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Abstract. — We give a new proof of the Hodge conjecture for abelian fourfolds of
Weil type with discriminant 1 and all of their powers. The Hodge conjecture for these
abelian fourfolds was proven by Markman using hyperholomorphic sheaves on hyper-
Kähler varieties of generalized Kummer type, and by constructing semiregular sheaves
on abelian varieties. Our proof instead relies on a direct geometric relation between
abelian fourfolds of Weil type with discriminant 1 and the six-dimensional hyper-Kähler

varieties K̃ of O’Grady type arising as crepant resolutions K̃ → K of a locally trivial
deformation of a singular moduli space of sheaves on an abelian surface. As applications,

we establish the Hodge conjecture and the Tate conjecture for any variety K̃ of OG6-type
as above, and all of its powers.

1. Introduction

The Hodge conjecture predicts profound and fundamental properties of complex

projective manifolds. Abelian varieties of Weil type [67] constitute an important testing

ground for the Hodge conjecture, since the middle cohomology of such an abelian variety

always contains exceptional Hodge classes, called Hodge–Weil classes, which cannot be

expressed as linear combination of intersections of divisor classes.

Let us recall the definition of these abelian varieties. For a positive integer d, an

abelian variety A of even dimension 2n is of Q(
√
−d)-Weil type if EndQ(A) contains

the imaginary quadratic field Q(
√
−d) and the action of

√
−d on the tangent space of

the origin of A has eigenvalues
√
−d and −

√
−d, both with multiplicity n. In each even

dimension 2n, abelian varieties of Weil type form countably many families of dimen-

sion n2, where each family is characterized by the imaginary quadratic field Q(
√
−d)

and another discrete invariant δ ∈ Q∗/Nm(Q(
√
−d)∗), which is called discriminant.
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Until recently, even in dimension 4, only sporadic cases were known about the alge-

braicity of the Hodge–Weil classes: it was proven by Schoen [60] for abelian fourfolds

of Q(
√
−3)-Weil type with arbitrary discriminant or of Q(

√
−1)-Weil type with dis-

criminant 1 (see also van Geemen [26] for the latter case).

A breakthrough in this direction is the following theorem of Markman [40].

Theorem 1.1 (Markman). — The Hodge–Weil classes are algebraic for any abelian

fourfold of Weil type with discriminant 1.

Markman’s proof of the above theorem in [40] relies on the tight link between such

abelian fourfolds and hyper-Kähler varieties of generalized Kummer type, discovered

by himself and O’Grady [55]. Via results of Voisin [66], Varesco [65] and the first

author [21], the above theorem has strong consequences for the Hodge conjecture for

hyper-Kähler varieties of generalized Kummer type, see [19, 24].

Building on the aforementioned works [40, 66, 65], Theorem 1.1 was strengthened

by the first author in [22], as follows.

Theorem 1.2. — The Hodge conjecture holds for all powers of any abelian fourfold

of Weil type with discriminant 1.

Markman has recently given in [41] another proof of Theorem 1.1. He is able to

obtain the much stronger result that the Hodge–Weil classes are algebraic for any

abelian fourfold of Weil type, with no restriction on the discriminant. Most remarkably,

combined with the work of Moonen and Zahrin [46, 47], this result finally settles the

Hodge conjecture for all abelian varieties of dimension 4.

The purpose of this paper is to provide an alternative proof of Theorem 1.1 and

Theorem 1.2, which makes these results, as well as the subsequent applications, inde-

pendent from the rather involved construction of hyperholomorphic sheaves in [40] (or

of semi-regular sheaves in [41]).

Ingredients of the proof. — Our approach towards Theorem 1.1 is inspired by the

beautiful articles of Markman [40], O’Grady [55] and Voisin [66] on the Kuga–Satake

construction for varieties of generalized Kummer type, but we work instead with the

six-dimensional hyper-Kähler varieties discovered by O’Grady [54]. In fact, we only

consider the divisors in their moduli spaces given by the crepant resolutions of singular

OG6-varieties, which we define as the locally trivial deformations of the Albanese fibre

of the singular moduli space of sheaves studied in [54]; see Theorem 3.1. These singular

varieties carry pure Hodge structures of K3-type on their second cohomology. We study

the Kuga–Satake construction for singular OG6-varieties.
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Theorem 1.3. — Let K be a projective singular OG6-variety. Then:

(i) the singular locus of K is isomorphic to BK/ ± 1 for a 4-dimensional abelian

variety BK , which is of Weil type with discriminant 1;

(ii) the Kuga–Satake variety of K is isogenous to B4
K .

Moreover, any abelian fourfold A of Weil type with discriminant 1 is isogenous to BK

for some projective singular OG6-variety K.

Any singular OG6-variety K is also naturally associated with a K3 surface SK . In-

deed, by the results of Mongardi–Rapagnetta–Saccà [42], any such K admits a rational

double cover ZK 99K K where ZK is a variety of K3[3]-type birational to a moduli

space of sheaves on a projective K3 surface SK , uniquely determined up to isomor-

phism. These K3 surfaces come in 4-dimensional families of generic Picard rank 16.

The Kuga–Satake variety of SK is isogenous to a power of that of K, and, hence,

to a power of BK . By a theorem of Varesco [65] and Theorem 1.3, we can reduce

Theorem 1.1 to showing that the Kuga–Satake correspondence is algebraic for all the

K3 surfaces SK . To prove this, we exploit that the double cover ZK 99K K ramifies over

the singular locus of K, and the ramification locus in ZK is birational to BK/±1. The

rational embedding of BK/± 1 into ZK yields a cycle which we use to prove that the

Kuga–Satake correspondence is algebraic for SK . Our proof explains how to recover

the Kuga–Satake abelian fourfold B from the K3 surface S: there exists a moduli space

of sheaves on S with a birational involution whose “fixed locus” is birational to B/±1.

We then deduce Theorem 1.2 from Theorem 1.1 using results from [65] and [22]. In

the final section we give applications to the Hodge and Tate conjectures and the study

of the homological motive of hyper-Kähler varieties. We refer to Section 5 for the most

general statements (Theorem 5.7, Theorem 5.8) and only mention the following results.

Theorem 1.4. — Let K̃ be a hyper-Kähler variety of OG6-type obtained as a crepant

resolution of a singular OG6-variety K. Then:

(i) the Hodge conjecture holds for K̃ and all of its powers.

(ii) the Kuga–Satake–Hodge conjecture holds for K̃.

(iii) the homological motive of K̃ is abelian.

Let now L ⊂ C be a subfield which is finitely generated over Q. For a smooth

projective variety X defined over L and a prime number ℓ, consider the representation

of the absolute Galois group of L on the ℓ-adic cohomology groups H i
ét(XL̄,Qℓ). The

strong Tate conjecture predicts that these Galois representations are semisimple and

that the cycle map cli : CHi(X)Qℓ
→ H2i

ét (X,Qℓ(i))
Gal(L̄/L) is surjective for each i.
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Theorem 1.5. — Let X be a smooth projective variety over L whose base-change XC

is a crepant resolution of a singular OG6-variety. Then, for any prime number ℓ, the

strong Tate conjecture holds for X and all of its powers.

We deduce this result from Theorem 1.4 using the Mumford–Tate conjecture, which

has been proven for all known hyper-Kähler varieties [18, 61, 23]. See Corollary 5.11

for a more general statement.
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2. Preliminaries on Kuga–Satake

A rational Hodge structure of K3-type is an effective pure Q-Hodge structure V

of weight 2 such that V 2,0 is 1-dimensional. Starting with a polarized rational Hodge

structure of K3-type (V, q), the Kuga–Satake construction [36, 15] produces an abelian

variety KS(V ), well-defined up to isogeny(1). The crucial property of KS(V ) is the

existence of an embedding of rational Hodge structures

µ : V ↪→ H2(KS(V )×KS(V ),Q).

Let us briefly recall the construction, following [15]. Let (V, q) be as above. Let

T•V =
⊕

i⩾0 V
⊗i be the tensor algebra of V . One considers the Clifford algebra

C(V ) := T•V/⟨v ⊗ v − q(v, v)⟩v∈V ,

which is naturally Z/2Z-graded, C(V ) = C+(V )⊕C−(V ). The Hodge structure on V

induces an effective Hodge structure of weight 1 on C+(V ), and C+(V ) with this Hodge

structure equals H1(KS(V ),Q) for an abelian variety KS(V ), the Kuga–Satake variety

of (V, q). Fix a vector v0 ∈ V such that q(v0, v0) ̸= 0. The map µ : V → End(C+(V ))

given by µ(v)(w) = v · w · v0 is an embedding of weight-0 Hodge structures

µ : V (1) ↪→ End(H1(KS(V ),Q)).

(1)If one starts with a polarized integral Hodge structure of K3-type, the Kuga–Satake construction

gives rise to a well-defined abelian variety. We will only need the construction up to isogeny.
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Identifying End(H1(KS(V ),Q) with H1(KS(V ),Q)⊗2(1) via a polarization, we obtain

an embedding of weight-2 Hodge structures

µ : V ↪→ H2(KS(X)2,Q).

This embedding is called the Kuga–Satake correspondence.

Remark 2.1. — Let (V1, q1) and (V2, q2) be polarized rational Hodge structures of

K3-type, and assume that f : V1 → V2 is a Hodge similarity, i.e., an isomorphism of

Q-Hodge structures which multiplies the form by a factor k ∈ Q∗. Then, the Kuga–

Satake varieties KS(V1) and KS(V2) are isogenous. In fact, by [64, Proposition 0.2],

there exists an isogeny F : KS(V1) → KS(V2) and a commutative diagram

V1 V2

H2(KS(V1)
2,Q) H2(KS(V2)

2,Q),

µ1

f

µ2

F∗

where F∗ is the isomorphism of Hodge structures induced by F .

Let (X,h) be a polarized compact hyper-Kähler manifold, with H2(X,Q) equipped

with the Beauville–Bogomolov quadratic form [8]. Let H2(X,Q)prim be the orthogonal

complement of the polarization class h, which is a polarized Hodge structure of K3-type,

and let KS(X) be the Kuga–Satake variety obtained from H2(X,Q)prim. In this case,

the Hodge conjecture predicts that the embedding µ should be the correspondence

induced by an algebraic cycle on X × KS(X) × KS(X). This leads to the following

conjecture, which is of central importance in this paper.

Conjecture 2.2 (Kuga–Satake–Hodge conjecture). — Let (X,h) be a 2n-

dimensional polarized smooth hyper-Kähler variety. There exists an algebraic class

γ ∈ H4n−2(X,Q) ⊗ H2(KS(X)2,Q) ⊂ H4n(X × KS(X)2,Q) which induces, as a

correspondence, an embedding of rational Hodge structures

H2(X,Q)prim ↪→ H2(KS(X)2,Q).

Remark 2.3. — The transcendental cohomology H2
tr(X,Q) of a hyper-Kähler vari-

ety X is the orthogonal complement in H2(X,Q) of the entire Néron–Severi group with

respect to the Beauville–Bogomolov form. By construction, H2
tr(X,Q) is an irreducible

Hodge structure of K3-type, and we may consider the Kuga–Satake variety KS′(X) built

from H2
tr(X,Q). Then KS(X) is isogenous to a power of KS′(X), and Theorem 2.2 is

equivalent to the analogous statement for H2
tr(X,Q) ↪→ H2(KS′(X)×KS′(X),Q); see

for example [31, Chapter 4, 2.5].
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Notice that there is no reference to a specific embedding in Conjecture 2.2; never-

theless, the Kuga–Satake construction yields a natural one. A more precise version of

the Kuga–Satake–Hodge Conjecture 2.2 is the following.

Conjecture 2.4. — Keep the assumptions as in Conjecture 2.2. There exists an alge-

braic class γ ∈ H4n−2(X,Q)⊗H2(KS(X)2,Q) ⊂ H4n(X ×KS(X)2,Q) which induces,

as a correspondence, the Kuga–Satake embedding

µ : H2(X,Q)prim ↪→ H2(KS(X)2,Q).

The conjecture does not depend on the choice of v0 in the construction of µ. It is

not clear to us whether Conjecture 2.2 implies the more precise version Conjecture 2.4

in general. While Conjecture 2.2 is sufficient for most purposes, in some cases the

algebraicity of the specific Kuga–Satake embedding can be useful; see for instance the

proof of the following result.

Theorem 2.5 ([22, Theorem 3.5]). — Let (S, h) be a polarized K3 surface, and let

KS(S) be the Kuga–Satake variety constructed from H2(S,Q)prim. Assume that the

Hodge conjecture holds for all powers of S and that Conjecture 2.4 holds for S. Then,

the Hodge conjecture holds for all powers of KS(S).

Determining the Kuga–Satake variety of a polarized hyper-Kähler variety X is chal-

lenging in general. Descriptions of KS(X) in terms of the geometry of X are available

only in a few cases, for example, for abelian surfaces and Kummer K3 surfaces by Mor-

rison [49], for double covers of P2 ramified along six lines by Paranjape [56], and for

hyper-Kähler varieties of generalized Kummer type by Markman [40] and O’Grady [55].

The following result of Lombardo [39] allows one to study abelian fourfolds of Weil

type with discriminant 1 as isogeny factors of Kuga–Satake varieties (see also [27,

Theorem 9.2] and [65, Theorem 4.1]).

Theorem 2.6 (Lombardo). — Let d ∈ Z>0. Let A be an abelian fourfold of Q(
√
−d)-

Weil type with discriminant 1. Then A4 is isogenous to the Kuga–Satake variety of a

6-dimensional polarized Hodge structure of K3-type (V, q) such that

(V, q) ∼= U⊕2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩,

with a, b ∈ Z<0, where U denotes a hyperbolic plane.

Conversely, given a polarized Hodge structure of K3-type (V, q) with an isomorphism

of quadratic spaces as above, the Kuga–Satake variety KS(V ) is isogenous to A4 for

some abelian fourfold A of Q(
√
−ab)-Weil type with discriminant 1.



WEIL FOURFOLDS WITH DISCRIMINANT 1 AND SINGULAR OG6-VARIETIES 7

By the Torelli theorem for K3 surfaces, any 6-dimensional Hodge structure (V, q) as

above arises as direct summand of the Hodge structure of a projective K3 surface ([48,

Corollary 2.10]). A crucial tool that we use in this paper is the following theorem of

Varesco [65, Proposition 0.4].

Theorem 2.7 (Varesco). — Let S be a very general K3 surface of Picard number 16

with transcendental cohomology H2
tr(S,Q) isometric to U⊕2

Q ⊕⟨a⟩⊕⟨b⟩, with a, b ∈ Z<0.

Let A be the simple factor of KS(S) as in Theorem 2.6. If the Kuga–Satake–Hodge

Theorem 2.2 holds for S, then the Hodge conjecture holds for all powers of A.

3. Singular OG6-varieties and their Kuga–Satake varieties

Let A be an abelian surface. The Mukai lattice of A is the even cohomologyH2•(A,Z)
equipped with the pairing

((a, b, c), (a′, b′, c′)) = (b, b′)− ac′ − a′c.

Given an algebraic Mukai vector v ∈ H2•(A,Z) and a polarization H on A, let MA(v)

be the moduli space of H-semistable coherent sheaves on A with Chern character v

(see [32] for a reference); we will always assume that the polarization H is v-generic

and omit it from the notation. If not empty, MA(v) is a projective variety of dimension

v2 + 2 and its smooth locus carries a symplectic form ([50]). Assume that v2 ⩾ 6.

The Albanese map is an isotrivial fibration MA(v) → A× Â; we let KA(v) denote the

fibre. If v is primitive, then MA(v) is smooth, and KA(v) is a hyper-Kähler variety of

generalized Kummer type of dimension 2n = v2 − 2 ([68]). If v is not primitive, then

KA(v) is singular and does not admit a crepant resolution in most cases ([34]).

Consider the Mukai vector (2, 0,−2) ∈ H2•(A,Z). In [53, 54], O’Grady constructed

a crepant resolution K̃A(2, 0,−2) → KA(2, 0,−2), which gives a 6-dimensional smooth

hyper-Kähler variety that is not deformation equivalent to a Hilbert scheme of points

on a K3 surface or to a generalized Kummer variety. Lehn and Sorger [38] showed

that O’Grady’s resolution coincides with the blow-up of KA(2, 0,−2) along its singular

locus. In fact, any (non-empty) moduli space of sheaves KA(v) with v = 2v0 for a

primitive algebraic Mukai vector v0 of square 2 admits a crepant resolution K̃A(v) by

a hyper-Kähler variety deformation equivalent to O’Grady’s example ([57]).

A hyper-Kähler manifold of OG6-type is by definition a compact hyper-Kähler man-

ifold which is deformation equivalent to O’Grady’s crepant resolution K̃A(2, 0,−2);

these manifolds form a holomorphic family of dimension 6. We shall be concerned with

a subfamily of codimension 1.
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Definition 3.1 (Singular OG6-varieties). — A singular OG6-variety K is a

compact Kähler complex analytic space which is a locally trivial deformation of

KA(2, 0,−2). Here, locally trivial deformation is as in the sense of [16]. An OG6-

resolution is a compact hyper-Kähler manifold isomorphic to the crepant resolution K̃

of a singular OG6-variety K obtained by blowing up its singular locus.

The theory of locally trivial deformations of singular hyper-Kähler varieties admit-

ting a crepant resolution has been developed in [6], and it is entirely analogous to

that of hyper-Kähler manifolds. The OG6-resolutions are exactly the deformations of

K̃A(2, 0,−2) on which the parallel transport of the cohomology class of the exceptional

divisor of K̃A(2, 0,−2) → KA(2, 0,−2) remains algebraic; thus, OG6-resolutions form

a 5-dimensional holomorphic subfamily among all hyper-Kähler manifolds of OG6-type.

Projective OG6-resolutions come in 4-dimensional families; as abelian surfaces only give

3-dimensional families, the very general projective OG6-resolution cannot be realized

from a singular moduli space of sheaves on an abelian surface.

Remark 3.2. — The pull-back along the resolution ν : K̃ → K induces an embedding

ν∗ : H2(K,Z) ↪→ H2(K̃,Z), by [57, Theorem 1.7]. The cohomology class of the excep-

tional divisor E of ν is divisible by 2, and we have H2(K̃,Z) = ν∗(H2(K,Z))⊕Z · 12 [E].

In particular, H2(K,Z) carries a pure weight-2 Hodge structure of K3-type. We equip

H2(K,Z) with the pairing induced by the restriction of the Beauville–Bogomolov form

on H2(K̃,Z). As a lattice, H2(K,Z) (resp. H2(K̃,Z)) is isometric to U⊕3⊕⟨−2⟩ (resp.
to U⊕3 ⊕ ⟨−2⟩ ⊕ ⟨−2⟩), see [58].

We will study the Kuga–Satake varieties of singular OG6-varieties and their reso-

lutions. Let (K,h) be a polarized singular OG6-variety. We write H2(K,Z)prim for

the primitive cohomology, that is, the orthogonal complement of h in H2(K,Z); if

ν : K̃ → K is the OG6-resolution of K, then ν∗(H2(K,Z)prim) is the orthogonal com-

plement of the 2-dimensional sublattice ⟨ν∗(h), [E]⟩ of H2(K̃,Z).

Remark 3.3. — Over the rational numbers, H2(K,Q)prim is isometric to the

quadratic space U⊕2
Q ⊕⟨−2⟩⊕⟨−2d⟩, where 2d is the Beauville–Bogomolov degree of h.

The following theorem shows that singular OG6-varieties are naturally related to

abelian fourfolds of Weil type with discriminant 1.

Theorem 3.4. — Let (K,h) be a polarized singular OG6-variety, with h of Beauville–

Bogomolov square 2d.
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(i) The singular locus of K is isomorphic to BK/ ± 1 for an abelian fourfold BK of

Q(
√
−d)-Weil type with discriminant 1.

(ii) The Kuga–Satake variety KS(H2(K,Q)prim) of K is isogenous to B4
K .

Proof. — The singular locus of O’Grady’s moduli space KA(2, 0,−2) is isomorphic to

(A× Â)/±1. Thus, by construction, the singular locus of a (not necessarily projective)

singular OG6-variety K is a locally trivial deformation of (A× Â)/± 1. But, since −1

acts trivially on H2(A × Â,Z), any such deformation is of the form B/ ± 1 for some

complex torus B of dimension 4 (see [25, Corollary 3.6]). Hence, the singular locus

of K is isomorphic to BK/ ± 1 for some complex torus BK of dimension 4; if K is

projective, then BK is an abelian fourfold.

Next, for any singular OG6-variety K, the restriction H2(K,Q) → H2(BK/± 1,Q)

is injective, as was already observed in [9]. The main point is that the restriction of the

holomorphic 2-form of K to its singular locus is non-zero. Hence, as for a very general

(non-projective) singular OG6-variety K the Hodge structure H2(K,Q) is irreducible,

the restriction H2(K,Q) → H2(BK/ ± 1,Q) must be an embedding of Hodge struc-

tures for very general K. Since the injectivity of the induced map in cohomology is

a topological property, therefore invariant under locally trivial deformations, we con-

clude that the restriction map is injective for any singular OG6-variety K. There is an

isomorphism of Hodge structures H2(BK/±1,Q) ∼= H2(BK ,Q); by the above, we thus

obtain an embedding of Hodge structures

ψ : H2(K,Q)prim ↪→ H2(BK ,Q).

Assume now that (K,h) is polarized. We adapt arguments of O’Grady from [55] to

complete the proof. It suffices to prove (i) and (ii) for a very general projective singular

OG6-variety (K,h). In this case, H2(K,Q)prim is an irreducible Hodge structure, and,

as a quadratic space, it is isometric to U⊕2
Q ⊕ ⟨−2⟩ ⊕ ⟨−2d⟩, where 2d is the Beauville–

Bogomolov degree of h (Remark 3.3). By Lombardo’s result (Theorem 2.6), the Kuga–

Satake variety built from H2(K,Q)prim is isogenous to C4, where C is a simple abelian

fourfold of Q(
√
−d)-Weil type with discriminant 1. By the universal property of the

Kuga–Satake construction established by van Geemen–Voisin [28] and Charles [13],

the existence of the embedding of Hodge structures ψ implies that BK is isogenous

to a subquotient of the Kuga–Satake variety C4. But since C is simple and BK has

dimension 4, we conclude that BK is isogenous to C.

Remark 3.5. — The same statement holds if (K,h) is only a quasi-polarized singular

OG6-variety of degree 2d, with the same proof.



10 SALVATORE FLOCCARI & LIE FU

Given a family K → T of quasi-polarized singular OG6-varieties, we obtain a family

B → T of abelian fourfolds of Weil type with discriminant 1, such that the singular

locus of the fibre Kt is isomorphic to Bt/ ± 1. Together with the next proposition,

Theorem 3.4 implies Theorem 1.3 from the introduction.

Proposition 3.6. — For (K,h) varying in a complete family K → T of quasi-polarized

singular OG6-varieties of degree 2d, the family B → T of abelian fourfolds of Q(
√
−d)-

Weil type with discriminant 1 is complete up to isogeny.

Proof. — Let ΛOG6sing = U⊕3 ⊕ ⟨−2⟩ be the abstract lattice underlying the second

cohomology of singular OG6-varieties, equipped with the Beauville–Bogomolov form.

The divisibility div(h) of a class h ∈ ΛOG6sing is the integer such that (h,−) = div(h)·Z.
We have div(h) = 1 or 2; by Eichler’s criterion, the orbit of h under the orthogonal

group O(ΛOG6sing) is uniquely determined by its square and its divisibility. Let h be a

positive class of degree 2d, and let L ⊂ ΛOG6sing be the orthogonal complement to h.

If div(h) = 1, then h⊥ is isometric to U⊕2 ⊕ ⟨−2⟩ ⊕ ⟨−2d⟩, while if div(h) = 2 we must

have d = 4d′ − 1 for some integer d′, and then h⊥ is isometric to U⊕2 ⊕
(−2 −1
−1 −2d′

)
. In

any case, h⊥ ⊗Z Q is isometric to U⊕2
Q ⊕ ⟨−2⟩ ⊕ ⟨−2d⟩.

Let L denote the lattice H2(Kt,Z)prim for a very general fibre (Kt, ht) of a family

K → T as above. By the surjectivity of the period map for singular OG6-varieties,

any Hodge structure of K3-type on the lattice L is realized as primitive cohomology

H2(Kt,Z)prim of a fibre (Kt, ht). By Theorem 3.4 it suffices to show that, given any

abelian fourfold B of Q(
√
−d)-Weil type with discriminant 1, there exists a Hodge

structure of K3-type LB on the lattice L such that KS(LB) is isogenous to B
4.

By Lombardo’s Theorem 2.6, there exists a polarized Q-Hodge structure of K3-type

(V, q) such that KS(V ) is isogenous to B4, with (V, q) isometric to U⊕2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩

for negative integers a, b such that ab = c2 · d for some c ∈ Q∗. Let (V ′, q′) be the

same Hodge structure as V , but with the form multiplied by −2a; by Remark 2.1, the

Kuga–Satake variety KS(V ′) is also isogenous to B4. Notice that (V ′, q′) is isometric

to U⊕2
Q ⊕⟨−2⟩⊕ ⟨−2d⟩. Hence, there exists an isometry V ′ ∼= L⊗ZQ; the desired Hodge

structure LB is the one induced on L by that on V ′ via this isometry.

4. Proof of Theorem 1.1 and Theorem 1.2

Thanks to the work of Mongardi–Rapagnetta–Saccà [42], any OG6-resolution K̃

admits a rational double cover ZK 99K K̃ from a manifold ZK of K3[3]-type. The

existence of this double cover comes from the fact that the class of the exceptional

divisor of K̃ → K is divisible by 2 in the Picard group of K̃ ([58]).
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More precisely, let K be a singular OG6-variety (Theorem 3.1), and denote by Σ

(resp. Ω) the singular locus of K (resp. of Σ); then Σ ∼= BK/± 1 for the 4-dimensional

complex torus BK of Theorem 3.4, and Ω consists of the 256 nodes of Σ.

Theorem 4.1 (Mongardi–Rapagnetta–Saccà). — Let K be any singular OG6-

variety. Then there exists a manifold ZK of K3[3]-type and a degree-2 generically finite

morphism ϕ : ZK → K such that: ϕ|ϕ−1 (K\Σ) is an étale double cover, ∆ := ϕ−1(Σ) is

isomorphic to BlΩ(Σ), and ϕ|∆ : ∆ → Σ is identified with the blow-up map.

Proof. — In [42], the theorem is stated only when K is the Albanese fibre of a moduli

space MA(v) of sheaves on an abelian surface A. Not all singular OG6-varieties may

be constructed in this way, but it is immediate to deduce the stronger statement using

locally trivial deformations as in [42, Proof of Proposition 5.3].

Remark 4.2. — The map ϕ : ZK → K induces a Hodge isometry

ϕ∗ : H
2
tr(ZK ,Q)

∼−−→ H2
tr(K,Q)(2),

where the form on the right hand side is multiplied by 2, see [20, Lemma 3.4]. Hence,

the Kuga–Satake varieties of ZK and K share the same isogeny factors, by Remark 2.1.

Corollary 4.3. — Let K be a projective singular OG6-variety. Then the Mongardi–

Rapagnetta–Saccà double cover ZK is a projective variety of K3[3]-type which is bira-

tional to a moduli space of stable sheaves on a K3 surface SK . Moreover, SK is uniquely

determined up to isomorphism.

Proof. — The proof is exactly the same as that of [20, Proposition 3.3]. By the above

remark, the transcendental lattice of ZK is of rank k ⩽ 6 and has signature (2, k − 2).

Hence, by the Torelli theorem there exists a K3 surface SK such that H2
tr(SK ,Z) is

Hodge isometric to H2
tr(ZK ,Z) (see [48, Corollary 2.10]). Then it follows from [1,

Proposition 4] that ZK is birational to a smooth and projective moduli space MSK
(v)

of stable sheaves, for some Mukai vector v and a generic polarization. Since SK is

projective of Picard rank at least 16, it is determined up to isomorphism by its tran-

scendental lattice, by [31, Chapter 16, Corollary 3.8].

Remark 4.4. — By [43, Proposition 2.3], we can realize ZK as a moduli space of ob-

jects in the derived category of SK which are stable with respect to a generic Bridgeland

stability condition ([10, 7]).

Let now K be a projective singular OG6-variety, let ϕ : ZK → K be the morphism

given in Theorem 4.1, and let SK be the K3 surface given by Corollary 4.3.
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Theorem 4.5. — For any projective singular OG6-variety K, the Kuga–Satake–Hodge

Conjecture 2.2 holds for the K3 surface SK .

Proof. — By specialization of cycles, it suffices to prove the theorem when K is very

general. Then H2
tr(K,Z) = H2(K,Z)prim is of rank 6. By Remark 4.2, the Kuga–Satake

variety of ZK is isogenous to a power of that of K; by Theorem 3.4, the Kuga–Satake

variety KS(H2
tr(ZK ,Q)) is in this case isogenous to B4

K , where BK is the abelian variety

such that the singular locus of K is isomorphic to BK/± 1.

By Theorem 4.1, there is a closed embedding j : BlΩ(Σ) ↪→ ZK , where Σ ∼= BK/± 1

and Ω is the singular locus of Σ, which is the image of the subset BK [2] of points of

order 2 in BK . Then, BlΩ(Σ) ∼= (BlBK [2](BK))/±1 and there is a commutative diagram

BlBK [2](BK)

BK BlΩ(Σ)

BK/± 1

p q

in which the maps going to the left are blow-ups and those going to the right are

quotients with respect to the action of −1. We then get a morphism of Hodge structures

Ψ: H2
tr(ZK ,Q) → H2(BK ,Q)

by setting Ψ := p∗ ◦ q∗ ◦ j∗. By construction, Ψ is the restriction of the correspondence

induced by an algebraic class γ ∈ H•(ZK × BK ,Q). Since, by [12] and [35], the

standard conjectures hold for both the K3[3]-variety ZK and the abelian variety BK ,

the Künneth component γ̄ ∈ H10(ZK ,Q)⊗H2(BK ,Q) inducing Ψ is algebraic.

We claim now that Ψ is injective, which will prove Conjecture 2.2 for ZK .

Since H2
tr(ZK ,Q) is an irreducible Hodge structure, it is sufficient to show that Ψ is

not the zero map. Let σ be a holomorphic symplectic 2-form on ZK . If σ|im(j)
was

identically 0, then im(j) would have dimension at most 3, but this is not the case.

Hence, j∗(σ) is a non-zero holomorphic 2-form on BlΩ(Σ). It is well-known that p∗ ◦ q∗

induces an isomorphism

p∗ ◦ q∗ : H0(BlΩ(Σ),Ω
2)

∼−−→ H0(BK ,Ω
2)

between the spaces of holomorphic 2-forms. Therefore, Ψ(σ) is a non-zero holomorphic

2-form on BK , and we conclude that Ψ is an embedding, as claimed.

By Corollary 4.3, there exists a projective K3 surface SK such that ZK is birational

to a smooth and projective moduli spaceMSK
(v) of stable sheaves on SK . By [51, 52],
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there exists a Hodge isometry

Φ: H2
tr(SK ,Q)

∼−−→ H2
tr(MSK

(v),Q),

which is induced by an algebraic class δ ∈ H2(SK ,Q) ⊗H2(MSK
(v),Q) (see [21, pp.

407] or [22, §5.3]). Moreover, by [30, Corollary 5.2] a birational map f : MSK
(v) 99K ZK

induces a Hodge isometry

f∗ : H
2(MSK

(v),Q)
∼−−→ H2(ZK ,Q);

since the standard conjectures hold for varieties of K3[3]-type by [12], the isometry

f∗ is induced by an algebraic class η ∈ H10(MSK
(v),Q) ⊗H2(ZK ,Q). Therefore, the

composition Ψ ◦ f∗ ◦ Φ gives an embedding of Hodge structures

Ψ ◦ f∗ ◦ Φ: H2
tr(SK ,Q) ↪→ H2(BK ,Q)

which is induced by an algebraic class in H2(SK ,Q) ⊗ H2(BK ,Q). Since the Kuga–

Satake variety of SK is isogenous to a power of that of K, and, hence, to a power of BK ,

we have shown that the Kuga–Satake–Hodge Conjecture 2.2 holds for SK .

We can now complete the proof of our main results.

Proof of Theorem 1.1. — Let B be a very general abelian fourfold of Weil type with

discriminant 1. By Proposition 3.6, there exists a singular OG6-variety K such that B

is isogenous to the fourfold BK associated with K as in Theorem 3.4. By Theorem 4.1

and Corollary 4.3, there exists a K3 surface SK whose Kuga–Satake variety is isogenous

to a power of BK . Moreover, by Theorem 4.5, Conjecture 2.2 holds for SK . Since B

is very general, we can now apply Varesco’s Theorem 2.7 to conclude that the Hodge

conjecture holds for B (and all of its powers). In particular, the Hodge–Weil classes

are algebraic. Via specialization, it follows that the Hodge–Weil classes are algebraic

for any abelian fourfold of Weil type with discriminant 1.

By work of Varesco, Theorem 4.5 has the following consequence.

Corollary 4.6. — For any projective singular OG6-variety K, the Hodge conjecture

holds for all powers of the K3 surface SK .

Proof. — Starting from a complete polarized family K → T of singular OG6-varieties,

we obtain a 4-dimensional family of K3 surfaces S → T , of general Picard rank 16, such

that the Kuga–Satake variety of a very general fibre St is a power of a simple abelian

fourfold of Weil type with discriminant 1. By Theorem 4.5, the Kuga–Satake–Hodge

conjecture holds for the K3 surfaces St for any t ∈ T . By [65, Theorem 0.2], the Hodge

conjecture holds for any power of the K3 surface St, for any t ∈ T .
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We will now prove Theorem 1.2 using the criterion given in Theorem 2.5. We first

bootstrap from Theorem 4.5 to establish the stronger version of the Kuga–Satake–

Hodge conjecture as stated in Conjecture 2.4.

Corollary 4.7. — Let K be a projective singular OG6-variety. Let SK be the K3

surface associated with K. Then Conjecture 2.4 holds for SK .

Proof. — As the Kuga–Satake construction as well as the definition of the Kuga–Satake

correspondence µ can be done in families, via specialization of cycles we may assume

that K is a very general projective singular OG6-variety. In this case, SK is of Picard

rank 16 and KS(H2
tr(SK ,Q)) is isogenous to B4

K for a very general abelian fourfold BK

of Weil type with discriminant 1. By Theorem 4.5, the Kuga–Satake–Hodge Conjec-

ture 2.2 holds for SK ; by Varesco’s Theorem 2.7, the Hodge conjecture holds for all

powers of BK . Via a standard argument using homological motives, it follows that the

Hodge conjecture holds for any variety isomorphic to a product of powers of SK and BK

(see Example 5.5.(iv) and Lemma 5.4). Since KS(SK) is isogenous to a power of BK , the

Kuga–Satake correspondence µ : H2(SK ,Q)prim ↪→ H2(KS(SK)2,Q)) of Conjecture 2.4

is algebraic, being induced by a Hodge class [µ] ∈ H2(SK ,Q)⊗H2(KS(SK)2,Q).

Proof of Theorem 1.2. — Let A be an abelian fourfold of Weil type with discrimi-

nant 1. By Theorem 3.4 and Proposition 3.6, there exists a polarized singular OG6-

variety (K,h) whose Kuga–Satake variety is isogenous to A4. Let SK be the K3 surface

associated with K via Theorem 4.1 and Corollary 4.3; the Kuga–Satake variety KS(SK)

of SK is isogenous to a power of A. The Hodge conjecture holds for any power of SK

by Corollary 4.6, and the Kuga–Satake correspondence of Conjecture 2.4 is algebraic

for SK by Theorem 4.7. By Theorem 2.5, the Hodge conjecture holds for all powers of

the Kuga–Satake variety KS(SK) of SK , and, hence, for any power of A.

5. Applications

In the final section we will deduce some consequences for algebraic cycles on the

hyper-Kähler varieties appearing in this paper. We will work with the category Mot

of homological motives with rational coefficients over C, see [4]. The objects of Mot

are triples (X, p, n), where X is a smooth and projective variety, p is an idempotent

correspondence induced by an algebraic cohomology class in H2 dimX(X×X,Q), and n

is an integer. The morphisms between motives (X, p, n) and (Y, q,m) are defined as the

correspondences f induced by an algebraic class in H2 dimX−2n+2m(X×Y,Q) such that

f = f ◦p = q ◦f . There is a natural functor attaching to a smooth projective variety X
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its motive hX := (X, [∆X ], 0), where ∆X ⊂ X×X is the diagonal. We denote by Q(−i)
the Tate motive (SpecC, [∆],−i) of weight 2i. There is also a faithful realization functor

R : Mot → HS to the category of pure polarizable Q-Hodge structures which sends a

motive (X, p, n) to the Hodge structure p∗(H
•(X,Q)(n)). The Hodge conjecture is the

statement that the realization functor is full.

The category Mot is a pseudo-abelian rigid symmetric monoidal category.

Grothendieck’s standard conjectures [29] predict that Mot would in fact be a semisim-

ple abelian category, thanks to work of Jannsen [33] and André [3]. Given m ∈ Mot,

we let ⟨m⟩Mot be the pseudo-abelian tensor subcategory of Mot generated by m; in

other words, ⟨m⟩Mot is the subcategory generated from m by taking direct sums, tensor

products, duals, and subquotients.

Theorem 5.1 ([5, Theorem 4]). — The standard conjectures hold for a smooth and

projective variety X if and only if ⟨h(X)⟩Mot is a semisimple abelian category.

Remark 5.2. — The standard conjectures hold for curves, surfaces and abelian vari-

eties ([35]). They hold for varieties X and Y if and only if they hold for X × Y .

Definition 5.3. — Let X and Y be smooth projective varieties. We say that X is

motivated by Y if the motive h(X) ∈ Mot belongs to the subcategory ⟨h(Y )⟩Mot.

This notion has the following immediate implications.

Lemma 5.4. — Assume that X is motivated by Y . If the standard conjectures hold

for Y , then they hold for X; if the Hodge conjecture holds for all powers of Y , then it

holds for X and all of its powers.

Proof. — These statements are immediate from the definition, using Theorem 5.1 and

that the Hodge conjecture for all powers of X is equivalent to the fullness of the

realization functor R : Mot → HS when restricted to ⟨h(X)⟩Mot.

Let us recall some examples.

Example 5.5. — (i) Let f : Y → X be a dominant morphism of smooth projective

varieties. Then X is motivated by Y .

(ii) Let X be a smooth projective variety and Z ⊂ X a smooth closed subvariety. Let

Y → X be the blow-up of X along Z. Then Y is motivated by X × Z.

(iii) Projective spaces are motivated by any smooth and projective variety X. Indeed,

an ample divisor on X yields a split submotive Q(−1) ⊂ h(X). Thus, all Tate

motives are contained in ⟨h(X)⟩Mot. Since h(Pn) is a sum of Tate motives, it

belongs to ⟨h(X)⟩Mot.
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(iv) Let S be a projective K3 surface and assume that the Kuga–Satake–Hodge Con-

jecture 2.2 holds for S. Then S is motivated by its Kuga–Satake variety KS(S).

Indeed, h(S) is the sum of its transcendental part htr(S) and Tate motives;

by the above, it suffices to show that htr(S) ∈ ⟨h(KS(S))⟩Mot. By assump-

tion, there exists a morphism ϕ : htr(S) → h(KS(S)2) in Mot, whose realization

R(ϕ) : H2
tr(S,Q) ↪→ H2(KS(S)2,Q) is an embedding of Hodge structures. The

standard conjectures hold for S ×KS(S)2 (see Remark 5.2); by Theorem 5.1, the

subcategory ⟨S ×KS(S)2⟩Mot is abelian and semisimple. Hence, there exists mo-

tives ker(ϕ) and im(ϕ) which are the kernel and the image of ϕ respectively. Since

the realization of ϕ is injective, the Hodge realization of ker(ϕ) is zero; then ker(ϕ)

is the zero motive and ϕ : htr(S) → h(KS(S)2) is a split inclusion in Mot.

(v) Let S be a projective K3 surface and letMS(v) be a smooth and projective moduli

space of stable sheaves on S with Mukai vector v. Then Bülles proved in [11] that

the variety of K3[n]-type MS(v) is motivated by the K3 surface S.

It is generally expected that the motive of a hyper-Kähler variety X should be

controlled by its second cohomology H2(X,Q). We make this precise through the

following conjecture.

Conjecture 5.6. — (i) Let X be a hyper-Kähler variety and let KS(X) be its Kuga-

Satake variety. Then X is motivated by KS(X).

(ii) Let X and Y be deformation equivalent hyper-Kähler varieties. Assume that there

exists a Hodge isometry H2(X,Q)
∼−−→ H2(Y,Q). Then the motives of X and Y

are isomorphic.

Recall that the abelian variety KS(X) is built using only H2(X,Q), so that (i) says

that this cohomology group controls the whole motive of X in some way. At the level of

Hodge structures, the above conjecture is known: the total Hodge structure H•(X,Q)

can be embedded in H•(KS(X)j ,Q) for some positive integer j ([37]), and deformation

equivalent hyper-Kähler varieties with Hodge isometric second cohomology have Hodge

isomorphic cohomology algebras ([62]).

Conjecture 5.6 may be formulated in various categories of motives; the strongest

statement would be in the setting of Chow motives. In the realm of André motives,

Conjecture 5.6 (i) has been confirmed for all hyper-Kähler varieties of known defor-

mation type ([61, 23]), while (ii) has been proven for all hyper-Kähler varieties with

second Betti number at least 7 in [17] (this assumption is satisfied by all known exam-

ples). We will focus here on the intermediate case of homological motives.
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Let K be a projective singular OG6-variety. We have introduced the following

smooth and projective varieties related to K:

– the OG6-resolution K̃ → K;

– the abelian fourfold BK such that sing(K) ∼= BK/± 1, as in Theorem 3.4;

– the K3[3]-variety ZK arising as double cover of K via Theorem 4.1;

– the K3 surface SK of Corollary 4.3 such that ZK is birational to a moduli space

of stable sheaves on SK .

Recall that, by Theorem 3.4, the Kuga-Satake variety KS(K) is isogenous to B4
K .

Since we have Hodge isometries (see Remark 4.2 and the proof of Theorem 4.5)

H2
tr(SK ,Q)

∼−−→ H2
tr(ZK ,Q)

∼−−→ H2
tr(K,Q)(2),

the Kuga-Satake varieties KS(ZK) and KS(SK) are isogenous to a power of BK as well.

The following result establishes Conjecture 5.6.(i) at the level of homological motives

for each of the above varieties.

Theorem 5.7. — Let K be any projective singular OG6-variety. Then the OG6-

resolution K̃, the Mongardi–Rapagnetta–Saccà double cover ZK and the K3 surface SK

are all motivated by the abelian fourfold BK .

Proof. — By Theorem 4.5, the Kuga–Satake Hodge Conjecture 2.2 holds for SK . By

Example 5.5.(iv), this K3 surface is thus motivated by its Kuga–Satake variety, and,

hence, SK is motivated by BK . By construction, ZK is birational to a smooth and

projective moduli space MSK
(v) of stable sheaves on SK . By work of Riess [59], the

motives of ZK andMSK
(v) are isomorphic. Hence, by [11], the variety ZK is motivated

by the K3 surface SK (see Example 5.5.(v)), and, therefore, by BK .

Let us now consider the OG6-resolution K̃. The map ϕ : ZK → K of Theorem 4.1

induces a rational map ϕ̃ : ZK 99K K̃ which is resolved as follows. Recall that ZK

contains a subvariety ∆ ∼= BlBK [2](BK/ ± 1), and let Γ ⊂ ∆ be the union of the 256

copies of P3 arising as exceptional divisor of the blow-up map ∆ → BK/± 1. Consider

now the blow-up Y := BlΓ(ZK). By [42, Remark 4.6], the strict transform ∆′ ⊂ Y

of ∆ is again isomorphic to BlBK [2](BK/± 1). Setting Ŷ := Bl∆′(Y ), the rational map

ϕ̃ extends to a regular morphism ψ : Ŷ → K̃.

By (i) and (ii) in Example 5.5, the OG6-resolution K̃ is motivated by Ŷ , which in

turn is motivated by ZK ×Γ×∆′. Hence, it will be sufficient to show that each of ZK ,

Γ and ∆ is motivated by BK . This is clear for Γ which is a union of projective spaces,

and was proven above for ZK . Finally, ∆′ ∼= BlBK
(BK/ ± 1) is motivated by BK as

well, by Example 5.5.
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Corollary 5.8. — Let K be a projective singular OG6-variety, with associated va-

rieties BK , K̃, ZK and SK as above. The Hodge conjecture holds for any variety X

isomorphic to a product of powers of BK , K̃, ZK and SK .

Proof. — By Theorem 5.7, the homological motive of X belongs to ⟨h(BK)⟩Mot. By

Theorem 1.2, the Hodge conjecture holds for any power of BK , and, hence, for X.

Remark 5.9. — If K and K ′ are projective singular OG6-varieties such that there

exists a Hodge similarity between H2
tr(K,Q) and H2

tr(K
′,Q), then BK and BK′ are

isogenous (see Remark 2.1), and in particular there is an isomorphism h(BK) ∼= h(BK′)

of homological motives. We can then conclude that the Hodge conjecture holds for any

varietyX isomorphic to a product of powers of BK , K̃, ZK , SK and of BK′ , K̃ ′, ZK′ , SK′ .

A priori, there may exist non-isomorphic crepant resolutions of a singular OG6-

variety, but any two such resolutions are birational varieties of OG6-type and have

isomorphic motive by [59]. As special cases of the above corollary, any crepant reso-

lution K̃ → K of a singular OG6-variety satisfies the Kuga–Satake–Hodge conjecture,

and the Hodge conjecture holds for all powers of K̃. This proves Theorem 1.4 from the

introduction.

As a consequence of the above theorem we can show that Conjecture 5.6.(ii) holds

for the homological motives of OG6-resolutions.

Corollary 5.10. — Let K̃ and K̃ ′ be projective OG6-resolutions, and assume that

there exists a Hodge isometry H2(K,Q)
∼−−→ H2(K ′,Q). Then the homological motives

of K and K ′ are isomorphic.

Proof. — By [62] (see also [17]), there exists an isomorphism of total Hodge struc-

tures f : H•(K̃,Q)
∼−−→ H•(K̃ ′,Q) (which in fact is an isomorphism of graded alge-

bras). Then f is induced by a Hodge class in H12(K̃ × K̃ ′,Q). By Corollary 5.8 and

Remark 5.9, the Hodge conjecture holds for K̃ × K̃ ′ and therefore f and its inverse

are induced by algebraic correspondences; thus, f is the realization of an isomorphism

f : h(K̃)
∼−−→ h(K̃ ′) of homological motives.

Let L ⊂ C be a subfield which is finitely generated over Q, and let X be a smooth

and projective variety over L. We refer to [45, 2.1] for the statement of the Mumford–

Tate conjecture. If this conjecture holds for X, then the strong Tate conjecture for X

and its powers is equivalent to the Hodge conjecture for XC and its powers. In this

setting, we obtain the following result, a special case of which is Theorem 1.5 from the

introduction.
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Corollary 5.11. — Let the notation be as in Corollary 5.8. Assume that BK , K̃, ZK ,

and SK are all defined over a subfield L ⊂ C which is finitely generated over Q. Then,

for any prime ℓ, the strong Tate conjecture holds for any variety X over L isomorphic

to a product of powers of BK , K̃, ZK and SK .

Proof. — By Corollary 5.8, the Hodge conjecture holds for XC and all of its powers.

It will thus be sufficient to prove that the Mumford–Tate conjecture holds for X. By

a theorem of Commelin [14, Theorem 10.3] it is enough to show that the Mumford–

Tate conjecture holds for each of the varieties BK , K̃, ZK and SK , since we know

from Theorem 5.7 that these varieties all have abelian motive. The Mumford–Tate

conjecture holds for SK , as it holds for any K3 surface by [63, 2]. It holds for K̃ and ZK ,

because it has been proven for any hyper-Kähler variety of known deformation type in

[18, 61, 23]. As for BK , while the Mumford–Tate conjecture is still open for abelian

varieties of dimension 4, it holds for any abelian fourfold of Weil type. Indeed, following

[44, 2.4.7], the conjecture holds for abelian varieties of dimension ⩽ 3 (and products of

them, by [14, Theorem 1.2]) and for simple abelian fourfolds A with EndQ(A) ̸= Q.
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