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Abstract. We study the Mumford–Tate conjecture for hyperkähler varieties. We show that
the full conjecture holds for all varieties deformation equivalent to either an Hilbert scheme
of points on a K3 surface or to O’Grady’s ten dimensional example, and all of their self-
products. For an arbitrary hyperkähler variety whose second Betti number is not 3, we prove
the Mumford–Tate conjecture in every codimension under the assumption that the Künneth
components in even degree of its André motive are abelian. Our results extend a theorem of
André.
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1. Introduction

Let k ⊂ C be a finitely generated field, with algebraic closure k̄ ⊂ C, and let � be a
prime number. Given a smooth and projective variety X over k, Artin’s comparison
theorem gives a canonical identification of Q�-vector spaces

Hi
B

(
X (C),Q

) ⊗Q Q�
∼= Hi

ét

(
Xk̄,Q�

)

between singular cohomology groups of X (C) and �-adic cohomology groups of
Xk̄ .

Both sides come with additional structure, namely, a Hodge structure on the left
hand side and aGalois representation on the right hand side. These data are encoded
in the corresponding tannakian fundamental groups. TheMumford–Tate conjecture
predicts that Artin’s comparison isomorphism identifies the two groups. We refer
to this statement for i = 2 j as the Mumford–Tate conjecture in codimension j
for X .

The Mumford–Tate conjecture is a difficult open problem. It is known only in
a very limited number of cases, see [16, Sects. 2.4, 3.3, 4.4] for a recent survey.
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1.1. Results

Our main result establishes the Mumford–Tate conjecture for hyperkähler varieties
X over k that are of K3[m] or OG10-type, i.e., such that the complexmanifold X (C)

is a deformation of the Hilbert scheme of zero-dimensional subschemes of lengthm
on a K3 surface [3] or of O’Grady’s ten dimensional hyperkähler manifold [18].
The second Betti number of X is 23 in the first case and 24 in the second.

Theorem 1.1. Let X be a hyperkähler variety of eitherK3[m] orOG10-type. Then,
the Mumford–Tate conjecture holds in any codimension for X and for all self-
products X j .

Our second result establishes theMumford–Tate conjecture in any codimension
for a hyperkähler variety with b2 > 3 whose even André motive is abelian.

Theorem 1.2. Let X be a hyperkähler variety such that b2(X) > 3. Assume that,
for all i ≥ 0, the component in degree 2i of the André motive of X is an abelian
motive. Then, the Mumford–Tate conjecture holds in any codimension for X. In
particular, the Hodge and Tate conjecture for X are equivalent.

The work [13] suggests that any hyperkähler variety has abelian André motive,
however, for the time being, this statement remains a conjecture (but see Sect. 1.3).
By definition, the second Betti number of a hyperkähler variety is always at least
3; all known examples satisfy b2 > 3 and it is believed that no hyperkähler variety
with b2 = 3 exists [4, Question 4].

1.2. Overview of the contents

We recall in Sect. 2 the statement of the Mumford–Tate conjecture and its motivic
version; throughout, we will use the category of motives constructed by André in
[2]. The following theorem is essentially proven in [1], and it has been generalized
in [17].

Theorem 1.3. (André). Let X be a hyperkähler variety such that b2(X) > 3. Then,
the motivic Mumford–Tate conjecture in codimension 1 holds for X.

The main tool used in the proof of this result is the Kuga-Satake construction in
families, building on ideas due to Deligne [6]. The assumption that b2(X) > 3
ensures the existence of non-trivial deformations of X , as otherwise the mod-
uli space of hyperkähler varieties deformation equivalent to X would be zero-
dimensional.

With X as above, we consider the even part H+
B (X) of the singular cohomology

with rational coefficients of X (C), so H+
B (X) = ⊕

i H
2i
B (X). A crucial ingredient

for us is the action of aQ-Lie algebra gtot(X) on H+
B (X). This construction is due to

Verbitsky [21] and Looijenga-Lunts [14]; we recall it in Sect 3. The even singular
cohomology of X is the Hodge realization of a motive H+(X), whose motivic
Galois group is denoted by G+

mot(X). We study the interplay between the actions
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of this group and of the Lie algebra gtot(X) on H+
B (X). This cohomology algebra

carries a Hodge structure, whose Mumford–Tate group is denoted by MT+(X); we
show in Sect. 4 thatMT+(X) is a direct factor of themotivic Galois groupG+

mot(X).
Here, we need to assume that b2(X) > 3 since we use André’s Theorem 1.3.

In Sect. 5 we prove that if MT+(X) has finite index in the motivic Galois group
G+
mot(X), then the Mumford–Tate conjecture holds in arbitrary codimension for X ,

see Proposition 5.1. The proof of Theorem 1.2 is given in Sect. 5.2; this is in fact a
direct consequence of the proposition and a general result on abelian motives due
to André.

In Sect. 6 we complete the proof of our main result Theorem 1.1. By Propo-
sition 4.1, MT+(X) is a direct product factor of G+

mot(X); moreover, the comple-
ment satisfies various constraints and in particular it commutes with the action of
gtot(X), see Lemma 4.3. For the K3[m]-type, we have a very effective understand-
ing of this action thanks to work of Markman [15], and we deduce from his results
that the Mumford–Tate group has finite index in the motivic Galois group. For the
OG10-type, this finiteness follows instead from the complete description of the
gtot(X)-representation on the cohomology given by Green-Kim-Laza-Robles [10].
In both cases, we apply Proposition 5.1 to conclude.

1.3. Related works

The abelianity of the André motives of varieties of deformation type K3[m], Kumm

and OG6 has been recently established by Soldatenkov in [19]; our Theorem 1.2
then implies the Mumford–Tate conjecture in arbitrary codimension for these vari-
eties. Successively, together with Lie Fu and Ziyu Zhang we have shown in [8]
the abelianity of the André motives of varieties of OG10-type, the fourth and last
known deformation type of hyperkähler manifolds, and established the full state-
ment of the Mumford–Tate conjecture for all products of hyperkähler varieties of
known deformation type.

In each case, the proof requires a deformation to an explicit example in the
given deformation type. We remark that the proof of Theorem 1.1 presented here
is different and simpler: it uses neither deformation to a specific example, nor
abelianity of the motives involved. We hope that a refinement of this method might
lead to a proof of the Mumford–Tate conjecture for arbitrary hyperkähler varieties
with b2 > 3.

1.4. Notation and conventions

Throughout the whole text, k ⊂ C will be a finitely generated field with algebraic
closure k̄ ⊂ C, and � will be a fixed prime number. A hyperkähler variety over k
is a smooth projective variety over k such that X (C) is a hyperkähler manifold, as
defined in Sect. 2. Given a complex variety X , we denote by Hi (X) its rational
singular cohomology groups. The word “motive” always indicates an object of
André’s category of motives (see Sect. 2.4).
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2. The Mumford–Tate conjecture

We refer to [16] and the references therein. With notations and assumptions as in
Sect. 1.4, we let X be a smooth projective variety over the field k. We can extract
information about X by looking at various cohomology groups.

2.1. Betti cohomology

We denote by Hi
B(X) the i-th singular cohomology group with rational coefficients

of the complex manifold X (C). It carries a pure polarizable Q-Hodge structure
of weight i . Associated to Hi

B(X) is its Mumford–Tate group MT
(
Hi
B(X)

)
; it is a

reductive, connected algebraic subgroup of GL
(
Hi
B(X)

)
.

2.2. �-adic cohomology

We write Hi
�(X) for the i-th étale cohomology group of Xk̄ with Q�-coefficients,

which comes with a continuous representation σ� : Gal(k̄/k) → GL
(
Hi

�(X)
)
; we

denote by G(
Hi

�(X)
)
the Zariski closure of the image of σ�. It is an algebraic group

over Q�. If k′/k is a field extension, and if Xk′ denotes the base change of X
to k′, it may happen that G(

Hi
�(Xk′)

)
becomes smaller than G(

Hi
�(X)

)
; however,

the connected component of the identity G(
Hi

�(X)
)0 is stable under finite field

extensions, and there exists a finite field extension k′/k such that G(
Hi

�(Xk′)
)

becomes connected.

2.3. The statement

Artin’s comparison theorem states that, for all X and i as above, there is a canonical
isomorphism of Q�-vector spaces

Hi
B(X) ⊗ Q�

∼= Hi
�(X).

Conjecture 2.1. (Mumford–Tate). Under the isomorphism of algebraic groups
GL

(
Hi
B(X)

) ⊗ Q�
∼= GL

(
Hi

�(X)
)
induced by Artin’s isomorphism, we have

MT
(
Hi
B(X)

) ⊗ Q� = G(
Hi

�(X)
)0

.

The Mumford–Tate conjecture in codimension j for X is this statement for i = 2 j .

2.4. Motives

A third algebraic group is often useful in order to compare the two groups involved
in the Mumford–Tate conjecture. Let Motk be the category of André motives over
k from [2]; it is a Q-linear neutral tannakian semisimple category. We will denote
motives by calligraphic letters. Let M ∈ Motk . For a field extension k′/k, we
let Mk′ be the motive over k′ obtained fromM via base change.
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2.5. Realization I

The inclusion k ⊂ C determines a realization functor from Motk to the category
of polarizable Q-Hodge structures, and we writeMB for the Hodge realization of
the motive M. The composition with the forgetful functor to Q-vector spaces is a
fibre functor on Motk ; the tannakian formalism then yields a reductiveQ-algebraic
group Gmot(M), which is a subgroup of GL(MB). The tannakian subcategory
〈M〉⊗ of Motk generated byM is equivalent to the category of finite dimensional
representations of Gmot(M). We call this group the motivic Galois group of M.

2.6. Realization II

The prime � determines another realization functor to the category of �-adic Galois
representations; we write M� for the Galois representation attached to the motive
M. We obtain an algebraic group Gmot,�(M) ⊂ GL(M�) over Q� such that the
category of its finite dimensional representations is equivalent to 〈M〉⊗ ⊗ Q�.
Artin’s comparison theorem yields an isomorphism MB ⊗ Q�

∼= M�, inducing
an identification Gmot(M) ⊗Q� = Gmot,�(M) of subgroups of GL(MB) ⊗Q�

∼=
GL(M�).

2.7. The motivic Mumford–Tate conjecture

We refer to [16, Sect. 3.1] for an enlightening discussion of the behaviour of
Gmot(M) under extensions of the base field. It suffices to say that there exists
a finite field extension k�/k such that Gmot(Mk′) ∼= Gmot(Mk�) for all field exten-
sions k′/k�.

Conjecture 2.2. (Motivic Mumford–Tate). For any motive M ∈ Motk , we have

MT
(MB

) = Gmot
(Mk̄

)
, and G(M�

)0 = Gmot,�
(Mk̄

)
.

The conjecture is the conjunction of the motivic Hodge and Tate conjectures:
the first says that Hodge classes are motivated, henceMT

(MB
) = Gmot

(Mk̄

)
, and

the second says that Tate classes aremotivated, and henceG(M�

)0 = Gmot,�
(Mk̄

)
.

These statements areweak versions of the usual Hodge and Tate conjectures respec-
tively.

We summarize a few known facts about these groups.

– There are natural inclusions

MT(MB) ⊂ Gmot(Mk̄) and G(M�)
0 ⊂ Gmot(Mk̄) ⊗ Q�.

– The algebraic group MT(MB) is connected and reductive. On the other hand,
G(M�)

0 is not known to be reductive, while Gmot(Mk̄) is reductive, but not
known to be connected in general.
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There are contravariant functors Hi from the category of smooth projective
varieties over k to Motk , such that, for any smooth projective variety X over k, we
have

Hi (X)B = Hi
B(X) and Hi (X)� = Hi

�(X).

Therefore, Conjecture 2.2 implies Conjecture 2.1.We refer to Conjecture 2.2 for the
motive H2 j (X) as the motivic Mumford–Tate conjecture for X in codimension j .

2.8. Abelian motives

AmotiveM ∈ Motk is abelian if it belongs to the tannakian subcategory generated
by the motives of all abelian varieties over k. We will need the following theorem
due to André [2], which improves Deligne’s result on absolute Hodge classes on
abelian varieties from [7].

Theorem 2.3. Let M ∈ Motk be an abelian motive. Then we have

MT(MB) = Gmot(Mk̄).

3. Hyperkähler varieties

In this section we work over the complex numbers. A hyperkähler manifold X
is a connected, simply connected, compact Kähler manifold admitting a nowhere
degenerate holomorphic 2-formwhich spans H0,2(X). At times, we use the expres-
sion “hyperkähler variety” instead of writing “projective hyperkähler manifold”.
The dimension of such a manifold is always even; hyperkähler surfaces are K3
surfaces. The second cohomology group of a hyperkähler manifold X carries
a canonical symmetric bilinear form, the Beauville–Bogomolov form, which is
non-degenerate and deformation invariant, and yields a morphism of Hodge struc-
tures H2(X)(1)⊗H2(X)(1) → Q.We refer to [3] and [12] for a proper introduction
to the subject.

Let X be a complex hyperkähler variety of dimension 2n. The rational cohomol-
ogy H∗(X) of X is a graded algebra via cup product. Verbitsky andLooijenga-Lunts
studied in [21] and [14] a Lie algebra action on H∗(X), which we describe below.

3.1. sl2-triples

Let θ ∈ End
(
H∗(X)

)
be the degree 0 endomorphism whose action on H j (X)

is multiplication by j − 2n, for all j . Given x ∈ H2(X), we denote by Lx the
endomorphismof H∗(X)whichmaps a cohomology classα to the product x∧α.We
say that a class x ∈ H2(X) has the Lefschetz property if, for all positive integers j ,
the map L j

x : H2n− j (X) → H2n+ j (X) is an isomorphism. The Lefschetz property
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for x ∈ H2(X) is equivalent to the existence of�x ∈ End
(
H∗(X)

)
such that Lx , θ ,

and �x form an sl2-triple, i.e., we have

[θ, Lx ] = 2Lx , [θ,�x ] = −2�x and [Lx ,�x ] = θ.

Once it exists, the endomorphism �x is uniquely determined, see for instance
Proposition 1.4.6 in [9, Exposé X].

3.2. The total Lie algebra

Wedefinegtot(X) as the smallest Lie subalgebra ofgl
(
H∗(X)

)
containing Lx , for all

x ∈ H2(X), and�x , for all x ∈ H2(X)with the Lefschetz property. The first Chern
class of an ample divisor on X has the Lefschetz property by the Hard Lefschetz
theorem. It is shown in [14, Sect. (1.9)] that gtot(X) is a semisimpleQ-Lie algebra,
which is evenly graded by the adjoint action of θ , so that gtot(X) = ⊕

i g2i (X). The
action of gtot(X) on the cohomology of X preserves the even and odd cohomology,
and the Lie subalgebra g0(X) consists of the endomorphisms contained in gtot(X)

which preserve the grading of H∗(X). The construction does not depend on the
complex structure of X ; therefore, gtot(X) is deformation invariant.

3.3. A theorem of Looijenga-Lunts and Verbitsky

Let now H denote the space H2(X) equipped with the Beauville-Bogomolov form.
Let H̃ denote the orthogonal direct sum of H with U = 〈v,w〉 equipped with the
form −2vw. We summarize the main properties of the Lie algebra gtot(X).

Theorem 3.1.

(a) There is an isomorphism gtot(X) ∼= so(H̃) of Q-Lie algebras, which maps the
element θ ∈ gtot(X) to the element of so(H̃) which acts as multiplication by
−2 on v, by 2 on w, and by 0 on H.

(b) We have

gtot(X) = g−2(X) ⊕ g0(X) ⊕ g2(X).

Moreover, g0(X) ∼= so(H) ⊕ Q · θ , and θ is central in g0(X). The abelian
subalgebra g2(X) is the linear span of the endomorphisms Lx , and g−2(X) is
the span of the �x , for x ∈ H2(X) with the Lefschetz property.

(c) The Lie subalgebra g0(X) acts via derivations on the graded algebra H∗(X).
The induced action of so(H) ⊂ g0(X) on H2(X) = H is the standard repre-
sentation.

The above theorem is proven in [21], and in [14, Proposition 4.5]. A proof can
also be found in the appendix of [13]. These proofs are carried out with real coef-
ficients, but immediately imply the result with rational coefficients: since gtot(X)

is defined over Q, the equality gtot(X) ⊗ R = so(H̃) ⊗ R of Lie subalgebras of
gl(H̃) ⊗ R shows that the same equality already holds with rational coefficients.
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3.4. The integrated representation

We know from Theorem 3.1 that the semisimple part of g0(X) is isomorphic
to so(H). We denote by

ρ : so(H) →
∏

j

gl
(
H j (X)

)

the restriction of the representation g0(X) → ∏
j gl

(
H j (X)

)
to the Lie subalge-

bra so(H). We also let ρ+ : so(H) → ∏
i gl

(
H2i (X)

)
denote the representation

induced by ρ on the even cohomology of X .

Proposition 3.2. The representation ρ+ : so(H) → ∏
i gl

(
H2i (X)

)
integrates to

a faithful representation

ρ̃+ : SO(H) →
∏

i

GL
(
H2i (X)

)
,

such that π2 ◦ ρ̃+ : SO(H) → GL
(
H2(X)

) = GL(H) is the standard representa-
tion, where π2 is the obvious projection

∏
i GL

(
H2i (X)

) → GL
(
H2(X)

)
.

We refer to [20, Sect. 8] for a proof. Note that under the representation ρ̃+, the
group SO(H) acts via graded algebra automorphisms on the even cohomology of
X , by part (c) of Theorem 3.1.

3.5. The Weil operator

Weneed to recall onemore result. LetWC ∈ End
(
H∗(X,C)

)
be the endomorphism

which acts on each H p,q(X) as multiplication by i(p − q). It is known that WC is
the C-linear extension of an endomorphism W ∈ End

(
H∗(X,R)

)
, which is called

the Weil operator.

Theorem 3.3. The Weil operator W is an element of ρ
(
so(H)

) ⊗ R.

This is proven in [21]; see also the appendix to the paper [13].

3.6. Hodge theory of hyperkähler varieties

Let H+(X) denote the weight 0 Hodge structure
⊕

i H
2i (X)(i), and let MT+(X)

denote its Mumford–Tate group. Let π2 : MT+(X) � MT
(
H2(X)(1)

)
be the

projection induced by the inclusion of H2(X)(1) into H+(X). We will deduce the
following result from Theorem 3.3.

Corollary 3.4. The map π2 is an isomorphism

MT+(X) ∼= MT
(
H2(X)(1)

)
.

In particular, the weight 0 Hodge structure H+(X) belongs to the tensor subcate-
gory of polarizable Q-Hodge structures generated by H2(X)(1).
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We first prove a lemma.

Lemma 3.5. We have

MT+(X) ⊂ ρ̃+(
SO(H)

)
.

Proof. We identify SO(H)with its image under the representation ρ̃+ from Propo-
sition 3.2. Let T be a tensor construction on H+(X), by which we mean that T is
a finite sum

T =
⊕

i

(
H+(X)

)⊗mi ⊗ (
H+(X)

)∨,⊗ni .

for some integers mi and ni . Both MT+(X) and SO(H) act on the space T , as they
are both subgroups of GL

(
H+(X)

)
. In order to show that MT+(X) is contained

into SO(H), it suffices to check that, for all tensor constructions T as above, every
element α of T fixed by the latter is also fixed by MT+(X). Indeed, both groups
are reductive, and we can then apply [7, Proposition 3.1] to conclude. Let α ∈ T be
invariant for the SO(H)-action. Then, the image of α in T ⊗ C is in the kernel of
every element of so(H) ⊗C. By Theorem 3.3, this implies that α is of type (0, 0);
hence α is a Hodge class and it is therefore fixed by the Mumford–Tate group. ��
Proof of Corollary 3.4. It suffices to show that the restriction of the projection π2
to MT+(X) is injective. The composition π2 ◦ ρ̃+ : SO(H) → GL

(
H2(X)

)
is

injective thanks to Proposition 3.2. As MT+(X) ⊂ ρ̃+(
SO(H)

)
by Lemma 3.5, it

follows that the restriction of π2 to MT+(X) is injective, too. ��
Remark 3.6. The conclusion of Corollary 3.4 is true even without the projectivity
assumption on X , with the only difference that the Hodge structures involved are
not necessarily polarizable.

4. A splitting of the motivic Galois group

In this section, X is a complex hyperkähler variety; we further assume that b2(X) >

3. We consider the weight 0 motive

H+(X):=
⊕

i

H2i (X)(i) ∈ MotC,

and we denote by G+
mot(X) ⊂ ∏

i GL
(
H2i (X)(i)

)
its motivic Galois group. We

let π̄2 be the projection G+
mot(X) � Gmot

(H2(X)(1)
)
induced by the inclusion

of H2(X)(1) intoH+(X), and we define

P(X):= ker(π̄2) ⊂ G+
mot(X).

Proposition 4.1. We have

G+
mot(X) = P(X) × MT+(X).
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We will first establish some preliminary results.

Lemma 4.2. There exists a section s of the map π̄2,

s : Gmot
(H2(X)(1)

)
↪→ G+

mot(X),

whose image coincides with MT+(X) ⊂ G+
mot(X).

Proof. We have a commutative diagram

G+
mot(X) Gmot

(H2(X)(1)
)

MT+(X) MT
(
H2(X)(1)

)

π̄2

ι+ ι2

π2

Here, ι+ and ι2 denote the natural inclusions; π2 and ι2 are isomorphisms due to
Corollary 3.4 and Theorem 1.3 respectively. We can now take s = ι+ ◦ (ι2 ◦ π̄2)

−1.
��

Lemma 4.3. The adjoint action of the group P(X) ⊂ GL
(
H+(X)

)
on gl

(
H+(X)

)

restricts to the identity on the Lie algebra gtot(X).

Proof. Note that P(X) acts on H+(X) via algebra automorphisms since the cup-
product is induced by an algebraic cycle, namely, the small diagonal δ ⊂ X3;
moreover, by definition, its action preserves the grading and is trivial on H2(X).
Hence, if p ∈ P(X), then p commutes with θ and Lx , for x ∈ H2(X). Further, if x
has the Lefschetz property, then p commutes with �x as well: indeed, Lx , θ and
p�x p−1 form an sl2-triple, and this forces p�x p−1 = �x , see Sect. 3.1. As the
various operators Lx and�x , for x ∈ H2(X), generate theLie subalgebragtot(X) ⊂
gl

(
H+(X)

)
, we conclude that P(X) commutes with the whole of gtot(X). ��

Proof of Proposition 4.1. By Lemma 4.2, P(X) · MT+(X) = G+
mot(X), and the

two subgroups have trivial intersection. By Lemma 3.5 and the above Lemma 4.3,
P(X) andMT(X)+ commute. It follows that G+

mot(X) is the direct product of these
two subgroups. ��

5. A sufficient condition

With notations and assumptions as in Sect. 1.4, let X be a hyperkähler variety over
k, and assume that b2(X) > 3. Consider the weight 0 motive

H+(X) =
⊕

i

H2i (X)(i) ∈ Motk,

and write G+
mot(X) for its motivic Galois group. Let H+

B (X) and H+
� (X) denote

respectively the Hodge and �-adic realization of H+(X). We write MT+(X)

forMT
(
H+
B (X)

)
andG+

� (X) forG(
H+

� (X)
)
.We identify H+

B (X)⊗Q� with H
+
� (X)

via Artin’s comparison isomorphism. Then both MT+(X) ⊗ Q� and G+
� (X) are

identified with subgroups of GL
(
H+

� (X)
)
.
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5.1. The criterion

Conjecturally, under Artin’s isomorphism we have MT+(X) ⊗ Q�
∼= G+

� (X)0.
We refer to this statement as the Mumford–Tate conjecture for H+(X); it implies
the Mumford–Tate conjecture in codimension j for X and for all integers j , and,
if X has trivial odd cohomology, it also implies the Mumford–Tate conjecture in
any codimension for any self-power Xk . Recall from Sect. 2.7 that G+

� (X)0 is a
subgroup of G+

mot(Xk̄) ⊗ Q�
∼= G+

mot(XC) ⊗ Q�, and that, by Proposition 4.1, we
have an equality G+

mot(XC) = P(X) × MT+(X) of subgroups of GL
(
H+
B (X)

)
.

Proposition 5.1. Assume that P(X) is finite (resp. trivial). Then the Mumford–Tate
conjecture (resp. the motivic Mumford–Tate conjecture) holds for H+(X).

Proof. Consider the commutative diagram

MT+(X) ⊗ Q� G+
mot(Xk̄) ⊗ Q� G+

� (X)0

MT
(
H2
B(X)(1)

) ⊗ Q� Gmot
(H2(Xk̄)(1)

) ⊗ Q� G(
H2

� (X)(1)
)0

∼

∼ ∼

The horizontal arrows on the bottom are isomorphisms due to Theorem 1.3, and
the vertical map on the left is an isomorphism thanks to Corollary 3.4. By Propo-
sition 4.1 we have G+

mot(Xk̄) = P(X) ×MT+(X); if P(X) is finite, it follows that
we have G+

mot(Xk̄)
0 = MT+(X). Hence, replacing in the above diagram G+

mot(Xk̄)

with its connected component of the identity, also the leftmost arrow on the top row
becomes an isomorphism. Thus all arrows in the diagram become isomorphisms,
and we obtain

MT+(X) ⊗ Q� = G+
mot(Xk̄)

0 ⊗ Q� = G+
� (X)0.

Moreover, if P(X) is trivial then G+
mot(Xk̄) is connected and equal to MT+(X),

and therefore the motivic Mumford–Tate conjecture holds in this case. ��

5.2. Proof of Theorem 1.2

By the above Proposition 5.1, it suffices to show that the assumption of abelianity
of all even Künneth components H2i (Xk̄) of the motive of X implies that P(X)

is trivial. Note that this assumption is equivalent to the abelianity of H+(Xk̄). But
then the desired conclusion follows immediately from Proposition 4.1 and André’s
theorem 2.3: indeed, the first result implies that G+

mot(Xk̄) = P(X)×MT+(X) and
the second that G+

mot(Xk̄) = MT+(X).
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6. Proof of Theorem 1.1

In this section we prove Theorem 1.1. To this end, we will establish the finiteness
of the group P(X) from Sect. 4 when X is a hyperkähler variety of K3[m] or OG10-
type; Theorem 1.1 then follows via Proposition 5.1. We can, and will, work over
the complex numbers, since G+

mot(Xk̄)
∼= G+

mot(XC).
Recall that a complex hyperkähler variety X is of K3[m]-type if it is a defor-

mation of a Hilbert scheme of 0-dimensional subschemes of length m on some K3
surface. If m = 1, then X is the original K3 surface; we will assume m ≥ 2. In
this case dim X = 2m, the odd cohomology of X vanishes, and the second Betti
number equals 23, See [11]. We say that X is of OG10-type if it is deformation
equivalent to O’Grady’s ten dimensional hyperkähler variety constructed in [18].
In this case the odd Betti numbers of X vanish as well, and we have b2(X) = 24,
see [5].

6.1. Reduction

Let Aut
(
H+(X)

)
be the group of automorphisms of the graded Q-algebra

H+(X) = ⊕
i H

2i (X). Let K (X) ⊂ Aut
(
H+(X)

)
be the kernel of the natural

restriction map Aut
(
H+(X)

) → GL
(
H2(X)

)
. The group P(X) acts via algebra

automorphisms, and, by construction, its action is trivial in degree 2. Hence, we
have

P(X) ⊂ K (X).

To conclude the proof of Theorem 1.1 it therefore suffices to establish the following.

Proposition 6.1. Assume X is a hyperkähler variety of eitherK3[m] orOG10-type.
Then K (X) is a finite group.

As we are going to explain, this is a consequence of results due to Markman
[15] in the first case and due to Green-Kim-Laza-Robles [10] in the second case.

6.2. The invariant pairing

Westart by recalling from [14] some additional facts on the representation ofgtot(X)

on the cohomology. Let
∫
X denote the projection H+(X) → H4n(X) ∼= Q, where

dim(X) = 2n. Consider the Poincaré pairing φ : H+(X) ⊗ H+(X) → Q, which
is defined via

φ(α, β) = (−1)q
∫

X
α ∧ β,

for α of degree 2n + 2q. It is shown in [14, Proposition 1.6 and its proof], that
the Lie algebra gtot(X) preserves infinitesimally the Poincaré pairing, and that φ

restricts to a non-degenerate pairing on every gtot(X)-submodule of H+(X).
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6.3. The OG10-type

The group K (X) acts on H+(X) via graded algebra automorphisms and it acts
trivially in degree 2; it follows that K (X) preserves the pairing φ. Moreover, the
argument used to prove Lemma 4.3 shows that this group commutes with gtot(X).

Proof of Proposition 6.1 for the OG10-type. Assume X is of OG10-type. The rep-
resentation of gtot(X) on the cohomology has been fully described in [10, Theorem
1.1-(iv)]. We have

H+(X) = V1 ⊕ V2,

where V1 is the subalgebra generated by H2(X) and V2 is an absolutely irreducible
gtot(X)-representation. We deduce that K (X) is a subgroup of

(
End(V2)

gtot(X)
)× ∼= Q

×,

by Schur’s lemma. Further, we know that the pairing φ restricts to a non-degenerate
invariant form on V2, and we deduce that K (X) ⊂ {1,−1}. ��

6.4. The K3[m]-type

As apparent from the proof, for the OG10-type the decomposition of the coho-
mology into gtot(X)-isotypical components already imposes the desired finiteness
result. The analogous decomposition for the K3[m]-type becomes more and more
complicated as the dimension increases, see [10]. Nevertheless, it becomes more
manageable once the algebra structure is taken into account, thanks to the following
result of Markman. From now on, we assume that X is a variety of K3[m]-type.

For l ≥ 0, we let A2l ⊂ H+(X) be the subalgebra generated by
⊕

j≤l H
2 j (X).

Note that A2l = H+(X) for l ≥ m. Recall from Corollary 3.2 that we have a
representation ρ̃+ of SO(H) on H+(X).

Theorem 6.2. (Markman). For all i ≥ 1, there exists a subspace C2i ⊂ H2i (X)

with the following properties.

(a) We have a g0(X)-invariant decomposition

H2i (X) = (
A2i−2 ∩ H2i (X)

) ⊕ C2i .

Note that this implies C2 = H2(X) and C2i = 0 for i > m. Each C2i is in
particular a subrepresentation for g0(X) and, hence, for SO(H). Moreover, the
gtot(X)-module generated by C2i is orthogonal to A2i−2 with respect to φ.

(b) The sum
⊕

i≥1 C
2i generates the algebra H+(X).

(c) The SO(H)-module C2i is a subrepresentation of the sum of a copy of the
standard representation with a one dimensional trivial representation, for all
i ≥ 2.
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Parts (a) and (b) are proven in [15, Corollary 4.6], while (c) is [loc. cit.,
Lemma 4.8]. We can now conclude the proof of our main result.

Proof of Proposition 6.1 for theK3[m]-type.We claim first of all that each subspace
C2i is stable under the action of K (X). In fact, since K (X) acts via graded algebra
automorphisms, the subalgebras A2l are K (X)-stable for all l. Since φ is K (X)-
invariant, it follows that the orthogonal complement to each A2l is preserved as
well; as K (X) acts compatibly with the grading, it indeed stabilizes C2i , for all i .

The subspaces C2i generate the cohomology by Theorem 6.2.(b), and K (X)

commutes with the representation ρ̃. Hence, we have

K (X) ⊂
∏

i≥2

(
End(C2i )SO(H)

)×
.

Let V ⊂ C2i be an irreducible-SO(H) representation. By Theorem 6.2.(c), the
representation V is absolutely irreducible and it appears in C2i with multiplicity
one; it follows that V is stable under K (X) aswell. By Schur’s lemma, each element
of K (X) acts on gtot(X) · V via multiplication by some rational number. On the
other hand K (X) preserves the form φ, whose restriction to the gtot(X)-module
generated by V is non-degenerate, and therefore the action of K (X) on gtot(X) · V
factors through {1,−1} ∼= Z/2Z. Using again Theorem 6.2.(c), we conclude that,
for all i ,

(
End(C2i )SO(H)

)× is a subgroup Z/2Z2, and hence we have

K (X) ⊂
m∏

i=2

Z/2Z2.

��
Theorem 1.1 is proved.

Remark 6.3. The conclusion of Proposition 6.1 does not hold for the remaining
deformation types Kumm and OG6. This can be checked using the description of
the gtot(X)-representation of the cohomology given in [10]: in fact, for these defor-
mation types, there are gtot(X)-representations which appear in the cohomology
with higher multiplicities, which cannot be explained only by taking into account
the algebra structure on the cohomology.
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