |
82+2 |
83+2+3 |
82+2 |
8+4+2 |
8+22 |
8+2 |
8+2 |
k=19 |
1 |
4+22+3 |
4+2+3+11 |
4+25+3+11 |
8+2+3+11 |
32+8+3+11 |
8+2+3+11 |
8+2+3+11 |
8+2+3+11 |
8+2+32+11 |
8+23+3+11 |
8+25+3+11 |
8+23+3+11 |
8+4+2+3+11 |
8+22+3+11 |
8+22+3+11 |
8+22+3+11 |
8+2+3+11 |
8+2+3+11 |
infty+8+2+3+11 |
8+2+3+11 |