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On the motive of O’Grady’s six-dimensional
hyper-Kähler varieties

Salvatore Floccari

Abstract. We prove that the rational Chow motive of a six-dimensional hyper-Kähler variety
obtained as symplectic resolution of O’Grady type of a singular moduli space of semistable sheaves
on an Abelian surface A belongs to the tensor category of motives generated by the motive of A.
We in fact give a formula for the rational Chow motive of such a variety in terms of that of the
surface. As a consequence, the conjectures of Hodge and Tate hold for many hyper-Kähler varieties
of OG6-type.
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1. Introduction

Moduli spaces of stable sheaves on a K3 or Abelian surface constitute a prominent source of construction
of hyper-Kähler varieties. The geometry of the higher dimensional varieties constructed in this way can
be fruitfully studied through the relationship with the underlying surface. For instance, the rational Hodge
structure on the cohomology of the hyper-Kähler varieties so obtained can be expressed in terms of that
on the cohomology of the surface (cf. [GKLR22]). When such a relation can be established at the level of
motives, it has important consequences for the study of algebraic cycles.

Let us now be more precise on the moduli spaces and hyper-Kähler varieties we will consider. Let A be a
complex Abelian surface. Its Mukai lattice is

H̃2(A,Z)BH0(A,Z)⊕H2(A,Z)⊕H4(A,Z),

with the pairing
(
(a,b,c), (a′ ,b′ , c′)

)
= (b,b′) − ac′ − a′c. It is equipped with a weight 2 Hodge structure

induced by that on H2(A,Z) and declaring H0(A,Z) and H4(A,Z) of type (1,1). To any coherent sheaf F
on A is assigned its Mukai vector v(F )B ch(F ); a vector v ∈ H̃2(A,Z) is called effective if v = v(F ) for
some coherent sheaf F .

Given an effective Mukai vector v ∈ H̃2(A,Z) and a v-generic polarization H , there exists a projective
moduli space Mv(A,H) of (S-equivalence classes of) H-semistable coherent sheaves on A with Mukai vector
v, see [HL10]. It is irreducible of dimension (v,v) + 2, and its smooth locus admits a nowhere degenerate
holomorphic 2-form [Muk84]. By [Yos01], the Albanese map Mv(A,H)→ A× Â is an isotrivial fibration; we
denote by Kv(A,H) the fibre of this morphism.

When the effective Mukai vector w is primitive, the moduli space Mw(A,H) is a smooth and projective
variety, and Kw(A,H) is a hyper-Kähler variety of generalized Kummer type (cf. [Yos01]).

When instead v is not primitive the moduli space Mv(A,H) is singular. O’Grady discovered [O’G99]
that M(2,0,−2)(A,H) admits a crepant resolution M̃(2,0,−2)(A,H), by which we mean that the pull-back of the
holomorphic 2-form on the regular locus of M(2,0−2)(A,H) extends to a nowhere degenerate holomorphic

2-form on the resolution. By [LS06] and [KLS06], a crepant resolution M̃v(A,H)→Mv(A,H) exists if and
only if v = 2v0 with v0 a primitive and effective Mukai vector of square 2. In this case we obtain as well a
crepant resolution K̃v(A,H) of Kv(A,H); by [O’G03] and [PR13], the K̃v(A,H) are hyper-Kähler varieties of
dimension 6, all deformation equivalent to each other. They are called of OG6-type.

Each of the varieties introduced above is expected to be motivated by the surface; this means that the
rational Chow motive of such a variety should belong to the tensor subcategory generated by the motive of A.
For the smooth and projective moduli spaces Mw(A,H) associated to a primitive Mukai vector w, this has
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been confirmed by Bülles [Bül20]. When v = 2v0 with v0 primitive, effective and of square 2, an extension
of his argument allows to show that also the 10-dimensional varieties M̃v(A,H) are motivated by A, see
[FFZ21]. Both results are based on Markman’s work [Mar02]. For the hyper-Kähler varieties Kw(A,H) and
K̃v(A,H), however, the question remained open; in this note we deal with the OG6-type varieties K̃v(A,H).

Theorem 1.1. Let A be a complex Abelian surface, v = 2v0 a Mukai vector with v0 primitive, effective and of
square 2, and let H be a v-generic polarization on A. Then the rational Chow motive h(K̃v(A,H)) belongs to
〈h(A)〉CHM, the pseudo-Abelian tensor subcategory of motives generated by the motive of A. In fact, we have

h(K̃v(A,H)) = h(Km(A)(3))⊕ h(Km(A)×Km(A))(−1)⊕ h(Km(A×A))(−1)
⊕137h(Km(A))(−2)⊕ 512Q(−3).

In the above formula, given an Abelian variety B, we denote by Km(B) the quotient B/ ± 1; the rational
Chow motive of Km(B) is defined as the motive (B,γ,0) with γ = 1

2 (δ + δ
−), where δ (resp. δ−) is the

diagonal (resp. the graph of −1) in B×B. The motive of any (symmetric) power of Km(B) is defined similarly.
The proof of the theorem is based on the construction of Mongardi–Rapagnetta–Saccà [MRS18] of

K̃v(A,H) as resolution of the quotient of a variety Y v(A,H) of K3[3]-type by a symplectic birational
involution, which was already used in loc. cit. to calculate the Hodge numbers of OG6 varieties. The key
point is then to show that Y v(A,H) is motivated by A. To this end, we first observe that Y v(A,H) is in fact
birational to a moduli space of stable sheaves on a K3 surface S , and then we prove that S is isogenous to
the Kummer K3 surface obtained as minimal resolution of Km(A).

Theorem 1.1 has the following direct consequences.

Corollary 1.2. With A, v and H as in Theorem 1.1, we have:

• the Chow motive of the OG6 variety K̃v(A,H) is Abelian and finite dimensional;
• the conjectures of Hodge and Tate hold for K̃v(A,H) and all of its self-products.

By the Tate conjecture for a smooth and projective complex variety X we mean the Tate conjecture for
any model Y over a field L ⊂C finitely generated over Q such that Y ⊗LC � X; by [Moo17, §1.6], its validity
does not depend on the choice of the model Y . In the last section we explain how our result gives some
evidence towards the conjecture that isogenous hyper-Kähler varieties should have isomorphic motives.

Notation and conventions

We work over the field of the complex numbers. We let CHM be the category of Chow motives with
rational coefficients over C (cf. [And04]). The motive of a smooth and projective variety X is denoted
by h(X). We denote by Q the unit object for the tensor product in CHM, and by Q(−1) the unique motive
such that h(P1) = Q⊕Q(−1). The dual of Q(−1) is denoted by Q(1); given a motive M and an integer
n > 0 we let M(±n) denote M ⊗Q(±1)⊗n. The (thick) pseudo-Abelian tensor subcategory of CHM generated
by a motive M is denoted by 〈M〉CHM: by definition, it is the full subcategory of CHM containing M which
is closed under isomorphisms, direct sums, tensor products, duals and subobjects.

Aknowledgements
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Giuseppe Ancona and Domenico Valloni for useful discussions. I thank the anonymous referee for his/her
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2. The construction of Mongardi–Rapagnetta–Saccà

In this section we describe the construction of the article [MRS18], to which we refer for proofs and more
details. Let A,v,H be as in Theorem 1.1. We denote by Â the dual of the Abelian surface A. The singular
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projective moduli space Mv(A,H) admits a smooth proper morphism

a : Mv(A,H)→ A× Â.

In fact, a is isotrivial (see [Yos01]): denoting by Kv(A,H) its fibre over any point, after an étale base-change
Mv(A,H) splits as the product of Kv(A,H) with A× Â.

We briefly recall the geometry of the singular variety Kv(A,H) and of its symplectic resolution K̃v(A,H),
following [O’G03] and [MRS18]. Let us now simply write K for Kv(A,H). We have closed subvarieties
Ω ⊂ Σ ⊂ K such that

• Σ � (A× Â)/ ± 1 is the singular locus of K ;
• Ω is the singular locus of Σ, and consists of 256 points.

The resolution K̃ → K is constructed as follows. The blow-up of K with center Ω yields a projective
variety K B BlΩ(K), with singular locus the strict transform Σ of Σ. The blow-up of K with center Σ is a
smooth projective variety K̂ B Bl

Σ
(K). Finally, the pre-image Ω̂ ⊂ K̂ of Ω can be contracted as a P

2-bundle
to 256 disjoint smooth quadric threefolds, obtaining the OG6 variety K̃ .

In fact, by [LS06] the resolution K̃ can be obtained via a single blow-up K̃ = BlΣ(K) along the (reduced)
singular locus Σ ⊂ K . We then have K̂ = Bl

Ω̃
(K̃) where Ω̃ ⊂ K̃ is the pre-image of Ω. To summarize, we

have a commutative diagram

(1)

Bl
Σ
(K) = K̂ = Bl

Ω̃
(K̃)

K = BlΩ(K) K̃ = BlΣ(K)

K

where:

• Σ ⊂ K is smooth and isomorphic to BlA[2]×Â[2]
(
(A× Â)/ ± 1

)
;

• Ω̃ ⊂ K̃ is the disjoint union of 256 smooth 3-dimensional quadrics.

The main result of [MRS18] gives a normal projective variety Y = Yv(A,H) and a finite morphism
ε : Y → K of degree 2. The branch locus of ε is Σ; the ramification locus ∆ ⊂ Y is isomorphic to Σ. We let
Γ ⊂ ∆ be its singular locus, that is, Γ = ε−1(Ω) consists of 256 points. We then have a commutative diagram
of blow-ups

(2)

Bl
∆
(Y ) = Ŷ = Bl̃

Γ
(Ỹ )

Y = BlΓ (Y ) Ỹ = Bl∆(Y )

Y

The morphism ε induces morphisms ε̂ : Ŷ → K̂ , ε : Y → K , ε̃ : Ỹ → K̃ of degree 2, compatible with all
blow-up maps in the diagrams (1) and (2). In particular, these double covers are ramified over subvarieties
denoted ∆̂, ∆ and ∆̃ respectively, and they induce isomorphisms: ε̂ : ∆̂

∼−−−→ Σ̂, ε : ∆
∼−−−→ Σ and ε̃ : ∆̃

∼−−−→ Σ̃.
Moreover, the authors show that the variety Y is regular, and that the pre-image Γ ⊂ Y of Γ can

be contracted as a P
2-bundle to 256 copies of P3. The resulting variety Y is also regular, and it is a

hyper-Kähler variety of K3[3]-type. It contains 256 copies of P3; denoting their union by Γ , we have
Y = BlΓ (Y ).
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To summarize, for A,v,H as above, we have a variety Y = Y v(A,H) of K3[3]-type with a rational map of
degree 2 to the OG6-type variety K̃ = K̃v(A,H), which is resolved via the following diagram:

(3)

Ŷ = Bl
∆
(Y )

Y = BlΓ (Y ) K̂ = Bl
Ω̃
(K̃)

Y K̃

ε̂

All varieties involved are smooth and projective. The morphism ε̂ is a degree 2 cover ramified over the
divisor Σ̂. The other maps are blow-ups with smooth centers:

• Ω̃ consists of 256 disjoint smooth 3-dimensional quadrics G;
• Γ is a union of 256 disjoint copies of P3;
• ∆ � BlA[2]×Â[2]

(
(A× Â)/ ± 1

)
.

3. The K3[3] variety as a moduli space

We denote by H2
tr(X,Z) ⊂H2(X,Z) the transcendental part of the second Hodge structure of a smooth

and projective variety X; by definition, H2
tr(X,Z) is the smallest Z-Hodge substructure of H2(X,Z) whose

complexification contains H2,0(X).

Lemma 3.1. Let f : X → Z be a birational map. Then the Z-Hodge structures H2
tr(X,Z) and H2

tr(Z,Z) are
isomorphic.

Proof. This is well-known: it is immediate when f is a blow-up with smooth center, and the general
case follows from this factoring f as composition of blow-ups and blow-downs with smooth centers
(cf. [AKMW02]). �

When X is a hyper-Kähler variety, H2
tr(X,Z) is the transcendental lattice of X: it is equipped with the

restriction of the Beauville–Bogomolov form (cf. [Huy99]). It has signature (2,b2 − ρ − 2) where b2 and ρ are
the second Betti number and the Picard number of X respectively. Recall that the Beauville–Bogomolov form
qX of a 2n-dimensional hyper-Kähler manifold X satisfies Fujiki’s relation [Fuj87]: there exists a positive
rational constant cX such that ∫

X
α2n = cX · qX(α,α)n.

Let f : W → X be a birational map with X a hyper-Kähler variety of dimension 2n. By Lemma 3.1 we
have a Hodge isomorphism

H2
tr(W,Z) �H2

tr(X,Z).

We then equip H2
tr(W,Z) with the form obtained from H2

tr(X,Z) via the above isomorphism and speak
about the transcendental lattice of W .

Remark 3.2. The induced form qW on H2
tr(W,Z) satisfies Fujiki’s relation∫
W
α2n = cX · qW (α,α)n,

with the same Fujiki constant cX of X.

Let A,v,H be as in Theorem 1.1. We use the notation from the previous section.
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Proposition 3.3. There exists a K3 surface S, a primitive and effective Mukai vector w and a w-generic
polarization L on S such that the K3[3]-type variety Y v(A,H) is birational to the smooth and projective moduli
space Mw(S,L).

We first prove a lemma. Let us consider the diagram (3). By Lemma 3.1, we have identifications of
transcendental lattices: H2

tr(Ŷ ,Z) �H2
tr(Y ,Z) and H2

tr(K̂,Z) �H2
tr(K̃,Z). Let ι̂ : Ŷ → Ŷ be the involution

associated with the double cover ε̂. The involution ι̂ is symplectic, i.e. its action on the cohomology is the
identity on H2

tr(Ŷ ,Z).

Lemma 3.4. Via the isometries above, the morphism ε̂ : Ŷ → K̂ induces a rational Hodge isometry

ε̂∗ : H
2
tr(Y ,Q)[2]

∼−−−→H2
tr(K̃,Q),

where [2] indicates that the form is multiplied by a factor 2.

Proof. For any y ∈H2(Ŷ ,Q)ι̂, we have ε̂∗ε̂∗(y) = 2y. Thus, ε∗ is injective on H2(Ŷ ,Q)ι̂ and hence it induces
an isomorphism ε̂∗ : H

2
tr(Ŷ ,Q) �H2

tr(K̂,Q) of Hodge structures. For any y ∈H2(Ŷ ,Q)ι̂, we then have (see
Remark 3.2)

qK̂ (ε̂∗(y), ε̂∗(y))
3 =

1
cK̃

∫
K̂
ε̂∗(y)

6 =
1

2cK̃

∫
Ŷ
ε̂∗ε̂∗(y)

6 = 25
cY
cK̃

( 1
cY

∫
Ŷ
y6

)
= 25

cY
cK̃
· qŶ (y,y)

3.

The Fujiki constants of the known deformation types of hyper-Kähler manifolds can be found in [Rap08].
Since Y is of K3[3]-type and K̃ is of OG6-type we have cY = 15 and cK̃ = 60. We therefore obtain
qK̃ (ε∗(y),ε∗(y)) = 2qY (y,y), for any y ∈H2

tr(Y ,Q). �

Remark 3.5. In [PR13] it is shown that there is a Hodge isometry

H2(Kv(A,H),Z)
∼−−−→ v⊥ ⊂ H̃2(A,Z),

and that H2(Kv(A,H),Z) embeds isometrically into H2(K̃v(A,H),Z) as Hodge substructure. It follows that
we have a Hodge isometry H2

tr(K̃,Z)
∼−−−→H2

tr(A,Z).

Proof of Proposition 3.3. According to [Add16, Proposition 4] (or equivalently [Mon15, Proposition 3.3]),
it suffices to show that there exists a K3 surface S and a Hodge isometry H2

tr(Y ,Z) � H2
tr(S,Z) of

transcendental lattices. As the transcendental lattice of an Abelian surface has rank at most 5, by Lemma 3.4
and Remark 3.5 we obtain that H2

tr(Y ,Z) is an even lattice of rank r 6 5 and signature (2, r −2). By [Mor84,
Corollary 2.10] any such lattice appears as transcendental lattice of some K3 surface. �

4. Conclusion of the proof

Let A,v,H be as in the statement of Theorem 1.1 and let Y = Y v(A,H) be the K3[3]-type variety associated
to K̃ = K̃v(A,H).

Lemma 4.1. We have h(K̃) ∈ 〈h(Y )⊕ h(A)〉CHM.

Proof. We follow the same path as for the calculation of Hodge numbers [MRS18] and Hodge structures
[GKLR22]. A similar argument is used in [FLZ22, §4.4].

We consider the diagram (3). The motive of a smooth 3-dimensional quadric is Q⊕Q(−1)⊕Q(−2)⊕Q(−3).
Since ∆ = (BlA[2]×Â[2](A× Â))/ ± 1, we have

h(∆) =
(
h(A× Â)⊕ 256Q(−1)⊕ 256Q(−2)⊕ 256Q(−3)

)±1
= h+(A× Â)⊕ 256Q(−1)⊕ 256Q(−2)⊕ 256Q(−3).
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Here, h+(A× Â) denotes the even part of the rational motive of A× Â, which is well-defined since Abelian
varieties have canonical Chow–Künneth decompositions (see [DM91]).

Applying the blow-up formula for motives (from [Man68]), we obtain

h(K̂) = h(K̃)⊕ 256Q(−1)⊕ 512Q(−2)⊕ 512Q(−3)⊕ 512Q(−4)⊕ 256Q(−5);

moreover, we have

h(Ŷ ) = h(Y )⊕ h+(A× Â)(−1)⊕ 256Q(−2)⊕ 256Q(−3)⊕ 256Q(−4),

and

h(Y ) = h(Y )⊕ 256Q(−1)⊕ 512Q(−2)⊕ 512Q(−3)⊕ 512Q(−4)⊕ 256Q(−5).

The variety K̂ is the quotient of Ŷ by the regular involution ι̂ associated to the double cover ε̂. It follows
that (since our motives are with rational coefficients)

h(K̂) � h(Ŷ )ι̂

belongs to 〈h(Y )⊕ h(A)〉CHM; hence, the same is true for h(K̃). �

Proposition 4.2. The motive h(Y ) belongs to 〈h(A)〉CHM.

Proof. By Proposition 3.3, the variety Y is birational to a moduli space Mw(S,L) of stable sheaves on a K3
surface S . By [Rie14], birational hyper-Kähler varieties have isomorphic Chow motives; Bülles’ theorem in
[Bül20] then implies that h(Y ) ∈ 〈h(S)〉CHM. By [O’G97] we have a Hodge isometry

H2(Mw(S,L),Z)
∼−−−→ w⊥ ⊂ H̃2(S,Z),

which gives a Hodge isometry H2
tr(Y ,Z)

∼−−−→H2
tr(S,Z) of transcendental lattices.

Let now T be the K3 surface which is the minimal resolution of Km(A) = A/ ± 1. It is well known
(cf. [Mor85]) that h(T ) ∈ 〈h(A)〉CHM and that we have a Hodge isometry

H2
tr(T ,Z)

∼−−−→H2
tr(A,Z)[2].

Combining this with Lemma 3.4 we obtain a rational Hodge isometry

φ : H2
tr(T ,Q)

∼−−−→H2
tr(A,Q)[2]

∼−−−→H2
tr(S,Q)[4].

Then 1
2φ : H2

tr(T ,Q)
∼−−−→H2

tr(S,Q) is a Hodge isometry. By Witt’s theorem, we can extend it to an isometry

ψ : H2(T ,Q)
∼−−−→ H2(S,Q), which is necessarily compatible with the Hodge structures; hence, the K3

surfaces S and T are isogenous. Now a result of Huybrechts [Huy19] implies that the motives of S and T are
isomorphic, and we conclude that h(Y ) ∈ 〈h(A)〉CHM. �

Proof of Theorem 1.1 and Corollary 1.2. By Lemma 4.1 and Proposition 4.2, the motive h(K̃v(A,H)) belongs to
〈h(A)〉CHM and hence, by definition, it is an Abelian motive. It is known that Abelian motives are Kimura
finite dimensional (see [Kim05]).

By [MZ99], the Hodge conjecture holds for any self-product of the Abelian surface A. Then [Ara06,
Lemma 4.2] implies that the Hodge conjecture holds for K̃v(A,H) and any of its self-powers. Finally,
by [FFZ21, Theorem 1.18] the Mumford–Tate conjecture holds for any projective variety of OG6-type; hence,
the conjectures of Hodge and Tate are equivalent for such a variety and its self-products. This proves
Corollary 1.2.

It remains to prove the formula

h(K̃v(A,H)) =h(Km(A)(3))⊕ h(Km(A)×Km(A))(−1)⊕ h(Km(A×A))(−1)
⊕ 137h(Km(A))(−2)⊕ 512Q(−3).

Let Z denote the motive at the right hand side, and let H•(Z) denote the associated rational Hodge
structure. Comparing H•(Z) with the description of the Hodge structure on the cohomology of K̃v(A,H)
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given in [GKLR22, §3.5], we deduce that there is an isomorphism φ : H•(K̃v(A,H),Q)
∼−−−→H•(Z) of rational

Hodge structures. Since both h(K̃v(A,H)) and Z belong to 〈h(A)〉CHM, the isomorphism φ is induced by the
class of an algebraic cycle. Hence, there exists a morphism Φ : h(K̃v(A,H))→ Z of motives with Hodge
realization φ. Consider the realization functor CHM→ HS to the category HS of rational Hodge structures;
by [And05], this functor is conservative when restricted to the tensor subcategory of Abelian motives. As the
Hodge realization of Φ is an isomorphism in HS, this implies that Φ is an isomorphism of Chow motives. �

5. A conjecture

We say that two hyper-Kähler varieties X and Y are isogenous if they are deformation equivalent and
there exists a rational Hodge isometry H2(X,Q)

∼−−−→H2(Y ,Q). Theorem 1.1 gives some evidence towards
the following.

Conjecture 5.1. Let X and Y be isogenous hyper-Kähler varieties. Then there exists an isomorphism of rational
Chow motives h(X)

∼−−−→ h(Y ).

For K3 surfaces the conjecture is proven in [Huy19], and for Hilbert schemes on K3 surfaces it follows
from the formula for their motives given in [CM02]. In the realm of André motives, it has been verified in
[Flo22] for all known deformation types and for hyper-Kähler varieties with trivial odd cohomology and
b2 > 6.

Remark 5.2. A plausible stronger version of the above conjecture would require the existence of a
multiplicative isomorphism h(X)

∼−−−→ h(Y ), meaning that it identifies the intersection product on the two
sides. For K3 surfaces, this is proven in [FV21].

We point out that Conjecture 5.1 would follow from two well-known conjectures: the Hodge conjecture,
saying that the realization functor r : CHM→ HS is full, and the conservativity conjecture, saying that
the functor r is conservative (see [Ayo17] for an inspiring overview of this conjecture). Indeed, isogenous
hyper-Kähler varieties X and Y have isomorphic rational Hodge structures (as shown in[Sol21]); assuming
the Hodge conjecture, there exists a morphism f : h(X)→ h(Y ) of Chow motives whose realization is an
isomorphism of Hodge structures, and hence, by conservativity, f itself would be an isomorphism. Besides
K3 surfaces, Conjecture 5.1 is known in the following cases:

(i) when X and Y are smooth and projective moduli spaces on K3 surfaces S and T whose motive is
Kimura finite-dimensional, and such that the Hodge conjecture holds for any power of S and T ;
for instance S and T may be Kummer surfaces (see [Ped12] for more examples of K3 surfaces with
finite-dimensional motive);

(ii) when X and Y are ten dimensional O’Grady resolutions of moduli spaces on K3 surfaces S and T
satisfying the same properties as above;

(iii) for generalized Kummer varieties X and Y on Abelian surfaces A and B;
(iv) for OG6 varieties X and Y obtained via resolution of singular moduli spaces on Abelian surfaces A

and B.

Note that in each of the cases listed above, X and Y are isogenous if and only if the underlying surfaces
are isogenous. The first two cases follow via the argument outlined above, because the realization functor
CHM→ HS is full and conservative when restricted to 〈h(X),h(Y )〉CHM. In fact, by [Bül20] in case (i) and
[FFZ21] in case (ii), we have the inclusion 〈h(X),h(Y )〉CHM ⊂ 〈h(S),h(T )〉CHM; the surfaces S and T are
isogenous K3 surfaces and hence they have isomorphic motives. Finally, the assumptions on S and T ensure
that the realization functor is full and conservative when restricted to 〈h(S),h(T )〉CHM. In the last two cases,
the validity of Conjecture 5.1 follows from the formulae for the motives of X and Y in terms of those of A
and B given in [Xu18], [FTV19] for case (iii) and by Theorem 1.1 for case (iv), as we observed that A and B
are isogenous and hence have isomorphic rational Chow motives.
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