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Abstract
We prove the conjectures of Hodge and Tate for any four-dimensional hyper-Kähler
variety of generalizedKummer type. For an arbitrary variety X of generalizedKummer
type, we show that all Hodge classes in the subalgebra of the rational cohomology
generated by H2(X ,Q) are algebraic.

Mathematics Subject Classification 14C25 · 14C30 · 14J28 · 14J42

1 Introduction

Despitemany efforts, theHodge conjecture remainswidely open.Muchwork has been
devoted to the study of algebraic cycles on abelian varieties. In spite of several positive
results, already in this setting the Hodge conjecture proved to be a rather formidable
problem. It is in general open for abelian varieties of dimension at least 4 (see [25,
26]).

Another interesting class of varieties with a trivial canonical bundle is that of hyper-
Kähler varieties. See the articles [4, 16] for general information. In the present paper
we study the Hodge conjecture for hyper-Kähler varieties of generalized Kummer
type (Kumn-varieties for short). By definition, these are deformations of Beauville’s
generalized Kummer varieties [4] constructed from abelian surfaces.

Important progress on Kumn-varieties came from the works of O’Grady [29] and
Markman [22]. They uncovered the relation between a Kumn-variety X and its inter-
mediate Jacobian J 3(X), which is shown to be an abelian fourfold of Weil type. Their
results lead to a Torelli theorem for Kumn-varieties in terms of the Hodge structure
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on H3(X ,Z). Markman further constructs an algebraic cycle on X × J 3(X) realizing
the canonical isomorphism H3(X ,Q) ∼= H1(J 3(X),Q)(−1) of Hodge structures, for
any variety X of Kumn-type. It follows that the Kuga-Satake correspondence [20] is
algebraic for these varieties, as shown by Voisin [37]. See also [12, 35] for an account
of these results.

In the recent article [8], the first author proved the Hodge conjecture for any six-
dimensional variety K of Kum3-type. No locally complete family of hyper-Kähler or
abelian varieties of dimension at least 4 satisfying theHodge conjecturewas previously
known. An important ingredient in the proof is the construction from [9] of a K3
surface SK naturally associated with K , and the fact that the Hodge conjecture holds
for any power of this K3 surface. This was proven in [9, Corollary 5.8], using a theorem
of the second author [34] and the aforementioned results of O’Grady, Markman and
Voisin.

In this article we obtain some results on the Hodge conjecture for varieties of
generalized Kummer type of arbitrary dimension.

Theorem 1.1 Let X beaprojectivemanifold ofKumn-type, n � 2.Denote by A•
2(X) ⊂

H•(X ,Q) the subalgebra of the rational cohomology generated by H2(X ,Q). Then
any class in A2 j

2 (X) ∩ H j, j (X) is algebraic, for any j .

To prove this theorem we use the works of Foster [11] and of the second author
[33] to show that an arbitrary variety X of Kumn-type is related via an algebraic
correspondence to the K3 surface SK associated to some Kum3-variety K . Theorem
1.1 is then deduced from the Hodge conjecture for the powers of SK . Our proof leads
to the expectation that any variety of Kumn-type is naturally associated with a K3
surface, generalizing the construction given in [9] for the six-dimensional case. We
remark that it should be possible to obtain the theorem via the representation-theoretic
methods of [34].

For j � n, cup-product induces an isomorphism A2 j
2 (X) ∼= Sym j (H2(X ,Q))

of Hodge structures, by a theorem of Verbitsky [36]. However, Theorem 1.1 is not
sufficient to prove the Hodge conjecture for X as not all Hodge classes lie in A•

2(X)

(see [13]). For n = 3, the full Hodge conjecture proven in [8] is a stronger result and
requires considerably more work. For n = 2, the Hodge classes in the complement
of A•

2(X) form an 80-dimensional subspace of the middle cohomology; Hassett and
Tschinkel have shown in [15] that these classes are algebraic, for any X of Kum2-type.
Hence, Theorem 1.1 yields the following.

Corollary 1.2 Let X be a projectivemanifold ofKum2-type. Then theHodge conjecture
holds for X, i.e., H j, j (X) ∩ H2 j (X ,Q) consists of algebraic classes for any j .

Let now k be a finitely generated field of characteristic 0, with algebraic closure
k̄, and let X/k be a smooth and projective variety over k. Given a prime number �,
the absolute Galois group of k acts on the �-adic étale cohomology of Xk̄ . In analogy
with the Hodge conjecture, the Tate conjecture predicts that the subspace of Galois
invariants in H2 j

ét (Xk̄,Q�( j)) is spanned by the fundamental classes of k-subvarieties
of X . See [32] for general information on the Tate conjecture.
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Corollary 1.3 Let k ⊂ C be a finitely generated field and let X/k be a smooth and
projective variety such that XC is of Kum2-type. Then, for any prime number �, the
strong Tate conjecture holds for X, i.e., the Galois representations H j

ét(Xk̄,Q�) are

semisimple and the subspace of Galois invariants in H2 j
ét (Xk̄,Q�( j)) is the Q�-span

of fundamental classes of k-subvarieties of X, for any j .

A third conjecture, the Mumford-Tate conjecture, connects those of Hodge and
Tate; see [24, §2.1] for its statement. While this is a hard open problem in itself, the
Mumford-Tate conjecture has been proven for any hyper-Kähler variety of known
deformation type in [7, 10, 31]. As a consequence, the conjectures of Hodge and Tate
are equivalent for such a variety; in particular, Corollary 1.3 is in fact equivalent to
Corollary 1.2.

2 Motives

Grothendieck’s theory of motives provides a useful framework to study the Hodge
conjecture. We will work with the category of homological motives with rational
coefficients over C, which we denote byMot; see [30] or [2] for its construction. The
objects ofMot are triples (X , p, n)where X is a smooth andprojective complexvariety,
p is an idempotent correspondence given by an algebraic class in H2 dim X (X×X ,Q),
and n is an integer. Morphisms are given by algebraic cycles modulo homological
equivalence via the formalism of correspondences; more precisely, morphisms from
(X , p, n) to (Y , q,m) are by definition the algebraic classes γ ∈ H2 dim X−2n+2m(X×
Y ,Q) such that γ ◦ p = q ◦ γ .

The categoryMot is a pseudo-abelian tensor category. The unit object for the tensor
product is denoted by Q; the Tate motives (resp., the Tate twists of a motive m) will
be denoted by Q(i) (resp., bym(i)). Given a motivem, we let 〈m〉Mot be the pseudo-
abelian tensor subcategory of Mot generated by m, i.e., the smallest thick and full
such subcategory containing m and closed under direct sums, tensor products, duals
and subobjects.

There is a natural contravariant functor h : SmProjC → Mot, associating to a
variety X itsmotiveh(X):=(X ,�, 0). Here,� is the cohomology class of the diagonal
in X × X .

Remark 2.1 Let X be a smooth and projective variety. A polarization on X gives a split
inclusion ofQ(−1) into h(X). It follows that 〈h(X)〉Mot contains all Tate motives. This
category consists of the motives (Y , q,m) such that Y is a power of X or Spec(C).

The functor associating to X its Hodge structure H•(X ,Q) factors as the composi-
tion of h and the realization functor R : Mot → HS to the category HS of polarizable
Q-Hodge structures. By definition, R(X , p, n):=p∗(H•(X ,Q)(n)), and R is faithful.
The Hodge conjecture is equivalent to the fullness of the realization functor R.

Remark 2.2 Let X be a smooth and projective variety. Then the Hodge conjecture
holds for X and all of its powers if and only if the restriction of R to 〈h(X)〉Mot is full.
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Grothendieck’s standard conjectures [14] would ensure that the category Mot has
much better properties than just being a pseudo-abelian tensor category. We recall the
following theorem due to Jannsen [18] and André [1]; see [3, Theorem 4.1].

Theorem 2.3 Let X be a smooth and projective complex variety. Then the following
are equivalent:

– Grothendieck’s standard conjectures hold for X;
– 〈h(X)〉Mot is a semisimple abelian category.

In light of the above theorem, we will say that the standard conjectures hold for a
motive m ∈ Mot if the category 〈m〉Mot is semisimple and abelian.

Remark 2.4 The standard conjectures are known to hold for curves, surfaces, and
abelian varieties [19]. If they hold for X and Y , then they hold for X × Y as well.

We recall below some known consequences of the standard conjectures.

Remark 2.5 Assume that the standard conjectures hold for m ∈ Mot. Then, by [2,
Corollaire 5.1.3.3], the restrictionof the realization functor R to 〈m〉Mot is conservative,
which means that a morphism f in this category is an isomorphism if and only if its
realization R( f ) is an isomorphism of Hodge structures. Moreover,m (as well as any
object in 〈m〉Mot) admits a canonical weight decomposition m = ⊕

i m
i such that

R(mi ) is a pure Hodge structure of weight i ; see [2, §5.1.2]. If the standard conjectures
hold for the smooth and projective variety X , we shall thus write h(X) = ⊕

i h
i (X)

for the Künneth decomposition of h(X).

We will also use the following easy fact from the theory of motives.

Remark 2.6 Assume that � is a finite group acting on a smooth and projective variety
X . Then the �-invariant part h(X)�:=(X , p�, 0) is a direct summand of the motive
of X , cut out by the projector p�:= 1

|�|
∑

γ∈�[graph(γ )] ∈ H2 dim X (X × X ,Q).

Moreover, if the quotient X/� is smooth, then h(X)� equals the motive h(X/�).

3 Some recent results

Let X be a Kumn-variety, n � 2. The automorphisms of X which act trivially on
its second and third cohomology groups form a group �n ∼= ( Z

(n+1)Z )4, by [5] and
[15, Proposition 3.1]. In [22, §12.5], Markman constructs a four-dimensional abelian
variety TX associated to X , isogenous to the intermediate Jacobian J 3(X). He further
shows that �n acts on TX via translations and that the quotient MX :=(X × TX )/�n

by the anti-diagonal action is a smooth holomorphic symplectic variety deformation
equivalent to a smooth and projective moduli space of stable sheaves on an abelian
surface [17, 38]. Building on Markman’s results and the strategy used by Charles and
Markman in [6] to prove the standard conjectures for K3[n]-varieties, Foster obtaines
the following theorem.

Theorem 3.1 [11, Theorem 4.1] Let X be a variety of Kumn-type. Then the standard
conjectures hold for MX .
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Remark 3.2 The cohomology of MX is naturally identified with the �n-invariants in
H•(X × TX ,Q). Since �n acts trivially on the cohomology of TX , we have

H•(MX ,Q) = H•(X ,Q)�n ⊗ H•(TX ,Q).

As for any smooth projective complex variety, we can split off from h(TX ) a direct
summand h0(TX ) = Q inMot, cut out by the cohomology class of the algebraic cycle
TX × {t} on TX × TX , for any point t ∈ TX . We conclude that

h(MX ) = (h(X) ⊗ h(TX ))�n

contains the motive h(X)�n = (h(X) ⊗ h0(TX ))�n as a direct summand. Hence, by
Foster’s Theorem 3.1, the standard conjectures hold for h(X)�n . In particular, the
motive h(X)�n admits a weight decomposition; recalling that �n acts trivially on
the second cohomology of X , the component h2(X) of h(X) is a well-defined direct
summand, contained in h(X)�n .

The following result of the second author [33] is crucial for our proof of Theorem
1.1. It allows us to relate varieties of generalized Kummer type of different dimensions
via algebraic correspondences. Let r �= 0 be a rational number. A similitude of multi-
plier r between two quadratic spaces V1 and V2 is a linear isomorphism t : V1 → V2
which multiplies the form by a factor r , i. e., such that (t(u), t(w))2 = r · (u, w)1 for
all u, w ∈ V1.

Recall (see [16, §1.9]) that the second cohomology of any hyper-Kähler variety
X is equipped with a non-degenerate symmetric bilinear form, called the Beauville-
Bogomolov form, so that H2(X ,Q) is naturally regarded as a quadratic space. We
denote by H2

tr(X ,Q) its transcendental part, that is, the orthogonal complement to
the Néron-Severi group NS(X) ⊗Z Q ⊂ H2(X ,Q) with respect to the Beauville-
Bogomolov form.

Theorem 3.3 [33, Theorem 0.4] Let X1, X2 be varieties of generalized Kummer type
(not necessarily of the same dimension). Assume that

φ : H2(X1,Q)
∼−−→ H2(X2,Q)

is a rational Hodge similitude. Then φ is induced by an algebraic cycle on X1 × X2.

Proof As φ is a morphism of Hodge structures, it is the sum of Hodge similitudes
φtr : H2

tr(X1,Q)
∼−−→ H2

tr(X2,Q) and φalg : NS(X1)Q
∼−−→ NS(X2)Q. Now [33, The-

orem 0.4] implies that φtr : H2
tr(X1,Q)

∼−−→ H2
tr(X2,Q) is induced by an algebraic

cycle. Since NS(X1)Q and NS(X2)Q consist of algebraic classes, φalg is necessarily
induced by an algebraic cycle, and Theorem 3.3 follows. �

ThemainobservationbehindTheorem3.3 is that the similitudeφ induces an isogeny
between the Kuga-Satake varieties of X1 and X2. The statement is then deduced using
the algebraicity of the Kuga-Satake correspondence and Foster’s Theorem 3.1.
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4 Conclusion

As mentioned in the introduction, we will use the construction of a K3 surface SK
associated to any variety K of Kum3-type, given by the first author in [9, Theorem
1.2]. We will need the following result which is obtained from the construction.

Theorem 4.1 [9] Let K be a variety of Kum3-type, with associated K3 surface SK .
There exists an algebraic cycle on SK × K which induces a Hodge similitude of
multiplier 2

ψ : H2
tr(SK ,Q)

∼−−→ H2
tr(K ,Q).

Moreover, the Hodge conjecture holds for any power of SK .

Proof We review the proof of this result. Let K be any manifold of Kum3-type. Then,
following [9, §2], there exists an action of G:=(Z/2Z)5 on K such that the quotient
K/G admits a crepant resolution YK → K/G, with YK a hyper-Kähler manifold of
K3[3]-type (this is [9, Theorem 1.1]). Let us assume from now on that K is a projective
variety of Kum3-type. Then, by [9, Theorem 1.2], the variety YK is birational to a
moduli space MSK ,H (v) of H -stable sheaves on a uniquely determined K3 surface
SK , for a polarization H and a Mukai vector v on SK . This is the K3 surface SK
associated to K appearing in the above statement.

Now, by construction, we have a rational map r : K ��� YK . By [9, Lemma 4.8],
setting φ:= 1

16r∗ we obtain a Hodge similitude of multiplier 2

φ : H2
tr(YK ,Q)

∼−−→ H2
tr(K ,Q)

between the transcendental Hodge structures. This map is induced by a multiple of
the closure of the graph of the rational map r , and, hence, by an algebraic cycle on
YK × K . Moreover, by [16, Lemma 2.6], a birational map MSK ,H (v) ��� YK yields

a Hodge isometry φ′ : H2(MSK ,H (v),Q)
∼−−→ H2(YK ,Q), induced by the closure of

the graph and therefore algebraic. Finally, using the Mukai homomorphism [27, 28],
one obtains that there exists a Hodge isometry

φ′′ : H2
tr(SK ,Q)

∼−−→ H2
tr(MSK ,H (v),Q)

induced by an algebraic cycle on SK × MSK ,H (v); see [9, p. 407] for more details.
We conclude that the compositionψ :=φ◦φ′ ◦φ′′ is a Hodge similitude ofmultiplier

2

ψ : H2
tr(SK ,Q)

∼−−→ H2
tr(K ,Q),

induced by an algebraic cycle on SK × K . This proves the first statement. The second
statement is [9, Corollary 5.8]. �
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Let X be a Kumn-variety, n � 2, and denote by A•
2(X) the subalgebra of the

rational cohomology generated by H2(X ,Q). By Foster’s Theorem 3.1, the degree 2
componenth2(X)ofh(X) iswell-defined and it is a direct summandof the�n-invariant
part h(X)�n of h(X), see Remark 3.2.

Lemma 4.2 The subalgebra A•
2(X) ⊂ H•(X ,Q) is the realization of a submo-

tive a2(X) of h(X). Moreover, a2(X) ∈ 〈h2(X)〉Mot.

Proof For i > 0, we let δi+1 ∈ H2i dim X (Xi+1,Q) denote the class of the small diag-
onal {(x, . . . , x)} ⊂ Xi+1. This class induces the cup-product morphism h(X)⊗i →
h(X), which restricts to a morphism

(
h(X)�n

)⊗i → h(X)�n in Mot. Since h2(X) is
a direct summand of h(X)�n , the cup-product induces a morphism of motives

β :
⊕

i

h2(X)⊗i → h(X)�n .

Note that β is a morphism in the category 〈h(X)�n 〉Mot, which is abelian and semisim-
ple by Foster’s Theorem 3.1 and Remark 3.2. Therefore, the image of β is a submotive
a2(X) ⊂ h(X), whose realization is A•

2(X) ⊂ H•(X ,Q). By semisimplicity, a2(X)

is a direct summand of
⊕

i h
2(X)⊗i , and hence a2(X) ∈ 〈h2(X)〉Mot. �

The next lemma shows that X is Hodge similar to a variety of Kum3-type.

Lemma 4.3 For any variety X of Kumn-type, there exists a variety K of Kum3-type
and a Hodge similitude of multiplier n + 1

φ : H2(K ,Q)
∼−−→ H2(X ,Q)

with respect to the Beauville-Bogomolov pairings.

Proof By [4], the integral second cohomology group of a Kumn-variety is identified
with the lattice 
Kumn = U⊕3 ⊕ 〈−2n − 2〉, where U is a hyperbolic plane. It is easy
to define a rational similitude

φn : 
Kum3 ⊗ Q
∼−−→ 
Kumn ⊗ Q

of multiplier n + 1. Explicitly, let eni , f ni , i = 1, 2, 3 and ξn be a basis of 
Kumn ,
where: eni , f ni are isotropic and (eni , f ni ) = 1, the planes 〈eni , f ni 〉 and 〈enj , f nj 〉 are
orthogonal for i �= j , ξn has square −2n − 2 and it is orthogonal to each eni and f ni .
Then φn is defined via

e3i �→ eni , f 3i �→ (n + 1) f ni , for i = 1, 2, 3, ξ3 �→ 2ξn .

Let X be a Kumn-variety, and let η : H2(X ,Z)
∼−−→ 
Kumn be an isometry. The

Hodge structure on the left hand side is determined by its period [σ ] = η(H2,0(X)),
which is an isotropic line in 
Kumn ⊗C such that (σ, σ̄ ) > 0. Via the similitude φ−1

n ,
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we obtain the isotropic line [θ ]:=[φ−1
n (σ )] in
Kum3 ⊗C, such that (θ, θ̄ ) > 0. By the

surjectivity of the period map [16, Theorem 8.1], there exists a manifold K of Kum3-
type with period [θ ], which means that there is an isometry η′ : H2(K ,Z)

∼−−→ 
Kum3

mapping H2,0(K ) to [θ ]. By construction, the composition η−1 ◦ φn ◦ η′ gives an
isomorphism of rational Hodge structures

φ : H2(K ,Q)
∼−−→ H2(X ,Q),

and hence φ is a rational Hodge similitude. Since X is projective, K is projective as
well, thanks to Huybrechts’ projectivity criterion [16, Theorem 3.11]. �

We can now complete the proofs of our main results.

Proof of Theorem 1.1 Given the projective Kumn-variety X , we consider the Kum3-
variety K given by Lemma 4.3. The same lemma gives a Hodge similitude
φ : H2(K ,Q)

∼−−→ H2(X ,Q), which is induced by an algebraic cycle on K × X
by Theorem 3.3. Applying Theorem 4.1 to K , we obtain the associated K3 surface SK
and a Hodge similitudeψ : H2

tr(SK ,Q)
∼−−→ H2

tr(K ,Q) induced by an algebraic cycle
on SK × K . The composition of ψ with φ thus gives a rational Hodge similitude of
multiplier 2n + 2

� : H2
tr(SK ,Q)

∼−−→ H2
tr(X ,Q)

of transcendental lattices, which is induced by an algebraic cycle on SK × X .
Consider the submotive h2(X) of h(X). By Lefschetz (1,1) theorem, we have the

decomposition h2(X) = h2tr(X)⊕h2alg(X) into transcendental and algebraic part (and
similarly for SK ); the algebraic part is a sumof TatemotivesQ(−1). Since� is induced
by an algebraic cycle on SK × K , it is the realization of a morphism

�̃ : h2tr(SK ) −→ h2tr(X)

of motives. Recall from Remark 3.2 that h2(X) is a direct summand of h(X)�n , and
in particular the motive h2(X) belongs to 〈h(MX )〉Mot. Therefore, �̃ is a morphism in
the subcategory 〈h(SK ×MX )〉Mot ofMot. The standard conjectures hold for SK ×MX

by Theorem 3.1 and Remark 2.4. By conservativity (see Remark 2.5), it follows that
�̃ is an isomorphism of motives, since its realization � is an isomorphism of Hodge
structures. As h2(X) is the sum of h2tr(X) and Tate motives, we conclude that h2(X) ∈
〈h(SK )〉Mot.

Consider now the submotive a2(X) ⊂ h(X) constructed in Lemma 4.2. By the
above, a2(X) belongs to 〈h(SK )〉Mot. Since, by Theorem 4.1, the Hodge conjec-
ture holds for all powers of SK , the realization functor R is full when restricted to
〈h(SK )〉Mot, and we deduce that any Hodge class in A•

2(X) ⊂ H•(X ,Q) is algebraic.
�

Remark 4.4 Let X be a Kumn-variety as above and consider any power Z = Xr .
Denote by A•

2(Z) the subalgebra of H•(Z ,Q) generated by H2(Z ,Q). Then our
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argument implies that all Hodge classes in A•
2(Z) are algebraic. In fact, note that A•

2(Z)

is the graded tensor product A•
2(X)⊗r , because H1(X ,Q) is zero. With notation as in

the above proof, the argument given implies that A•
2(Z) is the realization of a submotive

a2(Z) of h(Z), and moreover that a2(Z) = a2(X)⊗r belongs to 〈h(SK )〉Mot. As the
Hodge conjecture holds for all powers of SK , it follows that any Hodge class in A•

2(Z)

is algebraic.

Proof of Corollary 1.2 When X is of Kum2-type, the complement of A•
2(X)

in H•(X ,Q) consists of the odd cohomology and of an 80-dimensional space of
Hodge classes in H4(X ,Q), by [21, Example 4.6]. The classes in this 80-dimensional
subspace of the middle cohomology remain Hodge on any deformation of X , and
Hassett and Tschinkel have shown in [15, Theorem 4.4] that they are all algebraic.
Together with our Theorem 1.1, this implies that the Hodge conjecture holds for any
X of Kum2-type. �
Proof of Corollary 1.3 As mentioned in the introduction, the Mumford-Tate conjecture
has been proven for any hyper-Kähler variety X/k of known deformation type, by
work of the first author [7], Soldatenkov [31] and of the first author with Fu and
Zhang [10]. The final result may be found in [10, Theorem 1.18]. As a consequence,
the Galois representations on H j

ét(Xk̄,Q�) are semisimple, and the Tate conjecture
for X/k is equivalent to the Hodge conjecture for XC (see [23, Proposition 2.3.2]).
Therefore, Corollary 1.3 follows from Corollary 1.2. �
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