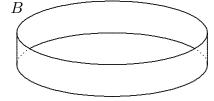
Topologie I SS 2003

http://www.mathematik.uni-bielefeld.de/birep/top/

Übungsaufgaben 7. Flächen (und Produkte)

0. Quickies.

a. (Wichtig, überraschend, aber einfach!) In Aufgabe 4.b wurde ein Möbius-Band entlang der Mittellinie geschnitten, man erhielt auf diese Weise ein zweifach verdrilltes Band Z. Zeige, daß Z zum unverdrillten Band B topologisch äquivalent ist!



b. Die Kreisscheibe

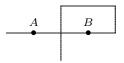
$$D = \{ [x, y] \mid x^2 + y^2 \le 1 \}$$

mit Antipoden-Identifizierung der Randpunkte (jedes [x,y], das $x^2+y^2=1$ erfüllt, wird mit [-x,-y] identifiziert) ist topologisch äquivalent zur 2-Sphäre

$$S^{2} = \{ [x, y, z] \mid x^{2} + y^{2} + z^{2} = 1 \}$$

mit Antipoden-Identifizierung (es wird also jedes [x, y, z] mit [-x, -y, -z] identifiziert) — und damit zur reellen projektiven Ebene (Aufg.6.1).

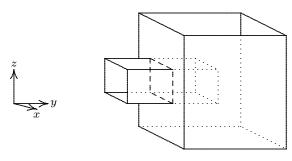
1. Durchdringungen auflösen. Sind folgende Kanten in der Ebene gegeben:



mit A = [-1,0] und B = [1,0], so beseitigt man die Selbstdurchdringung zum Beispiel auf folgende Weise: man bettet die Ebene als $\mathbb{R}^2 \times \{0\}$ in den \mathbb{R}^3 ein und ersetzt die Strecke AB durch den Kantenzug $\{[x,0,1-|x|] \mid -1 \leq x \leq 1\}$

Man beseitige entsprechend die Selbstdurchdringung, die bei der Kleinschen Flasche im \mathbb{R}^3 auftritt!

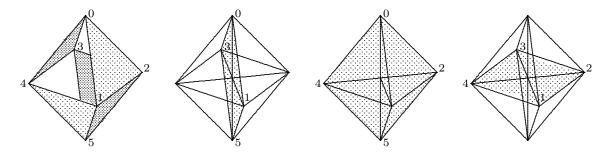
Genauer: Man betrachte zwei Zylinder im \mathbb{R}^3 , einen senkrechten mit den Punkten $[\pm 2, \pm 2, z]$, mit $-2 \le z \le 2$, und einen waagrechten mit den Punkten $[\pm 1, y, \pm 1]$, mit $-4 \le y \le 0$. Man realisiere sie im \mathbb{R}^4 ohne Selbstdurchdringung, wobei sich die Koordinaten des senkrechten Zylinders wie auch die des Rands des waagrechten Zylinders nicht ändern sollen (dabei identifizieren wir \mathbb{R}^3 mit $\mathbb{R}^3 \times \{0\} \subset \mathbb{R}^4$):



 ${f 2.}$ Das Heptaeder ${\cal H}.$ Wir beginnen mit einem Oktaeder, also der geometrischen Realisierung von

und 4 paarweise nicht benachbarte Dreiecke; übrig bleibe etwa die geometrische Realisierung H' des Simplizialkomplexes

Nun fügen wir vier Quadratflächen hinzu; das erste habe die Kanten 10,03,35,51; das zweite habe die Kanten 20,04,45,52; das dritte die Kanten 12,23,34,45. Bei der üblichen Realisierung des Oktaeders im \mathbb{R}^3 (mit Ecken auf den Koordinatenachsen) sind die Durchdringungen der Quadratflächen (entlang der Koordinatenachsen) wegzudenken.



(Bemerkungen: "Hepta" = 7, also Heptaeder = Siebenflächner". Das Heptaeder hat, wie das Oktaeder, 12 Kanten und 6 Ecken. Das Heptaeder ist ein simpliziales Modell der "Steiner'schen Römerfläche", ein Bild befindet sich auf der Startseite im Internet.)

Zeige, daß dies eine geschlossene Fläche ist und bestimme die Normalform.

3. Die geschlossene Fläche F entstehe aus dem Polygon P durch Kantenidentifikation, die durch das Wort w beschrieben wird. Sei $\pi: P \to F$ die zugehörige Projektionsabbildung. Zeige: ist w von der Form $a_1b_1a_1^{-1}b_1^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}$ oder $a_1a_1\cdots a_ga_g$ (mit $g \ge 1$), so werden alle Ecken des Polygons unter π identifiziert.

4. Sei X ein topologischer Raum. Die *Diagonale* im Produktraum $X \times X$ ist definiert als die Untermenge der Paare $\{(x,x) \in X \times X \mid x \in X\}$. Zeige: Genau dann ist X Hausdorff'sch, wenn die Diagonale in $X \times X$ abgeschlossen ist.