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Promotor: Prof. dr. B.J.J. Moonen

Copromotor: Dr. A. Smeets (KU Leuven, België)
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INTRODUCTION

Hyper-Kähler manifolds are an important class of higher dimensional Kähler man-

ifolds. Together with complex tori and Calabi–Yau manifolds, they constitute the

building blocks of Kähler manifolds with trivial first Chern class, by the Beauville–

Bogomolov decomposition theorem.

Hyper-Kähler manifolds are higher dimensional analogues of K3 surfaces; in di-

mension 2 any hyper-Kähler manifold is a K3 surface. The topological classification

of hyper-Kähler manifolds is a very hard open problem. For the time being, it is

known that there are two distinct deformation classes in any even dimension 2n ≥ 4,

called the K3[n] and Kumn-types respectively first discovered by Beauville [9], and

two more deformation classes OG10 and OG6 in dimension 10 and 6 respectively,

found by O’Grady [68], [69].

Despite this difficulty, thanks to work of Huybrechts, Markman, O’Grady, Verbit-

sky and many others, we have a rich theory of hyper-Kähler manifolds which parallels

in many ways that of K3 surfaces. For instance, the second cohomology H2(X,Z) is

equipped with a non-degenerate symmetric bilinear form, the Beauville–Bogomolov

form. One of the highlights in the theory is certainly the Torelli theorem due to

Huybrechts and Verbitsky, [42] [84] [44]: the global deformations of a hyper-Kähler

manifold X are controlled by the Hodge structure on the lattice H2(X,Z).

The main theme of this thesis is the study of motives of hyper-Kähler varieties.

The similarity between the theory of higher dimensional hyper-Kähler varieties and

that of K3 surfaces suggests that the motives of hyper-Kähler varieties should be

controlled by smaller, “surface-like” motives.
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Most of the known constructions of hyper-Kähler varieties involve taking a moduli

space of sheaves on a K3 or abelian surfaces; in such cases a relation between the

Chow motive of the moduli space and that of the surface is expected. Bülles [15],

building on work of Markman [53], has proven that the rational Chow motive of the

moduli space belongs to the tensor category generated by the motive of the surface.

This gives many examples of hyper-Kähler varieties of K3[n]-type whose motive is

controlled by the motive of a K3 surface.

However, the general projective deformation of such a hyper-Kähler variety is, a

priori, no longer related to a surface. Nevertheless, we still expect to be able to control

the motive of X via a motive of weight 2: the natural replacement for the motive of

the surface would be the component of the motive of X in degree 2. To make this

precise we need to leave the category of Chow motives, since in this setting we do not

even know that the Künneth projectors are algebraic. To circumvent this issue we

will work within the category of André motives [4], denoted by AM. The following

conjecture summarizes our expectations on the motives of hyper-Kähler varieties.

0.1. Conjecture. — Let K ⊂ C be an algebraically closed field. Let X be a hyper-

Kähler variety over K, and let H•(X) =
⊕

iHi(X) ∈ AMK be its André motive.

Then:

– the even part H+(X) =
⊕

iH2i(X) of the motive of X belongs to the Tannakian

category 〈H2(X)〉 ⊂ AMK generated by H2(X);

– if X has non-trivial cohomology in some odd degree, then the motive H•(X)

belongs to the Tannakian category 〈H1(A)〉 ⊂ AMK , where A is the Kuga–

Satake abelian variety obtained from the Hodge structure H2(X).

In any case, the motive of X is abelian.

The abelian variety A is obtained from H2(X) via the Kuga–Satake construc-

tion ([22]). This abelian variety is not uniquely determined (not even up to isogeny),

but we will show that the conjecture is independent of choices involved in the Kuga–

Satake construction.

As a consequence of the work of Looijenga–Lunts [51] and Verbitsky [83], the

conjecture holds at the level of Hodge structures. Soldatenkov proves in [80] that de-

formation equivalent hyper-Kähler varieties with Hodge-isometric second cohomology

have isomorphic total Hodge structure.
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The category of André motives provides also a natural framework to study the

Mumford–Tate conjecture. Let K ⊂ C be a field which is finitely generated over Q,

let K̄ ⊂ C be an algebraic closure of K, and let ` be a fixed prime number. Given

a smooth and projective variety X over K, we have on the one hand the rational

Hodge structure H•(X) on the singular cohomology of X(C), and on the other hand

the `-adic Galois representation H•` (X) on the étale cohomology H•ét(XK̄ ,Q`).
Roughly speaking, the Mumford–Tate conjecture predicts that H•(X) and H•` (X)

contain the same information. Due to the very different nature of these two objects,

the Tannakian formalism is needed in order to formulate the comparison. The conjec-

ture is a very difficult open problem; we refer to [62] for a survey of known cases. If

the Mumford–Tate conjecture is true for X, then the conjectures of Hodge and Tate

are equivalent for all powers of X.

Results. — Our main contributions to the study of motives of hyper-Kähler varieties

are summarized below:

(i) we prove that the Chow motive of a (ten dimensional) O’Grady moduli space on

a K3 or abelian surface belongs to the category generated by the Chow motive

of the surface;

(ii) we introduce the notion of defect group of a hyper-Kähler variety, and use it

to prove the Mumford–Tate conjecture and Conjecture 0.1 for all hyper-Kähler

varieties of known deformation type;

(iii) we prove that deformation equivalent hyper-Kähler varieties with b2 > 6 with

Hodge-isometric H2 have isomorphic André motives, modulo a technical as-

sumption in presence of non-trivial cohomology in odd degree.

The first of these results is obtained via a refinement of Bülles method in [15],

using the geometry of O’Grady moduli spaces [68]. This result is joint work with Lie

Fu and Ziyu Zhang, published in [29].

In the same article with Fu and Zhang we introduced the defect group of a hyper-

Kähler variety, and we used it to prove the Mumford–Tate conjecture and Conjec-

ture 0.1 for all hyper-Kähler varieties of known deformation type. This improves

previous work of the author [27], where the Mumford–Tate conjecture for varieties of

deformation type K3[n] and OG10 is proven.
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The defect group attached to a hyper-Kähler variety is an algebraic group P (X)

which measures the failure of Conjecture 0.1: the conjecture holds for X if and only

if P (X) is trivial, which in turn implies the Mumford–Tate conjecture. Even if, for

a yet to be discovered deformation class of hyper-Kähler varieties, it turns out that

Conjecture 0.1 is false, the defect group still allows to control the motives of these

varieties via their degree 2 component, in the sense of the third result listed above.

We obtain a similar statement about Galois representations on the étale cohomology

of hyper-Kähler varieties. These results appeared in the author’s article [28].

The key inputs used to establish the properties of the defect group are: the action

on the cohomology of X of the Lie algebra g(X) introduced by Looijenga–Lunts [51]

and Verbitsky [83], and the André theorem [3] saying that if X is a hyper-Kähler

variety with b2(X) > 3 then H2(X) is an abelian motive for which the Mumford–Tate

conjecture holds true.

We now review in more detail the contents of the thesis, and give precise statements

of the main results.

Motives of moduli spaces

Let S be a K3 or abelian surface. Denote by ÑS(S) the Mukai extension of the

Néron–Severi lattice of S: we have ÑS(X) = H0(S,Z)⊕NS(S)⊕H4(S,Z), where

((a, b, c), (a′, b′, c′)) = (b, b′)− ac′ − a′c.

Elements of ÑS(S) are called Mukai vectors; to any coherent sheaf E on S is associated

its Mukai vector ch(E) ·
√

tdS .

It is known ([46]) that, if v ∈ ÑS(S) and H is a v-generic polarization on S,

there exist a non-singular quasi-projective moduli space Mst of H-stable sheaves

on S with Mukai vector v and a projective, but possibly singular, moduli space M
of H-semistable sheaves on S with Mukai vector v. The moduli space Mst is an

open subvariety of M; the singular locus of M consists of the strictly H-semistable

sheaves. By work of Mukai ([64]), Mst is a symplectic manifold, i.e. it carries a

nowhere degenerate holomorphic closed 2-form σ. A crepant resolution M̃ → M is

a projective birational morphism with M̃ non-singular such that the pull-back of the

form σ on Mst extends to a holomorphic symplectic form on M̃.
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With S as above, assume that v ∈ ÑS(S) is a primitive Mukai vector and let H

be a v-generic polarization on S. In this case there are no strictly H-semistable

sheaves with Mukai vector v and therefore M =Mst is a smooth projective variety

of dimension v2 +2. By [67], when v2 > 0 the second cohomology of M is identified

with v⊥ ⊂ H̃2(S,Z); building on work of Markman [53], Bülles has shown in [15] that

the rational Chow motive h(M) of the moduli space belongs to the pseudo-abelian

tensor category of motives generated by the rational Chow motive h(S) of the surface.

If the Mukai vector v is not primitive, the moduli spaceM of H-semistable sheaves

on S with Mukai vector v will be singular. When v = 2 v0 with v0 primitive such

that v2
0 = 2 and H is a v0-generic polarization, O’Grady has constructed in [68] a

crepant resolution M̃ → M. This is the only case in which M admits a crepant

resolution: by [47], given an abelian or K3 surface S, a vector v ∈ ÑS(S) and a v-

generic polarization H on S, if the moduli spaceM admits a crepant resolution then

either v is primitive or v = 2 v0 with v0 a primitive Mukai vector such that v2
0 = 2.

We obtain the following generalization of Bülles’ result.

0.2. Theorem. — Let S be an abelian or K3 surface. Let v = 2 v0 ∈ ÑS(S), with v0

a primitive Mukai vector such that v2
0 = 2, and let H be a v0-generic polarization on S.

Let M̃ → M be O’Grady’s crepant resolution. Then the Chow motive of M̃ belongs

to the pseudo-abelian tensor subcategory generated by h(S).

Theorem 0.2 is joint work with Lie Fu and Ziyu Zhang, published in [29]. In

that article we offer generalizations in various directions, most notably to Bridgeland

moduli spaces on Calabi–Yau categories; for the sake of simplicity, we decided to not

include them here.

Bülles’ result and our Theorem 0.2 give examples of hyper-Kähler varieties satis-

fying Conjecture 0.1. Indeed, when S is a K3 surface and v ∈ ÑS(S) is a primitive

Mukai vector, the smooth and projective moduli space M of stable sheaves with

Mukai vector v is a hyper-Kähler variety of K3[n]-type, while O’Grady’s crepant res-

olutions M̃ → M are hyper-Kähler varieties of OG10-type. When S is instead an

abelian surface, O’Grady resolution M̃ is not a hyper-Kähler variety; nevertheless it

admits an isotrivial fibration over S × Ŝ, where Ŝ is the dual abelian surface, whose

fibre M̃0 is an hyper-Kähler variety of OG6-type. The analogue of Theorem 0.2

for M̃0 is not known.
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Defect groups of hyper-Kähler varieties

The word motive will now indicate an object of André category of motives. Via the

Tannakian formalism, to any motive M is attached its motivic Galois group Gmot(M),

which is a reductive Q-algebraic group whose category of representations is equivalent

to the Tannakian category generated by M .

Let K ⊂ C be an algebraically closed field. To any hyper-Kähler variety X over K

we associate its defect group P (X), as follows. We denote by H•(X) =
⊕

iHi(X)

the André motive of X.

If X has trivial cohomology in odd degree, we simply define P (X) as the kernel of

the surjective homomorphism of motivic Galois groups

P (X) := ker
(

Gmot(H•(X))→ Gmot(H2(X))
)
,

coming from the fact that H2(X) is a summand of H•(X).

In presence of non-trivial cohomology in odd degree, we first define the extended

defect group P̃ (X) as the kernel of Gmot(H•(X))→ Gmot(H2(X)). We then show that

there is a central element ι ∈ P̃ (X) of order 2, which acts on Hj(X) as multiplication

by (−1)j , and define the defect group P (X) as the quotient P̃ (X)/〈ι〉.
The motivic Galois group Gmot(H•(X)) always contains the Mumford–Tate

group MT(H•(X)) as a subgroup. The defect group is a complement for the

Mumford–Tate group in the motivic Galois group.

0.3. Theorem. — Let K ⊂ C be an algebraically closed field and let X be a hyper-

Kähler variety over K. Assume that b2(X) > 3. Then, if X has trivial cohomology

in odd degrees, the defect group P (X) is a direct complement of MT(H•(X)):

Gmot(H•(X)) = MT(H•(X))× P (X).

In presence of non-trivial cohomology in odd degree, the extended defect group P̃ (X)

is a complement of MT(H•(X)) inside Gmot(H•(X)), in the sense that:

Gmot(H•(X)) = MT(H•(X)) · P̃ (X),

and the subgroups MT(H•(X)) and P̃ (X) commute with each other and intersect in

the central subgroup 〈ι〉 ∼= Z/2Z.
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The assumption that b2(X) > 3 comes from the work of André [3], who has shown

that under this assumption the motive H2(X) is abelian. Conjecturally, any hyper-

Kähler variety satisfies this assumption.

The following result justifies the name defect group.

0.4. Corollary. — Let K ⊂ C be an algebraically closed field, and let X be a hyper-

Kähler variety over K such that b2(X) > 3. Then the following are equivalent:

(i) The defect group P (X) is trivial.

(ii) Conjecture 0.1 holds for X.

(iii) The motive H•(X) is abelian.

(iv) On any power of X, all Hodge classes are motivated; equivalently,

MT(H•(X)) = Gmot(H•(X)).

Another remarkable property of defect groups is their deformation invariance.

0.5. Theorem. — Let X → B be a smooth and projective morphism (of schemes)

with fibres hyper-Kähler varieties with b2 > 3, where B is a non-singular and con-

nected complex variety. For any two points s, s′ ∈ B, the defect groups of the corre-

sponding fibres are isomorphic: P (Xs) ∼= P (Xs′).

To prove the above theorem we apply the results on families of André motives

formalized by Moonen in [62].

Defect groups and the Mumford–Tate conjecture. — Let now K ⊂ C be

a field which is finitely generated over Q, and let K̄ be an algebraic closure of K

in C. We fix a prime number `. The notion of defect group is useful in studying the

Mumford–Tate conjecture for hyper-Kähler varieties: we have the following criterion.

0.6. Theorem. — Let K ⊂ C be a finitely generated field over Q, and let ` be a

prime number. Let X be a hyper-Kähler variety over K, with b2(X) > 3. Assume that

the defect group P (XK̄) is finite. Then the Mumford–Tate conjecture holds for X.

The above results on defect groups appeared in a joint paper with Lie Fu and Ziyu

Zhang [29], and are based on previous work of the author [27].

We now discuss our applications. The key to these is that two deformation equiv-

alent projective hyper-Kähler manifolds can be joined via a sequence of birational

equivalences and polarized deformations over algebraic varieties, provided that b2 > 6.
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0.7. Theorem. — Let X1 and X2 be deformation equivalent (in the complex analytic

sense) complex hyper-Kähler varieties. Assume that b2(Xi) > 6. Then there exist:

– finitely many connected and non-singular complex varieties Si, for i = 1, . . . , N ;

– for each i = 1, . . . , N , a smooth and projective morphism of schemes Xi → Si

with fibres hyper-Kähler varieties;

– for i = 1, . . . , N , points ai, bi ∈ Si together with birational maps

X1 99K X
1
a1
, Xibi 99K X

i+1
ai+1

, for i = 1, . . . , N − 1, XNbN 99K X2.

This result uses the description of the ample cone of a hyper-Kähler variety given

by Amerik–Verbitsky [2]. Soldatenkov states a similar result in [79] (which does not

seem to require that b2 > 6), but we have not been able to completely follow his

argument.

As a consequence of Theorem 0.7, combining Theorem 0.5 with Riess’ result in [76]

that birational hyper-Kähler varieties have isomorphic Chow motives, we obtain that

deformation equivalent hyper-Kähler varieties with b2 > 6 have isomorphic defect

groups.

0.8. Corollary. — Let K ⊂ C be an algebraically closed field. Let X1 and X2 be

hyper-Kähler varieties over K such that X1,C and X2,C are deformation equivalent

(in the complex analytic sense), and assume that b2(Xi) > 6. Then, the equivalent

statements in Corollary 0.4 hold for X1 if and only if they hold for X2.

Motives of known hyper-Kähler varieties. — Let K ⊂ C be a finitely generated

field, with algebraic closure K̄ ⊂ C, and let ` be a fixed prime number.

In what follows, a hyper-Kähler variety X over K is called known if XC is de-

formation equivalent (in the complex analytic sense) to one of the known examples.

Thus, XC is of one of the deformation types K3[n], Kumn, OG10 or OG6.

0.9. Theorem. — The defect group P (XK̄) of any known hyper-Kähler variety X

over K is trivial. If Y = X1 ×X2 × · · · ×Xk is any product of known hyper-Kähler

varieties over K, we have:

– YK̄ has abelian motive. Any Hodge class on H•(Y ) is motivated.

– The Mumford–Tate conjecture holds for Y . In particular, the conjectures of

Hodge and Tate are equivalent for Y .



DEFECT GROUPS OF HYPER-KÄHLER VARIETIES 13

All known hyper-Kähler varieties have b2 > 6. By Corollary 0.8, it suffices to

find in each of the known deformation class a hyper-Kähler variety with trivial defect

group or, equivalently, with abelian André motive; this is done analyzing a specific

example in each deformation class. The statement about products is then deduced

applying a result of Commelin [20]. That the motives of varieties of K3[n]-type are

abelian had already been proven by Schlickewei [77] using work of Markman [55].

Theorem 0.9 appeared in our joint work [29].

The full motive is determined by H2(X). — Even if we are as yet unable to

prove in general that the defect group is trivial, we can show that motives of hyper-

Kähler varieties are determined by their component in degree 2.

0.10. Theorem. — Let K ⊂ C be an algebraically closed field. Let X1 and X2 be

hyper-Kähler varieties over K with b2(Xi) > 6 such that X1,C and X2,C are defor-

mation equivalent. If the odd cohomology of Xi is not trivial, assume that the mo-

tive H1(Ai) of the Kuga–Satake abelian variety Ai on H2(Xi) belongs to 〈H•(Xi)〉.
Let f : H2(X1)

∼−−→ H2(X2) be a Hodge isometry. Then, there exists an isomorphism

of graded algebras F : H•(X1)
∼−−→ H•(X2) which is the realization of an isomorphism

of motives H•(X1)
∼−−→ H•(X2) in AMK .

So far, the only known hyper-Kähler varieties with non-trivial odd cohomology are

those of Kumn-type, n ≥ 2.

Galois representations attached to hyper-Kähler varieties. — With the

Mumford–Tate conjecture being proven for all known hyper-Kähler varieties in

Theorem 0.9, we can show that the Galois representations on their étale cohomology

are determined by their component in degree 2, in the following strong sense.

We consider fields K1,K2 ⊂ C which are finitely generated over Q, with algebraic

closure K̄1, K̄2 ⊂ C respectively. We fix a prime number `.

0.11. Theorem. — Let Xi be a hyper-Kähler variety over Ki of known deformation

type, for i = 1, 2. Assume that X1,C and X2,C are deformation equivalent. Let Γ

be a subgroup of Gal(K̄1/K1), and let ε : Γ → Gal(K̄2/K2) be a homomorphism.

Assume that f : H2
` (X1)

∼−−→ H2
` (X2) is a Γ-equivariant isometry with respect to the

Beauville–Bogomolov form. Then there exists a subgroup Γ′ ⊂ Γ of finite index, and

an isomorphism of graded algebras F : H•` (X1)
∼−−→ H•` (X2) which is Γ′-equivariant.
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We also obtain an analogue for hyper-Kähler varieties over finite fields. Despite the

study of such varieties being still in an early stage, certain moduli spaces of sheaves

on K3 surfaces in positive characteristic play a crucial role in Charles’ proof of the

Tate conjecture for K3 surfaces [19]. Other examples of hyper-Kähler varieties over

finite fields are studied in [30], [31] and [32]; in each case, the varieties studied can

be lifted to characteristic 0.

Let k be a finite field, and let Z1 and Z2 be smooth projective varieties over k. We

assume that there exist hyper-Kähler varieties X1 and X2 over fields of characteristic 0

which lift Z1 and Z2. We let ` be a prime number invertible in k and consider

H•` (Zi) :=
⊕

j H
j
ét(Zi,k̄,Q`). By the smooth and proper base-change theorems we

have an isomorphism of graded algebras H•` (Xi) ∼= H•` (Zi); the Beauville–Bogomolov

form induces a non-degenerate symmetric bilinear form on H2
` (Zi).

0.12. Theorem. — With notation and assumptions as above, assume that X1

and X2 are known hyper-Kähler varieties, and that X1,C and X2,C are deforma-

tion equivalent (in the complex analytic sense). Let f : H2
` (Z1)

∼−−→ H2
` (Z2) be a

Gal(k̄/k)-equivariant isometry. Then, there exist a finite field extension k′ of k and

a Gal(k̄/k′)-equivariant isomorphism of graded algebras F : H•` (Z1)
∼−−→ H•` (Z2).

This result generalizes the work of Frei [30], which deals with the special case in

which Z1 and Z2 are moduli spaces of stable sheaves on K3 surfaces.

Overview of the contents

In Chapter 1, we recall basic facts on hyper-Kähler varieties. Due to the prominent

role which it plays in our arguments, we present in detail the LLV-Lie algebra g(X) of

a hyper-Kähler variety, introduced by Looijenga–Lunts [51] and Verbitsky [83]. We

have included a complete proof of their theorem describing the Lie algebra g(X).

In Chapter 2, we recall the statement of the Mumford–Tate conjecture and in-

troduce various category of motives. We discuss in particular André motives, their

motivic Galois groups and their behaviour under deformations, following [62].

In Chapter 3, we study the Chow motives of O’Grady moduli spaces.
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In Chapter 4, we study the Hodge structure on the cohomology of a hyper-Kähler

variety. We use the LLV-Lie algebra to show that the total Hodge structure is con-

trolled by the second cohomology. Similar results appeared already in [51], [83], and,

more recently, in [36] and [80]. We also give a Tannakian characterization of the

Kuga–Satake construction, which appears to be new.

In Chapter 5, we define the defect group of hyper-Kähler varieties, and prove its

main properties, Theorem 0.3, Corollary 0.4 and Theorems 0.5, 0.6.

In Chapter 6, we present our applications, and prove Corollary 0.8 and Theo-

rems 0.9, 0.10, 0.11, 0.12.

In Chapter 7, we present a conjecture on the cohomology algebras of hyper-Kähler

varieties, which we call the conjecture of cohomological rigidity. It suggests a different

approach to show that defect groups are finite and hence to prove the Mumford–Tate

conjecture, not relying on a deformation to a known example. We establish the

conjecture for fourfolds of Kum2-type, varieties of K3[n]-type for any n, and varieties

of OG10-type. This approach was in fact used in our work [27] to establish the

Mumford–Tate conjecture for varieties of K3[n] or OG10-type.

In the Appendix, we prove Theorem 0.7.

Notation and conventions

– Reductive algebraic groups are not necessarily connected. Given an algebraic

group G, we denote by G0 its connected component containing the identity.

– We denote by H the real division algebra of Hamilton’s quaternions. Any h ∈ H
can be written as h = a + bI + cJ + dK for real numbers a, b, c, d, where I, J ,

and K satisfy

I2 = J2 = K2 = IJK = −1.

The norm and trace of h as above are Nm(h) = a2 + b2 + c2 +d2 and Tr(h) = 2a

respectively; quaternions of trace zero are called pure. We have h2 = −1 if and

only if Tr(h) = 0 and Nm(h) = 1, i.e. h = αI +βJ + γK with α2 +β2 + γ2 = 1.

Thus, the set of square roots of −1 in H is a 2-dimensional real sphere. Any

R-algebra automorphism f : H→ H is given by f(a) = hah−1 for some h ∈ H.
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– Let X = (M, I) be a complex manifold; here M denotes the underlying differ-

entiable manifold and I is the complex structure of X. A Kähler metric g on X

is a Riemannian metric on M such that g(I(u), I(v)) = g(u, v) for all vector

fields u, v, and the 2-form defined by ω(u, v) = g(I · u, v) for all vector fields u,

v is closed, i.e. dω = 0. The differential form ω is called the Kähler form of g;

any two elements of the set {I, g, ω} determine the third.

– If X is a complex manifold of dimension n, we let OX and TX denote the

structure sheaf and the holomorphic tangent bundle of X respectively. The

cotangent bundle of X is denoted by Ω1
X = T ∨X ; we let ΩpX denote the p-th

exterior power of Ω1
X . The canonical bundle of X is by definition KX = ΩnX .

The Betti numbers of X are bk = dimQH
k(X,Q), where Hk(X,Q) is the k-th

singular cohomology group of X. If X is compact Kähler we have the Hodge

decomposition

Hk(X,C) =
⊕

p,q≥0, p+q=k

Hp,q(X),

which satisfies Hp,q(X) = Hq,p(X). The space Hp,q(X) is isomorphic

to Hq(X,ΩpX); the Hodge numbers of X are hp,q(X) = dimCH
p,q(X).

– All cohomology groups and Chow groups are with rational coefficients, if not

specified otherwise.



CHAPTER 1

HYPER-KÄHLER MANIFOLDS AND THE LLV-LIE

ALGEBRA

1.1. Basics

This section contains some basic facts on hyper-Kähler manifolds. We follow mainly

the references [9] and [42].

1.1.1. — Let X be a complex manifold. We will say that X is a hyper-Kähler

manifold if:

– X admits a Kähler metric,

– X is compact and simply-connected,

– the cohomology group H0(X,Ω2
X) is one-dimensional, generated by the class of

an everywhere non-degenerate holomorphic closed two-form σ.

It follows immediately from the definition that the dimension of a hyper-Kähler man-

ifold X is even, and that KX
∼= OX . The form σ is called a holomorphic symplectic

form; it induces an isomorphism TX ∼= Ω1
X . A holomorphic symplectic manifold is a

manifold X which carries a holomorphic symplectic form. In the literature, hyper-

Kähler manifolds are often called irreducible holomorphic symplectic manifolds.

1.1.2. — Let (M, g) be a 4n-dimensional compact and connected Riemannian mani-

fold. We say that g is a hyper-Kähler metric if its holonomy group equals the compact

symplectic group Sp(n). The group Sp(n) is the subgroup of H-linear automorphisms

of Hn preserving the standard H-Hermitian inner product. Hence, a hyper-Kähler

metric g uniquely determines an isometric action of the Hamiltonian quaternions H
on the tangent bundle TM of M , and there exist complex structures I, J and K
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on M such that

IJ = K, JK = I, KI = J.

In this situation, the metric g is Kähler on the complex manifolds (M, I), (M,J) and

(M,K). In fact, any h ∈ H such that h2 = −1 gives a complex structure on M , and

the metric g is Kähler on (M,h). We denote by ωh the Kähler form of the Kähler

metric g on (M,h); the corresponding cohomology class is denoted with the same

symbol ωh ∈ H2(M,R). Since h2 = −1 if and only if h = αI + βJ + γK with

α2 + β2 + γ2 = 1, the metric g is Kähler with respect to a 2-dimensional real sphere

of complex structures on M , which we call the complex structures induced by the

hyper-Kähler metric g.

1.1.3. Definition. — The characteristic 3-space associated to the hyper-Kähler

metric g is the 3-dimensional real subspace

Pg := 〈ωI , ωJ , ωK〉 ⊂ H2(M,R).

Equivalently, Pg is the span of the Kähler classes ωh for all complex structures h

induced by g. We will sometimes call (g, I, J,K) a hyper-Kähler structure on M . Any

two hyper-Kähler structures (g, I, J,K) and (g, I ′, J ′,K ′) associated with the same

hyper-Kähler metric are conjugate, in the sense that there exists a quaternion h ∈ H
such that I ′ = hIh−1, J ′ = hJh−1, K ′ = hKh−1.

1.1.4. — The existence of holomorphic symplectic forms on Kähler manifolds is

closely related to hyper-Kähler metrics. Proofs of the following assertions can be

found in [9, Proposition 4].

Let X be a compact complex manifold of dimension 2n and let g be a Kähler metric

on X. Assume that g is a hyper-Kähler metric on the underlying real manifold M .

This already implies that X is simply connected. Moreover, for a suitable hyper-

Kähler structure (g, I, J,K) we have X = (M, I) and σI := ωJ +iωK is a holomorphic

symplectic form on X, unique up to scalar. Therefore, X is a hyper-Kähler manifold.

Conversely, let X be a hyper-Kähler manifold as in §1.1.1. Let α ∈ H2(X,R) be a

Kähler class. Then, by Yau’s solution to Calabi conjecture [91], there exists a unique

Ricci-flat metric g on X with Kähler class α, and Beauville deduces from the existence

and uniqueness of the holomorphic symplectic form that g is a hyper-Kähler metric.

If σ ∈ H2(X,C) denotes the cohomology class of the holomorphic symplectic form,
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then the characteristic 3-space Pg associated to the hyper-Kähler metric g is

Pg = 〈α,Re(σ), Im(σ)〉 ⊂ H2(X,R).

Hence the notions introduced in §1.1.1 and §1.1.2 are essentially equivalent: any

Kähler class α on the hyper-Kähler manifold X = (M, I) represents a hyper-Kähler

metric gα on M , while if (M, g) is a compact Riemannian manifold with g a hyper-

Kähler metric, then M admits a 2-sphere of complex structures h for which the

complex manifold Xh = (M,h) is hyper-Kähler.

The holonomy principle allows to calculate the holomorphic differential forms on

a hyper-Kähler manifold, see [9, Proposition 3].

1.1.5. Theorem. — Let X be a hyper-Kähler manifold of dimension 2n. Let σ ∈
H0(X,Ω2) be a generator. Then

H0(X,Ωk) =

C · σj , if k = 2j ≤ 2n;

0, otherwise.

1.1.6. — Since a hyper-Kähler manifold X is simply connected by definition, it

satisfies H1(X,Z) = 0. The second cohomology group H2(X,Z) is torsion free

and resembles very much that of a K3 surface. The Hodge decomposition gives

H2(X,Z)⊗ C = H2,0(X)⊕H1,1(X)⊕H0,2(X), with H2,0(X) = H0,2(X) of dimen-

sion 1. Moreover, there exists a symmetric bilinear form

q : H2(X,Z)×H2(X,Z)→ Z,

the Beauville–Bogomolov form, which enjoys the following remarkable properties.

1.1.7. Theorem. — (i) The form q is non-degenerate, of signature (3, b2−3). It

does not depend on the complex structure of X, but only on its topology. The

Hodge decomposition is orthogonal for the C-linear extension of q.

(ii) Let α ∈ H1,1(X) ∩H2(X,R) be a Kähler class, and let g be the corresponding

hyper-Kähler metric. Then the form q is positive definite on the characteristic

3-space Pg ⊂ H2(X,R) associated to g.

(iii) The quadratic form q satsfies Fujiki’s relation: there exists a constant c > 0

such that ∫
X

α2n = c · q(α, α)n.
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Parts (i) and (ii) of the Theorem are [9, Theorem 5], while (iii) is [34, Theo-

rem 4.7].

1.1.8. — Let X be a hyper-Kähler manifold. A deformation of a compact Kähler

manifold X is a proper and smooth morphism X → S of connected complex spaces

such that for a distinguished point 0 ∈ S we have X0 = X. All fibres Xs for s ∈ S
sufficiently close to 0 are then compact Kähler manifolds. By [9, Remarque 1], the

fibre Xs is a hyper-Kähler manifold whenever it is Kähler. Via deformation theory one

can show that there exists a universal local deformation space Def(X) parametrizing

local deformations of X, see [42] and the references therein. The local deformation

space should be thought as the germ of a complex space at a distinguished point

0 ∈ Def(X). There exists a universal family f : X → Def(X) such that X0 = X: for

any deformation Y → S of X such that Ys = X for the point s ∈ S, we obtain a

classifying morphism U → Def(X) in a neighborhood U ⊂ S of s, such that Y |U is

the pull-back of the universal family along U → Def(X).

It is a result of Bogomolov [11] that Def(X) is smooth of dimension b2(X) − 2

for any hyper-Kähler manifold X. We may then assume that Def(X) is a com-

plex ball; in particular Def(X) is simply connected and the local system R2f∗Z is

constant on Def(X). Let Λ denote the lattice H2(X,Z) equipped with the Beauville–

Bogomolov form q, and let ΛDef(X) be the constant local system on Def(X) with

fibre Λ. The identification H2(X0,Z) = Λ determines an isomorphism of local sys-

tems φ : R2f∗Z
∼−−→ ΛDef(X). The local period map is the map

P : Def(X)→ P(Λ⊗ C), t 7→ φt(H
2,0(Xt)).

It is holomorphic. The next result is [9, Theorem 5].

1.1.9. Theorem (Local Torelli theorem). — Let D ⊂ P(Λ ⊗ C) be the non-

singular quadric defined by q(x, x) = 0. The image of P lies in the open real analytic

subset

Do = {x ∈ D | q(x, x̄) > 0} ⊂ D.

Moreover P : Def(X)→ Do is a local isomorphism.

The existence of the Beauville–Bogomolov form q is closely related with the local

Torelli theorem: one can prove the existence of q by showing that the image of the

local period map is a local isomorphism onto a non-singular quadric.
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1.1.10. — Let X and Λ be as above. A Λ-marked hyper-Kähler manifold is a

pair (Y, τ) where Y is a hyper-Kähler manifold and τ : H2(Y,Z)→ Λ is an isometry. It

is known ([42]) that there exists a coarse moduli space M of Λ-marked hyper-Kähler

manifolds, which, roughly speaking, is constructed by gluing together the local defor-

mation spaces. Its points correspond bijectively to Λ-marked hyper-Kähler manifolds

up to isomorphism, where (Y, τ) and (Y ′, τ ′) are isomorphic if there exists an isomor-

phism f : Y
∼−−→ Y ′ such that f∗ : H2(Y ′,Z) → H2(Y,Z) equals τ−1 ◦ τ ′. For any

connected component M0 of M, we obtain the global period map

P : M0 → Do.

It is holomorphic and is a local isomorphism by the local Torelli theorem.

A global Torelli theorem for hyper-Kähler manifolds can be stated in terms of P.

The space M0 is a complex manifold, but it is not Hausdorff. Nevertheless, it admits a

universal Hausdorff quotient M0 →M†0, obtained identifying the inseparable points,

where x, y ∈ M0 are inseparable if any two open neighborhoods x ∈ U and y ∈ V
have non-trivial intersection. Any continuous map from M0 to a Hausdorff space

factors through M†0. In [42], Huybrechts proved the surjectivity of the global period

map and that inseparable points of M0 correspond to bimeromorphic manifolds. The

theorem below was then proved by Verbitsky in [84], see also [44] and [56].

1.1.11. Theorem (Global Torelli theorem). — For any connected compo-

nent M0 of M the period map P : M0 → Do induces an isomorphism M†0
∼= Do.

If x, y ∈M0 are inseparable points then the corresponding hyper-ähler manifolds are

bimeromorphic.

1.1.12. — Let X and Y be hyper-Kähler manifolds. We say that X and Y are

deformation equivalent if there exists a proper and smooth morphism X → S of

connected complex spaces and two points s, s′ ∈ S together with isomorphisms such

that Xs ∼= X and Xs′ ∼= Y . By the smoothness of the local deformation spaces,

we may assume that S is a complex manifold; in this situation, it is known ([89,

Chapter 9]) that any two fibres of X→ S are diffeomorphic. The known examples of

hyper-Kähler manifolds are therefore divided into deformation classes.

The only hyper-Kähler surfaces are K3 surfaces. In higher dimension the classifi-

cation is an open problem; the first higher dimensional examples were constructed by
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Beauville [9]. For the time being, any known hyper-Kähler manifold is deformation

equivalent to one of the following examples.

1.1.13. — Let S be a K3 surface. For any integer n ≥ 1, the Douady space S[n]

of zero-dimensional subspaces (Z,OZ) of S with dimC(OZ) = n on S is a hyper-

Kähler manifold of dimension 2n. If S is projective then S[n] is the Hilbert scheme

parametrizing zero-dimensional subschemes of lenght n of S; for n = 1, this is just S.

The hyper-Kähler manifolds S[n] are all deformation equivalent to each other, and we

say that a hyper-Kähler manifold is of K3[n]-type if it is a deformation of some S[n].

These varieties have b2 = 23.

1.1.14. — Let T be a complex torus. Let n ≥ 1 be an integer and consider the

Douady space T [n+1] of zero-dimensional subspaces (Z,OZ) with dimC(OZ) = n+ 1;

if T is projective, then T [n+1] is the Hilbert scheme of zero-dimensional subschemes

of lenght n + 1 in T . It is a compact Kähler manifold and admits a holomorphic

symplectic form, but it is not simply connected and H2,0(T [n+1]) is not 1-dimensional.

Let T (n+1) denote the (n + 1)-th symmetric power of T . The sum operation of

T yields a morphism s : T (n+1) → T ; composing it with the Hilbert-Chow morphism

T [n+1] → T (n+1) we obtain a holomorphic map Σ: T [n+1] → T . This morphism is

smooth and proper, and all of its fibres are isomorphic. The generalized Kummer

manifold Kn
T is by definition the fibre Σ−1(0): it is a hyper-Kähler manifold of di-

mension 2n, and if T ′ is another complex torus then Kn
T and Kn

T ′ are deformation

equivalent. We say that a hyper-Kähler manifold is of Kum[n]-type if it is a deforma-

tion of a generalized Kummer manifold Kn
T ; they have b2 = 7.

1.1.15. — For any n ≥ 2 the manifolds of K3[n] and Kum[n]-type are not deformation

equivalent. Later, two more deformation classes were discovered by O’Grady [68],

[69], one in dimension 10 and the other in dimension 6. We refer to these deformation

classes as the OG10 and OG6-types respectively. Their second Betti numbers are 24

and 8 respectively, as calculated by Rapagnetta [74], [75].

1.2. The LLV-construction

In this section we construct a Q-Lie algebra g(X) acting on the cohomology of a

hyper-Kähler manifold, following Looijenga–Lunts [51] and Verbitsky [83].
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1.2.1. — In this text, a Q-Frobenius algebra of level m is a graded associative Q-

algebra V • =
⊕2m

i=0 V
i with unity and which is graded-commutative, with an isomor-

phism
∫

: V 2m → Q such that α, β 7→
∫
α · β defines a non-degenerate pairing on V •.

Any class x ∈ V 2 defines a nilpotent endomorphism of V •

Lx : V • → V •+2, Lx(α) := x · α.

We say that x has the Lefschetz property if Lkx : V m−k → V m+k is an isomorphism

for all k > 0. Let θ : V • → V • be multiplication by j −m on V j . Then x has the

Lefschetz property if and only if there exists a Q-linear map Λx : V • → V •−2 such

that (Lx, θ,Λx) is an sl2-triple; explicitly this means that we have the relations

[Lx,Λx] = θ, [θ, Lx] = 2Lx, [θ,Λx] = −2Λx.

The set of x ∈ V 2 with the Lefschetz property is Zariski open in V 2.

1.2.2. — Let us briefly recall how to construct Λx, if x ∈ V 2 has the Lefschetz

property. For 0 ≤ j ≤ m, we define the primitive (with respect to x) part P jx ⊂ V j as

P jx := ker(Lm−j+1
x : V j → V 2m−j+2).

We define P jx = 0 for j /∈ {0, 1, . . . ,m}. Then any y ∈ V k can be written uniquely

as a sum y =
∑
i≥0 L

i
x(yk−2i) with yk−2i ∈ P k−2i

x . For i ≥ 0, we obtain projec-

tors πk,i : V
k → P k−2i

x such that y =
∑
i≥0 L

i
x(πk,i y); clearly, if k−2i /∈ {0, 1, . . . ,m}

then πk,i = 0. Explicitly, if k ≤ m, the projectors πk,i are inductively defined by

πk,i := (Lm−k+2i
x |V k−2i)

−1Lm−k+i
x (y −

∑
i′>i

Li
′

x (πk,i′ y)).

If k > m and y ∈ V k, then y = Lk−mx (z) for a unique z ∈ V 2m−k. We therefore

obtain y =
∑
i L

k−m+i(π2m−k,iz). In other words, for any i ≥ 0, we have

πk,i = π2m−k,i−k+m ◦ (Lk−mx |V 2m−k)−1.

For y ∈ V k, we define

Λx(y) = Λx

(∑
i≥0

Lix(πk,i y)
)

=
∑
i≥1

i(m− k + i+ 1) · Li−1
x (πk,i y);

a straightforward computation shows that (Lx, θ,Λx) is an sl2-triple.

By standard representation theory of sl2, for any sl2-triple (Lx, θ,Λx), the prim-

itive cohomology P jx coincides with ker(Λx) ∩ V j . This implies that Λx is uniquely
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determined by Lx and θ, since if (Lx, θ,Λ
′
x) is also an sl2-triple then Λx−Λ′x commutes

with Lx and hence (Λx − Λ′x)(
∑
i≥0 L

i
x(πk,iy)) = 0 for all y ∈ V k.

1.2.3. Definition. — Let V • be a Frobenius algebra. Assume that there exists

some x ∈ V 2 with the Lefschetz property. The LLV-Lie algebra g(V •) of V • is the

Lie subalgebra of gl(V •) generated by the sl2-triples (Lx, θ,Λx) for x ∈ V 2 with the

Lefschetz property.

We define a non-degenerate bilinear form φ on V • by φ(α, β) = (−1)k
∫
α · β for α

of degree 2k+m or 2k+m+1. The sign correction ensures that φ is g(V •)-invariant,

in the sense that g(V •) ⊂ so(V •, φ); we call φ the canonical blinear form on the

Frobenius algebra V •.

The adjoint action of θ on g(X) has even integers as eigenvalues, and we

write g(V •) = ⊕i g2i(V
•) accordingly. We collect here two easy observations.

1.2.4. Lemma. — (i) Let V •1 , V •2 be two Frobenius algebras and assume that

there exists x ∈ V 2
1 with the Lefschetz property. Let F : V •1

∼−→ V •2 be an

isomorphism of graded algebras; we denote by F∗ : gl(V •1 )
∼−→ gl(V •2 ) the iso-

morphism A 7→ FAF−1. Then F∗ restricts to an isomorphism of graded Lie

algebras F∗ : g(V •1 )
∼−→ g(V •2 ).

(ii) Let V • be a Frobenius algebra, and assume that there exists x ∈ V 2 with the

Lefschetz property. Let G ⊂
∏
j GL(V j) be a group which acts on V • by graded

algebra automorphisms. Denote by K the kernel of the restriction G→ GL(V 2).

Then the action of K on V commutes with the action of g(X).

Proof. — (i). For any x ∈ V 2
1 we have F∗(Lx) = LF (x) because F is an algebra

homomorphism. We clearly also have F∗(θ1) = θ2. Moreover, if x ∈ V 2
1 has the

Lefschetz property then F (x) has it as well, and (F∗(Lx), F∗(θ1), F∗(Λx)) is an sl2-

triple, so F∗(Λx) = ΛF (x).

(ii). For k ∈ K, we have k(Lx)k−1 = Lk(x) = Lx, and kθk−1 = θ. By the above

argument we also have kΛxk
−1 = Λx whenever x ∈ V 2 has the Lefschetz property.

1.2.5. — The following example will be relevant for us. Let H be a Q-vector space

equipped with a non-degenerate symmetric bilinear form q. Let H̃ = Q ·v⊕H⊕Q ·w
be the orthogonal direct sum of (H, q) with U = Q · v ⊕ Q · w equipped with the

bilinear form
(

0 −1
−1 0

)
. We denote by q̃ the resulting bilinear form on H̃.
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We put on H̃ the structure of a Frobenius algebra of level 2 as follows: we declare

v, V , w to have degree 0, 2, 4 respectively; the algebra structure is given by

v · α = α for α ∈ H̃,

x · y = q(x, y) · w for x, y ∈ H,

z · w = 0 for z ∈ H ⊕Q · w.

It is readily seen that any x ∈ H with q(x, x) 6= 0 has the Lefschetz property,

since L2
x : Q · v → Q · w maps a · v to aq(x, x) · w. The Lie algebra g(H̃) is thus

defined; the semisimple element θ acts as multiplication by −2 (resp. 2) on Q · v
(resp. on Q · w), and it is zero on H.

The canonical bilinear form on the Frobenius algebra H̃ coincides with q̃. There-

fore, we have g(H̃) ⊂ so(H̃, q̃).

1.2.6. Proposition. — The Lie algebra g(H̃) equals so(H̃, q̃). The adjoint action

of θ on g(X) has eigenvalues −2, 0, 2 only. We have

g(H̃) = g−2(H̃)⊕ g0(H̃)⊕ g2(H̃),

where g−2(H̃) and g2(H̃) are abelian Lie subalgebras isomorphic to H and

g0(H̃) = Q · θ ⊕ so(H).

Proof. — Let n = dimV . We fix a basis v, e1, . . . , en, w of H̃. Let Q be the matrix

of the bilinear form q. The matrix corresponding to q̃ is then given by

Q̃ =


0 0 −1

0 Q 0

−1 0 0

 .

We write A ∈ gl(H̃) as

A =


a bT c

d A′ e

f gT h

 ,

in which a, c, f, h ∈ Q are scalars, b, d, e, g are vectors in H and A′ ∈ gl(H). The

matrix A ∈ so(H̃, Q̃) if and only if AT Q̃ + Q̃A = 0; computing this expression we
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obtain the equations

a+ h = 0, A′ ∈ so(H,Q),

Qd− g = 0, Qe− b = 0,

2c = 0, 2f = 0.

Given a vector x ∈ H with xTQx 6= 0, the corresponding sl2-triple is given by

Lx =


0 0 0

x 0 0

0 xTQ 0

 , θ =


−2 0 0

0 0 0

0 0 2

 , Λx =
2

xTQx
·


0 xTQ 0

0 0 x

0 0 0

 .

Extending the coefficients to the complex numbers we may assume that {e1, . . . , en}
is an orthonormal basis of H; then it is easy to see that the C-Lie algebra gener-

ated by the commutators [Lx,Λy] is C · θ ⊕ so(HC). It follows that g(H̃) coincides

with so(H̃, q̃). The other assertions are now clear.

1.2.7. — Let X be a non-singular and projective complex algebraic variety of di-

mension n. By Poincaré duality, the cohomology algebra H•(X,Q) is a Frobenius

algebra of level n over Q. By the Hard Lefschetz theorem, the first Chern class of an

ample line bundle on X has the Lefschetz property.

1.2.8. Definition. — The LLV-Lie algebra g(X) of X is by definition the LLV-Lie

algebra attached to the Frobenius algebra H•(X,Q).

Recall (Definition 1.2.3) that this means that g(X) is generated by all sl2-triples

(Lx, θ,Λx) for x ∈ H2(X,Q) with the Lefschetz property, where Lx is given by cup-

product with x and θ is multiplication by j − n on Hj(X,Q). It is clear that the

Lie algebra g(X) does not depend on the complex structure on X but only on its

topology, since this is the case for the algebra H•(X,Q). We let φ be the canonical

bilinear form on the Frobenius algebra H•(X,Q); it is given by α, β 7→ (−1)k
∫
α · β

for α of degree 2k + n or 2k + n+ 1, where
∫

: H•(X,Q)→ H2n(X,Q) ∼= Q denotes

the projection. The form φ is g(X)-invariant, i.e. g(X) ⊂ so(H•(X,Q), φ).

1.2.9. Proposition ([51, Proposition 1.6]). — For any non-singular and projective

complex variety X, the Q-Lie algebra g(X) is semisimple. Moreover φ restricts to a

non-degenerate pairing on any g(X)-submodule of H•(X,Q).
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1.2.10. Corollary. — Let A• ⊂ H•(X,Q) be a subalgebra. Assume that A• is

stable under g(X). Then A• contains the subalgebra generated by H2(X,Q), and A•

is a Frobenius algebra of level n.

Proof. — Indeed, by Proposition 1.2.9, the restriction of φ to A• is non-degenerate.

This implies that H2n(X,Q) is contained in A•, and that the latter is a Frobenius al-

gebra. But the g(X)-submodule containing H2n(X,Q) clearly also contains H0(X,Q)

and any product x1 · x2 · . . . · xk of classes x1, x2, . . . , xk ∈ H2(X,Q).

1.2.11. — Let now X be a hyper-Kähler manifold of dimension 2n. By [42, Theo-

rem 3.5], X deforms to a projective hyper-Kähler variety X ′. Since X and X ′ are dif-

feomorphic, their cohomology algebras are isomorphic; hence, the Q-Lie algebra g(X)

is defined. The following theorem due to Verbitsky [83] and Looijenga–Lunts [51,

Proposition 4.5] describes g(X). Let H denote the space H2(X,Q) equipped with the

Beauville–Bogomolov form q, and let H̃ denote the orthogonal direct sum of H with

U = Q · v ⊕Q · w equipped with the bilinear form
(

0 −1
−1 0

)
.

1.2.12. Theorem. — (i) There exists a unique isomorphism of Q-Lie algebras

ϕ : g(X)
∼−−→ so(H̃)

such that ϕ(θ) acts as multiplication by −2 (resp. by 2) on Q · v (resp. on Q ·w)

and it is zero on H, and, for any x, y ∈ H, we have

ϕ(Lx)(v) = x, ϕ(Lx)(y) = q(x, y) · w, ϕ(Lx)(w) = 0.

(ii) We have g(X) = g−2(X)⊕g0(X)⊕g2(X), where g−2(X) and g2(X) are abelian

subalgebras isomorphic to H. The isomorphism ϕ restricts to

g0(X)
∼−−→ Q · ϕ(θ)⊕ so(H).

(iii) The induced action of so(H) on H•(X,Q) is by derivations, and its action

on H2(X,Q) is the standard representation.

Note that the isomorphism ϕ needs to map sl2-triples to sl2-triples; this immedi-

ately shows its uniqueness. Also note that (ii) follows from (i) via Proposition 1.2.6.
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1.2.13. — In the next two sections we will give the proof of Theorem 1.2.12. Let M

be the real manifold underlying X. The starting observation is that any hyper-

Kähler metric g on M determines an action of a real Lie algebra hg on the coho-

mology H•(M,R). Let (g, I, J,K) be a hyper-Kähler structure associated with g.

Since g is Kähler with respect to the three complex structures I, J,K, the Kähler

classes ωI , ωJ , ωK ∈ H2(X,R) have the Lefschetz property.

1.2.14. Definition. — The Lie algebra hg ⊂ gl(H•(X,R)) is the real Lie subalgebra

generated by

LωI
, LωJ

, LωK
, ΛωI

, ΛωJ
, ΛωK

.

We will explicitly compute the Lie algebra hg in Theorem 1.3.8; it turns out

that it does not depend on the chosen hyper-Kähler metric, being always isomorphic

to so(4, 1), but its action on the cohomology of M does. Thus, each hyper-Kähler

metric g on M yields a different embedding hg ↪→ g(X)⊗ R.

The key fact in order to compute g(X) is then that the image of the different

embeddings hg ↪→ g(X) ⊗ R for all hyper-Kähler metrics on M generate g(X) ⊗ R.

This is a consequence of the local Torelli theorem, see Proposition 1.4.2, and it has

strong implications for the structure of g(X), see Proposition 1.4.4. As a consequence,

the subalgebra A•2 ⊂ H•(X,Q) generated by H2(X,Q) is a faithful and irreducible

g(X)-module. Calculating the algebra A•2, see Theorem 1.4.7, leads to the conclusion.

1.3. The Lie algebra of a hyper-Kähler metric

In this section we compute the Lie algebra hg attached to a hyper-Kähler metric g

on M (Definition 1.2.14). The main idea is to use the Kähler identities to reduce this

calculation to that of an analogous Lie algebra acting on the differential forms on M ,

which, in turn, is reduced to a linear algebraic computation.

1.3.1. — Let T be a finitely generated left H-module equipped with a positive def-

inite H-invariant R-bilinear symmetric pairing 〈−,−〉. Then T is a 4m-dimensional

real vector space, and it is in fact isomorphic to an orthogonal direct sum T ∼= H⊕m,

were H is equipped with the standard inner product. To see this, choose any e ∈ T
with 〈e, e〉 = 1. Then {e, I · e, J · e,K · e} is an orthonormal basis of H · e, since

〈e, I · e〉 = 〈I · e, I2 · e〉 = −〈e, I · e〉 = 0.
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Thus we may write T ∼= H⊕H⊥; by induction we conclude that T ∼= H⊕m for some m.

Any pure quaternion h of norm 1 gives a complex structure on T . The induced

orientations of T are all compatible, thus T is canonically oriented. Any such complex

structure h determines a decomposition

T ⊗R C = T 1,0
h ⊕ T 0,1

h

such that the action of h on T 1,0 (resp. on T 0,1) is multiplication by i (resp. by −i).

1.3.2. — The inner product induces an isomorphism T ∼= T∨. We obtain a right

action of H on T∨ and on the exterior algebra
∧•

T∨. The inner product on T extends

to an inner product 〈−,−〉 on
∧•

T∨: if {e1, . . . , e4m} is an orthonormal basis of T ,

then

{ei1 ∧ . . . ∧ eik , 1 ≤ i1 < i2 < . . . < ik ≤ 4m},

is an orthonormal basis of
∧•

T∨; the resulting product does not depend on the chosen

basis. We let vol := e1∧e2∧. . .∧e4m; it is independent on the chosen basis of T as long

as it has the canonical orientation. The Hodge star operator ? :
∧•

T∨ →
∧4m−•

T∨

is defined by declaring that α ∧ ?β = 〈α, β〉 · vol for all α, β ∈
∧•

T∨.

For any pure quaternion h of norm 1, the decomposition T ⊗R C = T 1,0
h ⊕ T 0,1

h

induces a p, q-decomposition
∧•

T∨ ⊗R C =
⊕

p,q

∧p,q
h T∨, where

∧p,q

h
T∨ :=

p∧
(T 1,0
h )∨ ⊗

q∧
(T 0,1
h )∨.

The complex conjugate of
∧p,q
h T∨ is

∧q,p
h T∨. Let Wh :

∧•
T∨ ⊗R C → T∨ ⊗R C be

multiplication by i(p − q) on
∧p,q
h T∨. For any x ∈

∧•
T∨ ⊗R C we have Wh(x) =

Wh(x); hence Wh is the complexification of a real endomorphism Wh of
∧•

T∨, called

the Weil operator. In fact, Wh extends the action of h on T∨ to a derivation of
∧•

T∨.

1.3.3. — Let θ :
∧•

T∨ →
∧•

T∨ be multiplication by k − 2m on
∧k

T∨. For any

pure quaternion h of norm 1, we define ωh ∈
∧2

T∨ by ωh(α, β) := 〈h(α), β〉, and we

introduce the endomorphism Lωh
:
∧•

T∨ →
∧•+2

T∨ given by Lωh
(α) := ωh ∧ α.

We also let Λωh
:= ?−1Lωh

?. Then (Lωh
, θ,Λωh

) is an sl2-triple, see [43, Proposi-

tion 1.2.26]. In particular ωh has the Lefschetz property.

1.3.4. Definition. — The Lie algebra h(T ) ⊂ gl(
∧•

T∨) is the Lie subalgebra gen-

erated by

LωI
, LωJ

, LωK
, ΛωI

, ΛωJ
, ΛωK

.
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The next result due to Verbitsky gives generators and relations for the Lie alge-

bra h(T ). Consider the 3-dimensional subspace P := 〈ωI , ωJ , ωK〉 ⊂
∧2

T∨, and

let P̃ be the orthogonal direct sum of P with U = R · u ⊕ R · v equipped with the

bilinear form
(

0 −1
−1 0

)
. Consider the Weil operators WI ,WJ ,WK (see §1.3.2).

1.3.5. Proposition ([82]). — (i) We have

[LωI
,ΛωJ

] = WK , [LωJ
,ΛωK

] = WI , [LωK
,ΛωI

] = WJ .

(ii) The Lie algebra h(T ) is 10-dimensional; a basis is given by

LωI
, LωJ

, LωK
, θ, WI , WJ , WK , ΛωI

, ΛωJ
, ΛωK

.

Introducing the notation Ki,j := [Lωi
,Λωj

], for i, j ∈ {I, J,K}, the following is

a full set of relations among the generators of h(T ):

[θ, Lωi ] = 2Lωi , [θ,Λωi ] = −2Λωi ,

[Lωi
,Λωi

] = θ, [θ,Ki,j ] = 0,

[Lωi , Lωj ] = 0, [Λωi ,Λωj ] = 0,

[Ki,j ,Kj,k] = 2Ki,k, Ki,j = −Kj,i,

[Ki,j , Lωj
] = 2Lωi

, [Ki,j ,Λωj
] = 2Λωi

,

[Ki,j , Lωk
] = [Ki,j ,Λωk

] = 0, for k 6= i, j.

(iii) There exists a unique isomorphism ϕ : h(T )
∼−−→ so(P̃ ) ∼= so(4, 1) such that ϕ(θ)

acts as multiplication by −2 (resp. 2) on R · v (resp. on R · w) and it is zero

on P , and, for t = I, J,K and any y ∈ P , we have

ϕ(Lωt)(v) = ωt, ϕ(Lωt)(y) = q(ωt, y) · w, ϕ(Lωt)(w) = 0.

This isomorphism restricts to ϕ : 〈WI ,WJ ,WK〉
∼−−→ so(P ).

Proof. — It is clear that the operators LωI
, LωJ

, LωK
commute. Then we have

[ΛωI
,ΛωJ

] = ?−1[LωI
, LωJ

]? = 0,

and hence ΛωI
,ΛωJ

,ΛωK
commute as well.

The module T is an orthogonal direct sum of copies of H with the standard inner

product, T = H⊕m. It follows that
∧•

T∨ = (
∧•H∨)⊗m. The classes ωI , ωJ , ωK

belong to (
∧2 H∨)⊕m, and we conclude that h(T ) equals h(H) which acts on

∧•
T∨

via the m-fold product of its action on
∧•H∨. Thus, we may assume m = 1.
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In this case we explicitly compute all the necessary relations. We have T = H
with its standard inner product. We let e1, eI , eJ , eK be the basis of H∨ dual to the

orthonormal basis 1, I, J,K of H. We then calculate

ωI = e1 ∧ eI + eJ ∧ eK ,

ωJ = e1 ∧ eJ − eI ∧ eK ,

ωK = e1 ∧ eK + eI ∧ eJ .

Let P ⊂
∧2 H∨ be the subspace generated by ωI , ωJ , ωK . It is readily seen that this

is an orthogonal basis of P . We have
∧2 H∨ = P ⊕ P⊥; the Hodge star operator is

the identity on P and it is −1 on P⊥.

We now compute the action of [LωJ
,ΛωK

]: on H∨ this is given by the matrix
0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ;

on
∧3 H∨, with respect to the basis ê1, êI , êJ , êK , it is given by the transpose matrix.

Here, ê1 = eI ∧ eJ ∧ eK , êI = e1 ∧ eJ ∧ eK , etc. Next, the action of [LωJ
,ΛωK

] is

trivial on
∧0 H∨, on P⊥ ⊂

∧2 H∨ and on
∧4 H∨. On P = 〈ωI , ωJ , ωK〉 this action is

given by the matrix 
0 0 0

0 0 −2

0 2 0

 .

The action of WI on H∨ coincides with that of [LωJ
,ΛωK

]. Using that WI acts by

derivations on the algebra
∧•

T∨ we easily verify that [LωJ
,ΛωK

] = WI .

By similar computations we check that the Lie algebra h(H) is 10-dimensional

with the basis given in (ii) and calculate the complete set of relations among these

generators. This establishes (i) and (ii).

To prove (iii), we consider the non-degenerate form φ on
∧•H∨ given as follows.

Let
∫

:
∧•H∨ → ∧4 H∨ ∼= R be the projection. Then φ is given by

α, β 7→ (−1)n
∫
α ∧ β

for α of degree 2n+ 2 or 2n+ 3; we have h(H) ⊂ so(
∧•H∨, φ).
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The restriction to P ⊂
∧2 H∨ of the form φ coincides with the given inner prod-

uct. Hence, the subspace
∧0 H∨ ⊕ P ⊕

∧4 H∨ ⊂
∧•H∨ equipped with φ is naturally

identified with P̃ . Moreover, this subspace is a faithful representation of h(H). We

thus obtain an injective homomorphism h(H) ↪→ so(P̃ ), which is surjective by dimen-

sion reasons, and, therefore, an isomorphism; this is the desired isomorphism ϕ. By

Proposition 1.2.6, ϕ restricts to an isomorphism 〈WI ,WJ ,WK〉
∼−−→ so(P ).

1.3.6. Remark. — By [51, Proof of Lemma 4.2], the induced representation

of so(P̃ ) on
∧odd T∨ is a spin representation. This action integrates to a representa-

tion of the spin group Spin(P̃ ) on
∧•

T∨; for each k, the element −1 ∈ Spin(P̃ ) acts

as multiplication by (−1)k on
∧k

T∨.

1.3.7. — We now go back to the geometric situation and carry out the first part of

the program outlined in §1.2.13. Let X be a hyper-Kähler manifold of dimension 2n

and denote by H the vector space H2(X,Q) equipped with the Beauville–Bogomolov

form q. Let M be the differentiable manifold underlying X, and assume given a hyper-

Kähler metric g on M . Let Pg ⊂ H2(X,R) be the characteristic 3-space associated

to g, and let P̃g be the orthogonal direct sum of Pg with U = R · v ⊕ R · w equipped

with the bilinear form
(

0 −1
−1 0

)
. The following result is again due to Verbitsky.

1.3.8. Theorem ([82]). — The Lie algebra hg (Definition 1.2.14) is isomorphic

to h(H). We have an isomorphism ϕ : hg
∼−−→ so(P̃g) ∼= so(4, 1).

Hence, Proposition 1.3.5 gives generators and relations for the Lie algebra hg.

Proof. — The hyper-Kähler metric g determines a left H-action on the tangent bundle

TM of M , and hence a right action of H on the graded vector bundle
∧•

(TM)∨. The

metric g extends to a H-invariant metric on
∧•

(TM)∨. Applying Proposition 1.3.5

to the H-module TM we obtain an action of the Lie algebra h(H) on
∧•

(TM)∨.

Let A•(M) denote the algebra of differential forms on M , that is, the global sections

of the bundle
∧•

(TM)∨. Recall ([43]) that the metric g determines a Laplacian

operator ∆ on A•(M), and that, by the Hodge theorem, the cohomology H•(M,R)

is canonically identified with the subspace ker(∆) of ∆-harmonic forms.

By the above, the Lie algebra h(H) acts on A•(M). By the Kähler identities [43,

Proposition 3.1.12], this action commutes with ∆, and hence h(H) acts on the real

cohomology of M ; by construction, the action of h(H) on A•(M) extends that of hg
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on H•(M,R). Moreover, the action of h(H) on H•(M,R) is faithful, as it can be

easily checked by looking at the basis of h(H) given by Proposition 1.3.5. Thus hg is

isomorphic to h(H) ∼= so(4, 1).

The Kähler classes ωI , ωJ , ωK span the 3-space Pg ⊂ H⊗QR. By Theorem 1.1.7.(ii)

the Beauville–Bogomolov form is positive definite on Pg, and Proposition 1.3.5.(iii)

yields the isomorphism ϕ : hg
∼−−→ so(P̃g).

1.3.9. Corollary. — The sub-Lie algebra so(Pg) ∼= 〈WI ,WJ ,WK〉 of hg acts by

derivations on the algebra H•(X,R).

Proof. — As in 1.3.2, the action of any pure quaternion h of norm 1 gives a p, q-

decomposition
∧•

(TM)∨ ⊗ C =
⊕

p,q

∧p,q
h (TM)∨. Consequently, we have the de-

composition A•(M) ⊗ C =
⊕

p,q A
p,q
h (M) into p, q-differential forms, which induces

the Hodge decomposition H•(M,C) =
⊕

p,qH
p,q
h (M) of the cohomology of the Kähler

manifold (M,h). For any h as above, we have Hp,q
h (M) ·Hp′,q′

h (M) ⊂ Hp+p′,q+q′

h (M).

By definition, the Weil operator Wh⊗C acts on Hp,q
h (M) as multiplication by i(p−q);

hence for all cohomology classes α ∈ Hp,q
h (X), β ∈ Hp′,q′

h (X), we have

Wh(α · β) = i(p+ p′ − q − q′)α · β = Wh(α) · β + α ·Wh(β).

Therefore Wh is a derivation of the algebra H•(M,R).

1.4. The LLV-Lie algebra of a hyper-Kähler manifold

In this section, we complete the proof of Theorem 1.2.12. As before, X is a 2n-

dimensional hyper-Kähler manifold, M is the underlying real manifold, and H denotes

the vector space H2(X,Q) equipped with the Beauville–Bogomolov form q. To ease

notation, we write HR, HC, instead of H ⊗ R, H ⊗ C.

1.4.1. — We will say that a 3-dimensional real vector space P ⊂ HR is a characteris-

tic 3-space if it is the positive 3-space Pg associated to a hyper-Kähler metric g on M .

By Theorem 1.3.8, any characteristic space Pg determines a Lie algebra embedding

so(P̃g) ∼= hg ⊂ g(X)⊗ R.

Thanks to the following result, these embeddings generate g(X)⊗ R.
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1.4.2. Proposition. — Let Gr(3, HR) be the Grassmannian parametrizing 3-

dimensional spaces in HR. Then the subset

{P ∈ Gr(3, HR) such that P is a characteristic space }

is open (for the Euclidean topology) in Gr(3, HR).

Proof. — We consider the partial flag variety

Z = {(F, P ) | F ⊂ P } ⊂ Gr(2, HR)×Gr(3, HR).

We let Zc ⊂ Z consists of those (F, P ) such that P is a characteristic 3-space. We

will show that Zc is open in Z; this yields the desired conclusion.

We denote by Gr+(k,HR) the Grassmannian of k-dimensional subspaces of HR

which are positive with respect to the Beauville–Bogomolov form. Then Gr+(k,HR)

is an open subset of the full Grassmaniann Gr(k,HR) and hence

Z+ := Z ∩ (Gr+(2, HR)×Gr+(3, HR))

is open in Z. Since any characteristic 3-space is positive, we have Zc ⊂ Z+.

By [42, Lemma 8.2], the period domain

Do = {x ∈ P(HC) | q(x, x) = 0, q(x, x̄) > 0}

is diffeomorphic to the Grassmannian Gror
+ (2, HR) parametrizing oriented positive

planes in HR, by mapping x ∈ Do to the real oriented plane ~Fx = 〈Re(x), Im(x)〉.
We have a natural map Gror

+ (2, HR)→ Gr+(2, HR), obtained forgetting the orientation

of a plane. This map is an étale double cover; we let Z̃+ (resp. Z̃c) be the preimage

of Z+ (resp. Zc) along the induced double cover

Gror
+ (2, HR)×Gr+(3, HR)→ Gr+(2, HR)×Gr+(3, HR).

It is enough to show that Z̃c is open in Z̃+. The manifold Z̃+ is the total space of

the projectivization of the vector bundle Q̃ ⊂ Gror
+ (2, HR)×HR defined by

Q̃ = {(~F , v) | v ∈ F⊥};

the vector bundle Q̃ is identified with the universal quotient bundle on Gror
+ (2, HR).

Let now P0 ⊂ HR be a characteristic 3-space. Choose an oriented plane ~F0 ⊂ P0.

Then ~F0 represents the period of a hyper-Kähler manifold X0 and P0 = 〈~F0, v0〉
for some Kähler class v0 on X0. By the local Torelli theorem, we can identify an

open neighborhood Ũ ⊂ Gror
+ (2, HR) of ~F0 with the universal local deformation
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space Def(X0). Thus any ~F ∈ Ũ is the period of a hyper-Kähler manifold X~F ,

and the fibre Q̃~F of Q̃ at ~F is identified with H1,1(X~F ) ∩H2(X~F ,R). Consider

Ṽ = {(~F , v) | ~F ∈ Ũ , v ∈ HR is a Kähler class on X~F }.

Since a Kähler class is of Hodge type (1, 1), we have Ṽ ⊂ Q̃|Ũ . Moreover, by the

openness of the Kähler cone in H1,1(X~F ) ∩ H2(X~F ,R) (see [89, Chapter 9]), the

subset Ṽ is open in Q̃. For any (~F , v) ∈ Ṽ , the 3-space 〈F, v〉 is characteristic, and

hence the image of Ṽ in Z̃+ gives an open neighborhood of (~F , P ) contained in Z̃c.

This shows that Z̃c is open in Z̃+ as desired.

1.4.3. Remark. — The description of the Kähler cone of a hyper-Kähler manifold

by Amerik and Verbitsky yields a necessary and sufficient condition for a positive

three space P to be characteristic, see [1, Theorem 4.9].

Proposition 1.4.2 has the following consequences. Let g−2(X) and g2(X) be the

span of the Λx and the Lx respectively, for x ∈ H2(X,Q) with the Lefschetz property.

Let g0(X) := [g2(X), g−2(X)]. Clearly, Lx and Ly commute for all x, y ∈ H2(X,Q).

1.4.4. Proposition. — (i) For any x, y ∈ H2(X,Q) with the Lefschetz property,

we have [Λx,Λy] = 0.

(ii) We have g0(X) = Q · θ ⊕ g′0(X), where g′0(X) = [g0(X), g0(X)]. The Lie sub-

algebra g′0(X) acts on H•(X,Q) by derivations.

(iii) We have g(X) = g−2(X)⊕ g0(X)⊕ g2(X).

Proof. — (i). Let V ⊂ H2(X,R) be the Zariski open subset consisting of the classes

with the Lefschetz property. The expression [Λx,Λy] is a rational function on V × V
(see §1.2.1), and hence [Λx,Λy] = 0 defines a Zariski closed subsetW ⊂ V ×V . Thanks

to Proposition 1.4.2 and its proof, the subset of classes (a, b) ∈ H2(X,R)×H2(X,R)

such that there exists a characteristic 3-space P containing both a and b is open for

the Euclidean topology. By Theorem 1.3.8 this open subset is contained in W , and

it is not empty since by assumption there exists some characteristic 3-space. We

conclude that W is a Zariski closed subset of V × V of the same dimension; since V

is connected, having complement of real codimension ≥ 2, we must have W = V ×V .

(ii). Let v be the R-Lie algebra generated by all Weil operators coming from

some hyper-Kähler structure on M . The Lie algebra v acts on the cohomology by

derivations thanks to Corollary 1.3.9. By Theorem 1.3.8 and Proposition 1.3.5 we
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obtain v ⊂ g0(X) ⊗ R and v = [v, v]; moreover, if a and b are both contained in

a characteristic 3-space P , we have [La,Λb] ∈ R · θ ⊕ v. Via the same argument

as above, Proposition 1.4.2 then implies that g0(X) ⊗ R = R · θ ⊕ v. It follows

that g0(X) = Q · θ ⊕ g′0(X) and that v is defined over Q and coincides with g′0(X).

(iii). By (i), g−2(X) and g2(X) are abelian Lie algebras; by construction, we

have [g2(X), g−2(X)] = g0(X). Let G′0(X) be the simply connected algebraic group

with Lie algebra g′0(X). Via integration of the representation of g′0(X) on the coho-

mology of X we obtain a representation of G′0(X) on H•(X,Q), which is by graded

algebra automorphisms by (ii). By Lemma 1.2.4.(i), the adjoint action of an element

g ∈ G′0(X) maps an sl2-triple (Lx, θ,Λx) to the sl2-triple (Lg(x), θ,Λg(x)). It follows

that the adjoint action of g′0(X) preserves gi(X) for i = −2, 0, 2.

Consider now the subalgebra A•2 ⊂ H•(X,Q) generated by H2(X,Q).

1.4.5. Lemma. — The subalgebra A•2 is a faithful and irreducible g(X)-module.

Proof. — The subalgebra A•2 is clearly stable under g2(X) and θ. Since g′0(X) acts

by derivations, the subalgebra A•2 is stable under the action of g′0(X) as well. Given

x ∈ H2(X,Q) with the Lefschetz property and x1, x2, . . . , xk ∈ H2(X,Q), we have

Λx(x1 · x2 · . . . · xk) = −[Lx1
,Λx](x2 · . . . · xk) + Lx1

Λx(x2 · . . . · xk).

If k = 1, obviously Λx(x1) belongs to A•2. For k > 1, the first term belongs to

g0(X) ·A•2 ⊂ A•2, and the second term is in A•2 by induction hypothesis.

Therefore A•2 is a g(X)-module. We claim that the induced map τ : g(X)→ gl(A•2)

is injective. Clearly, θ is not in the kernel of τ , and, since
∑
i aiLxi

= L∑
i aixi

, the

map τ is injective on g2(X). By Proposition 1.2.9 the Lie algebra g(X) is semisim-

ple; therefore, the Killing form K(g1, g2) = Tr(ad(g1) ◦ ad(g2)) is non-degenerate.

It follows that the form K identifies g2(X) with the dual of g−2(X); in particu-

lar, dim(g−2(X)) = dim(g2(X)). Since the image of τ is semisimple as well, the same

argument implies that τ(g−2(X)) and τ(g2(X)) have the same dimension; hence,

ker(τ) ⊂ g′0(X). Since g′0(X) acts on the cohomology by derivations, Lemma 1.2.4.(ii)

implies that the kernel of τ is central in the semisimple Lie algebra g′0(X). This forces

ker(τ) = 0. Thus A•2 is a faithful g(X)-module. It is irreducible since it is generated

by H0(X,Q).
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1.4.6. — By Corollary 1.2.10, the algebra A•2 ⊂ H•(X,Q) is a Frobenius algebra of

level 2n, and, by Lemma 1.4.5, the restriction map identifies the Lie algebra g(X)

with g(A•2) (see Definition 1.2.3). Since by definition A•2 is generated by H2(X,Q),

there is a surjective morphism of algebras Φ: Sym•(H)→ A•2.

The following result is due to Verbitsky [83], who however obtained it as a conse-

quence of Theorem 1.2.12; Bogomolov has shown in [12] that this result is a conse-

quence of the local Torelli theorem. We will give his argument below.

1.4.7. Theorem. — Let I ⊂ Sym•(H) be the ideal generated by

{wn+1 ∈ Symn+1(H) | w ∈ H, q(w,w) = 0}.

Then I = ker Φ, so that we have an isomorphism of graded algebras A•2
∼= Sym•(H)/I.

Proof. — Thanks to the existence of the Beauville–Bogomolov form q and Fujiki’s

relation, see Theorem 1.1.7, the locus of those x ∈ HC such that x2n = 0 is a non-

singular quadric hypersurface D ⊂ P(HC). By the local Torelli theorem, there exists

an open subset U of D (with respect to the Euclidean topology) such that any y ∈ U is

the period of some hyper-Kähler manifold Y . SinceH2n+2,0(Y ) = 0, we have yn+1 = 0

for all y ∈ U . Then the locus D′ of those w ∈ H2(X,C) such that wn+1 = 0 is a

Zariski closed subset of D of the same dimension, and thus D = D′.

This proves that we have a surjective morphism of algebras Sym•(H)/I → A•2.

Bogomolov shows [12, Lemma 2.5] that the component of Sym•(H)/I in degree 4n

is one dimensional, and hence it maps isomorphically onto A4n
2 ; moreover, he shows

that Sym•(H)/I is a Frobenius algebra. Therefore any of its ideals must contain the

component in degree 4n, and the map Sym•(H)/I → A•2 must be an isomorphism.

Conclusion of the proof of Theorem 1.2.12. — We consider H̃ as a Frobenius al-

gebra as in §1.2.5. Then Symn(H̃) is again a Frobenius algebra. The Lie alge-

bra g(Symn(H̃)) is identified with so(H̃) and its natural action on Symn(H̃).

According to [51, Proposition 2.14] the Frobenius algebra Sym•(H)/I is isomorphic

to the subalgebra B ⊂ Symn(H̃) generated by H. Hence B is stable under the action

of so(H̃) on Symn(H̃) and the Lie algebra g(B) coincides with so(H̃). The desired

isomorphism ϕ : g(X)→ so(H̃) is induced by the inverse of the isomorphism of graded

algebras B
∼−−→ A•2.
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1.4.8. Remark. — By [51, Proposition 2.14] the so(H)-representation on A•2 is

A2k
2 =

SymkH, for 0 ≤ k ≤ n,

Sym2n−kH, for n < k ≤ 2n.

1.5. The integrated representation

In this section we study the representation obtained via integration of the LLV-Lie

algebra action on the cohomology of a hyper-Kähler manifold.

1.5.1. — Let X be a hyper-Kähler manifold of dimension 2n. Let H denote the

quadratic space H2(X,Q) equipped with the Beauville–Bogomolov form and let H̃

denote the orthogonal direct sum of H with U = Q · v ⊕ Q · w equipped with the

bilinear form
(

0 −1
−1 0

)
.

We consider the LLV-Lie algebra g(X) of X and denote by G(X) the semisimple

simply connected algebraic group with Lie algebra g(X). We also let G0(X) ⊂ G(X)

be the unique connected subgroup with Lie algebra g0(X). Theorem 1.2.12 yields an

isomorphism

ϕ̃ : G(X)
∼−−→ Spin(H̃).

Since H̃ = H ⊕ U , we can view Spin(H) and Spin(U) as subgroups of Spin(H̃).

1.5.2. Proposition. — (i) We have G0(X) ∼= CSpin(H).

(ii) Via the isomorphism ϕ̃, we have

ϕ̃ : G0(X)
∼−−→ Spin(H) · Spin(U) ⊂ Spin(H̃).

Proof. — We will show that we have Spin(U) ∼= Gm and that the Lie algebra of

Spin(U) ⊂ Spin(H̃) is Q · ϕ(θ). Since so(H̃) = Q · ϕ(θ)⊕ so(H), this will imply (ii).

To show (i), we will show that Spin(H) and Spin(U) commute, and they intersect in

µ2 = {±1}. This will be sufficient, since CSpin(H) ∼= Spin(H)×µ2
Gm.

With respect to the basis {v,−w2 }, the matrix of q̃|U is
(

0 1/2
1/2 0

)
. Let Cl(U) be

the Clifford algebra on U . Then Cl(U) is identified with the algebra of 2 by 2 matrices

with coefficients in Q; an isomorphism is given by

v 7→

(
0 0

1 0

)
, −w

2
7→

(
0 1

0 0

)
.
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The even Clifford algebra Cl+(U) consists of the diagonal matrices, while Cl−(U)

consists of those matrices with 0 on the diagonal. The spinor norm Cl(U)× → Q×

is the determinant. Therefore Spin(U) ∼= Gm is the standard maximal torus of SL2.

The adjoint action of Spin(U) on H̃ is trivial on the summand H, and we have(
λ 0

0 λ−1

)
v

(
λ−1 0

0 λ

)
= λ−2v,

(
λ 0

0 λ−1

)
w

(
λ−1 0

0 λ

)
= λ2w.

This implies that the Lie algebra of Spin(U) ⊂ Spin(H̃) is Q· θ ⊂ so(H̃). Finally, since

the Clifford algebra satisfies Cl(H̃) = Cl(H)⊗Cl(U), we have Spin(H)∩Spin(U) = µ2

and Spin(H) commutes with Spin(U).

1.5.3. — The action of g(X) on H•(X,Q) integrates to a representation ρ of G(X)

on H•(X,Q), which restricts to

ρ0 : G0(X)→
∏
j

GL(Hj(X,Q)).

We denote by ρ
(2)
0 : G0(X)→ GL(H2(X,Q)) its degree 2 component.

In what follows, we identify G(X) with Spin(H̃) and G0(X) with CSpin(H) via ϕ̃.

1.5.4. Remark. — By Remark 1.3.6, via the representation ρ the element −1 ∈
CSpin(H) ⊂ Spin(H̃) acts on Hj(X,Q) as multiplication by (−1)j . Combining this

with Theorem 1.2.12 we deduce that the representation ρ is faithful if X has non-

trivial cohomology in some odd degree, and that ρ has kernel µ2 = {±1} otherwise.

The connected center of the algebraic group CSpin(H) is the subgroup Gm of in-

vertible scalars in the Clifford algebra, and we have short exact sequences of algebraic

groups

1 Gm CSpin(H) SO(H) 1π

and

1 Spin(H) CSpin(H) Gm 1Nm

such that for all z ∈ Gm ⊂ CSpin(H) we have Nm(z) = z2.

In addition to the representation ρ0, we will consider a second, twisted, action of

CSpin(H) on the cohomology of X.
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1.5.5. Definition. — The twisted LLV-representation R of G0 on H•(X,Q) is

defined by the homomorphism

R : CSpin(H)→
∏
j

GL(Hj(X,Q)), R(g) = Nm(g)n · ρ0(g).

1.5.6. Remark. — The image of the differential of R is Q ·θ′⊕so(H) ⊂ gl(H•(X)),

where so(H) is the semisimple part of g0(X) and θ′ is multiplication by j on Hj(X).

1.5.7. Lemma. — Via the representation R, the action of CSpin(H) on H•(X,Q)

is an action by graded algebra automorphisms.

Proof. — By Theorem 1.2.12, the semisimple part so(H) of the Lie algebra

of CSpin(H) acts on the cohomology algebra via derivations; therefore, the sub-

group Spin(H) ⊂ CSpin(H) acts on H•(X,Q) by graded algebra automorphisms.

Moreover for any z ∈ Gm and y ∈ Hj(X,Q) we have ρ0(z)(y) = zj−2n · y. Thus

the factor Nm(z)n = z2n ensures that Gm ⊂ CSpin(H) acts on H•(X,Q) by algebra

automorphisms as well. As CSpin(H) = Gm · Spin(H), this concludes the proof.

1.5.8. Remark. — The homomorphism

(Nm, π) : CSpin(H)→ Gm × SO(H)

is surjective with kernel µ2. By Remark 1.5.4, the R-action on the even cohomology

factors through (Nm, π). If g ∈ CSpin(H), then the degree 2 component R(2)(g)

of R(g) equals Nm(g) · π(g), while for ρ0(g) we have ρ
(2)
0 (g) = Nm(g)1−n · π(g).

The combination of this observation with Theorem 1.2.12 implies that the natural

homomorphism R(G0(X))→ R(2)(G0(X)) is an isomorphism if the odd cohomology

of X vanishes, and it has kernel µ2 otherwise.



CHAPTER 2

THE MUMFORD–TATE CONJECTURE, MOTIVES AND

FAMILIES

2.1. The Mumford–Tate conjecture

In this section we fix our notation for Hodge structures and Galois representations

and give the statement of the Mumford–Tate conjecture. We refer to [62] for a detailed

treatment of the subject. Throughout, K ⊂ C is a field which is finitely generated

over Q, with algebraic closure K̄ ⊂ C, and ` is a fixed prime number.

2.1.1. — We denote by HS (resp. HSpol) the category of Q-Hodge structures (resp.

polarizable Q-Hodge structures). The category HS is an abelian Tannakian category,

with fibre functor the forgetful functor to the category of Q-vector spaces. This means

that to any Tannakian subcategory C ⊂ HS is attached a pro-algebraic group MT(C)

whose category of Q-representations is equivalent to C. It is defined as the group of

tensor automorphisms of the fibre functor f |C. There is a notion of weights in HS,

where a Hodge structure V is said to be pure of weight k if only terms with p+ q = k

appear in the decomposition V ⊗ C =
⊕

p,q V
p,q. Given a Tannakian subcategory

C ⊂ HS, the weights are given by a cocharacter w : Gm → MT(C).

Given V ∈ HS, we let 〈V 〉 ⊂ HS be the Tannakian subcategory generated by V .

The Mumford–Tate group MT(V ) of V is by definition the group attached to 〈V 〉 via

the above procedure. It is an algebraic subgroup of GL(V ); if V is polarizable, then

the category 〈V 〉 is semisimple, and hence MT(V ) is reductive in this case.

2.1.2. — An alternative characterization of MT(V ) is as follows. Let S := ResCR(Gm)

be the Deligne torus, that is, C× viewed as a real algebraic group. The Hodge

structure on the vector space V is determined by a representation h : S→ GL(V )⊗R;
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the Hodge decomposition is recovered as the isotypical decomposition for h⊗C. Then

MT(V ) is the smallest Q-algebraic subgroup G of GL(V ) with the property that h

factors through G⊗ R. Thus MT(V ) is connected, since S is so.

2.1.3. — We denote by Rep`(Gal(K̄/K)) the category of continuous representations

of the absolute Galois group of K on Q`-vector spaces. This Q`-linear category is also

Tannakian: a natural fibre functor is given by the forgetful functor to Q`-vector spaces.

Via the Tannakian formalism, to any `-adic Galois representation W is associated an

algebraic group G(W ) over Q`, whose category of Q`-representations is equivalent to

the Tannakian subcategory 〈W 〉 ⊂ Rep`(Gal(K̄/K)) generated by W . There is a

notion of weights in Rep`(Gal(K̄/K)); we will not give details about this and refer to

Deligne’s paper [24].

More concretely, the group G(W ) ⊂ GL(W ) is the Zariski closure of the image of

the representation σ : Gal(K̄/K)→ GL(W ). If K ′/K is a finite field extension then

we can see W as a Gal(K̄/K ′) representation W ′. Then G(W ′) is a subgroup of finite

index of G(W ). There exists a finite field extension K̂ of K such that for the induced

Gal(K̄/K̂)-module Ŵ , the algebraic group G(Ŵ ) is connected. In fact, consider the

short exact sequence

1→ G(W )0 → G(W )→ Γ→ 1,

where Γ is the group of connected components of G(W ); then K̂/K is the field ex-

tension corresponding to the kernel of the composition Gal(K̄/K)→ G(W )→ Γ.

2.1.4. — In both HS and Rep`(Gal(K̄/K)) we have Tate twists at our disposal. The

Hodge structure Q(1) is the one-dimensional vector space (2πi) · Q ⊂ C with Hodge

structure purely of type (−1,−1). If n is a positive integer we define Q(n) = Q(1)⊗n

and Q(−n) = Q(1)∨,⊗n; given V ∈ HS we let V (n) be the Hodge structure V ⊗Q(n).

In the `-adic setting, we instead define the Gal(K̄/K)-module Q`(1) as the

one-dimensional representation corresponding to the `-adic cyclotomic character

ξ` : Gal(K̄/K)→ Z×` of K. Given a Galois representation σ : Gal(K̄/K)→ GL(W ),

we denote by W (n) the twisted representation ξn` · σ.

2.1.5. — Let X be a smooth and projective variety over K.
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– We denote by Hi(X) the i-th rational singular (Betti) cohomology group

Hi(X(C),Q) of the complex manifold X(C); it carries a polarizable Hodge

structure. We define H•(X) :=
⊕

iH
i(X).

– We denote by Hi
`(X) the i-th `-adic étale cohomology group Hi

ét(XK̄ ,Q`) of XK̄ ,

which comes with an action of Gal(K̄/K). We let H•` (X) :=
⊕

iH
i
`(X).

Artin proved [7, Exposé XI] that for any smooth and projective variety X over K

and any integer i there is a canonical isomorphism of Q`-vector spaces

γi : H
i(X)⊗Q Q`

∼−−→ Hi
`(X).

We let γ : H• ⊗Q Q`
∼−−→ H•` (X) be the isomorphism ⊕iγi. The Mumford–Tate

conjecture aims to compare the extra structure that we have on the two sides.

2.1.6. Conjecture. — The isomorphism γ∗ : GL(H•(X))⊗Q Q`
∼−−→ GL(H•` (X))

induced by Artin’s isomorphism γ restricts to an isomorphism of algebraic groups

MT(H•(X))⊗Q` ∼= G(H•` (X))0.

The Mumford–Tate conjecture in degree i for X is the statement that the com-

parison isomorphism γi identifies MT(Hi(X)) ⊗ Q` with G(Hi
`(X))0. We note that

Conjecture 2.1.6 is equivalent to the Mumford–Tate conjecture in all degrees for X

and all of its powers Xm.

The Mumford–Tate conjecture is a very difficult open problem - see [62] for a

survey of known results. If K ⊂ L ⊂ C is a finitely generated field extension, the

Mumford–Tate conjecture for XL and X are equivalent, and this allows to formulate

the conjecture for complex algebraic varieties, see [63, §1].

2.1.7. — Let X be a smooth and projective variety over K. A Hodge class on X is

a rational cohomology class ξ ∈ H2p(X)(p) such that ξ ⊗ C is of Hodge type (0, 0);

equivalently, the action of MT(H•(X)) on H2p(X)(p) fixes ξ. Similarly, a Tate class

is a cohomology class ξ ∈ H2p
` (X)(p) which is fixed by G(H•` (X))0.

Let CH•(X) be the rational Chow group of X. We have cycle class maps

cl : CH•(XK̄)→ H2•(X),

cl` : CH•(XK̄)⊗Q Q` → H2•
` (X),

which are compatible with Artin’s isomorphism γ. The image of cl (resp. of cl`)

consists of Hodge (resp. Tate) classes. The Hodge conjecture predicts that any Hodge
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class lies in the image of cl, while the Tate conjecture predicts that any Tate class lies

in the image of cl`. The Mumford–Tate conjecture would give a deep link between

these two conjectures: if two out of the three statements

– the Mumford–Tate conjecture 2.1.6 for X,

– the Hodge conjecture for X and all of its powers Xk,

– the Tate conjecture for X and all of its powers Xk,

are true, then so is the third, see [62, §2.3].

2.2. Motives

A strong motivation for the Mumford–Tate conjecture comes from the theory of

motives. The idea of motives goes back to Grothendieck. We briefly recall some

categories of motives.

2.2.1. Chow motives. — Let K be a field, and let SmProjK be the category of

smooth projective varieties over K. Given a smooth and projective variety X over K

we denote by CH•(X) its Chow group with rational coefficients. Given smooth and

projective varieties X and Y over K of dimension dX and dY respectively, a corre-

spondence of degree k from X to Y is an element γ of CHdX+k(X × Y ). Then γ

induces a map CH•(X)→ CH•+k(Y ) by the formula

γ∗(β) = prY,∗(γ · pr∗X(β)),

where prX : X × Y → X and prY : X × Y → Y denote the projections.

The category CHMK of Chow motives (with rational coefficients) over K is defined

as follows:

– the objects of CHMK are triples (X, p, n) such that X ∈ SmProjK , p ∈
CHdX (X ×X) is an idempotent correspondence (i.e. p∗ ◦ p∗ = p∗) and n is an

integer;

– the morphisms in CHMK from (X, p, n) to (Y, q,m) are the correspondences

γ ∈ CHdX+m−n(X × Y ) which satisfy f∗ ◦ p∗ = q∗ ◦ f∗ = f∗.

There is a natural functor

h : SmProjopK → CHMK ;
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the motive of a smooth and projective variety X over K is h(X) = (X,∆X , 0),

where ∆X ∈ CHdX (X ×X) denotes the class of the diagonal.

The category CHMK is a pseudo-abelian rigid symmetric tensor category, see [5].

The tensor product of two motives is defined via the fibre product over Spec(K);

the unit motive is 1 = (Spec(K),∆Spec(K), 0). The Tate motive of weight −2i is by

definition the motive 1(i) = (Spec(K),∆Spec(K), i). Given M ∈ CHMK , we will use

the notation M(i) =M⊗ 1(i).

The pseudo-abelian tensor subcategory of CHMK generated by a Chow motiveM
is the smallest full subcategory of CHMK containing M that is stable under isomor-

phisms, direct sums, direct summands, tensor products and duality. We denote this

subcategory by 〈M〉 ⊂ CHMK .

2.2.2. Grothendieck motives. — Consider now a field K ⊂ C. Given varieties X

and Y ∈ SmProjK , of dimension dX and dY respectively, a homological correpondence

of degree k from X to Y is an algebraic cohomology class α ∈ H2dX+2k(X × Y ),

where α ∈ H2•(X) is called algebraic if it lies in the image of the cycle class map cl.

The class α ∈ H2dX+2k(X × Y ) induces a linear map α∗ : H•(X)→ H•+2k(Y ) by

α∗(β) = prY,∗(α · pr∗X(β)),

where prX : X × Y → X and prY : X × Y → Y denote the projections.

Replacing in the construction of Chow motives “correspondence” with “homologi-

cal correspondence”, we obtain the category GRMK of Grothendieck motives over K.

This category is expected to be a semisimple abelian neutral Tannakian category; this

led Grothendieck to formulate his standard conjectures [39], which are a special case

of the Hodge conjecture and would ensure that GRMK has enough morphisms. It is

however very hard to construct algebraic cycles on varieties, and the good properties

of GRMK remain conditional to the validity of the standard conjectures.

2.2.3. André motives. — An unconditional theory of homological motives was

later proposed by André [4], refining Deligne’s idea of absolute Hodge classes [25].

André introduces the notion of motivated correspondences, which roughly speaking

are those induced by cohomology classes which can be constructed from algebraic

cycles and the Hodge ?-operator; if the standard conjectures were true, then any

motivated class would be algebraic.
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Replacing algebraic classes with motivated ones in Grothendieck’s construction we

obtain the category of André motives over K, denoted by AMK ; this is a Q-linear

semisimple abelian Tannakian category. The motive of X ∈ SmProjK is (X,∆X , 0),

where ∆X ∈ H2dX (X ×X) is the class of the diagonal. The Künneth projectors are

given by motivated cycles; we will therefore write H•(X) =
⊕

iHi(X) to denote the

motive of X. The tensor product of two motives is defined in the obvious way via the

fibre product over Spec(K); the unit motive is 1 = (Spec(K),∆Spec(K), 0). The Tate

motive of weight −2i is by definition 1(i) = (Spec(K),∆SpecK , i); given M ∈ AMK ,

we will use the notation M(i) =M⊗ 1(i).

2.2.4. — The virtue of AMK is that it works well with the Tannakian formalism.

We have natural functors

SmProjop
K

H•−−−→ AMK
r−−→ HSpol

whose composition is H•(X). The functor r is called the realization functor ; to a

motive M = (X, p, n) is attached the Hodge structure p∗(H
•(X))(n). The functor r

is conservative, which means that a morphism of motives is an isomorphism if and

only if its realization is so.

The composition of r with the forgetful functor to Q-vector spaces gives a fibre

functor on AMK . Via the Tannakian formalism, to any motiveM∈ AMK is therefore

attached an algebraic group

Gmot(M) ⊂ GL(r(M)),

whose category of finite dimensional Q-representations is equivalent to the Tannakian

subcategory 〈M〉 ⊂ AMK generated byM. The group Gmot(M) is called the motivic

Galois group of M, and the Gmot(M)-invariants in any tensor construction of r(M)

are precisely the motivated classes. Since AMK is semisimple, Gmot(M) is reductive.

2.2.5. — Assume that K ⊂ K ′ ⊂ C is a field extension. The base-change functor

SmProjK → SmProjK′ yields a functor AMK → AMK′ . Given M ∈ AMK , we denote

by MK′ ∈ AMK′ the motive obtained from M via base-change. The motivic Galois

group of MK′ is then a subgroup of finite index of Gmot(M); moreover, there exists

a finite field extension K̂/K such that for any extension K ′ as above containing K̂

we have Gmot(MK′)
∼−−→ Gmot(MK̂). See [62, §3].
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2.2.6. — For anyM∈ AMK , we have a canonical inclusion MT(r(M)) ⊂ Gmot(M).

This follows from the fact that all motivated cycles are Hodge classes: this means

that for any tensor construction T = (r(M))⊗m ⊗ (r(M))∨,⊗n(k), the invariants of

the motivic Galois group are also invariants for the Mumford–Tate group. Since both

groups are reductive, the claimed inclusion follows from [25, Proposition 3.1].

Over an algebraically closed field the converse should hold as well, as predicted by

the Hodge conjecture.

2.2.7. Conjecture. — Let K ⊂ C be an algebraically closed field. For any mo-

tive M∈ AMK , we have an equality in GL(r(M)):

MT(r(M)) = Gmot(M).

Since Mumford–Tate groups are connected, also Gmot(M) should be connected

when the base field K is algebraically closed; this is not known in general.

Conjecture 2.2.7 predicts that all Hodge classes should be motivated. The most sig-

nificant evidence towards this statement is André’s result in [4] that Hodge classes are

motivated on abelian varieties, which strengthens the previous result of Deligne [25] on

absolute Hodge classes. To state this result, let AMab
K ⊂ AMK be the Tannakian sub-

category generated by the motives of all abelian varieties overK. A motiveM∈ AMab
K

is callled an abelian motive.

2.2.8. Theorem ([4, Théorème 0.6.2]). — Let K ⊂ C be an algebraically closed

field. Conjecture 2.2.7 holds for all abelian motives M∈ AMab
K .

2.2.9. — Let nowK ⊂ C be a field finitely generated over Q, and K̄ ⊂ C an algebraic

closure of K. Fix a prime number `. We then have a second realization functor

r` : AMK → Rep`(Gal(K̄/K)),

such that the composition r` ◦ H• is the functor H•` : SmProjK → Rep`(Gal(K̄/K)).

Composing r` with the forgetful functor to Q`-vector spaces yields again a fibre functor

on AMK . Via the Tannakian formalism this determines for any motive M a Q`-
algebraic group Gmot,`(M) ⊂ GL(r`(M)).

Artin’s comparison theorem gives a canonical isomorphism of vector spaces

γ : r(M)⊗Q Q`
∼−−→ r`(M).
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The induced isomorphism γ∗ : GL(r(M)) ⊗ Q`
∼−−→ GL(r`(M)) identifies the alge-

braic group Gmot(M)⊗Q` with Gmot,`(M).

Let K, K̄ and ` be as above. The following statement is the motivic Mumford–Tate

conjecture.

2.2.10. Conjecture. — For any motiveM∈ AMK , the comparison isomorphism γ

induces isomorphisms of algebraic groups:

MT(r(M))⊗Q` ∼= Gmot(MK̄)⊗Q` ∼= G(r`(M))0.

We can see this conjecture as the conjunction of the statement that Hodge classes

are motivated, that is, Conjecture 2.2.7 forMK̄ , with the statement that Tate classes

are motivated, that is G(r`(M))0 ∼= Gmot(MK̄) ⊗ Q`. Note that, by §2.2.5, we

have Gmot(MC) ∼= Gmot(MK̄).

2.3. Relative André motives and monodromy

Another remarkable aspect of André motives is their behaviour in families. The

results presented below are due to André [4] (based on Deligne [23]), formalized by

Moonen [62, §4]. We work over the complex numbers.

2.3.1. — The starting point of the discussion is the deformation principle for moti-

vated cycles due to André [4, Théorème 0.5].

2.3.2. Theorem. — Let S be a connected and reduced complex variety and let

f : X→ S be a smooth and projective morphism. Let

ξ ∈ H0(S,R2if∗Q(i)).

Assume that there exists s0 ∈ S such that the restriction ξs0 ∈ H2i(Xs0 ,Q)(i) of ξ

to Xs0 is motivated. Then, for all s ∈ S, the class ξs ∈ H2i(Xs,Q)(i) is motivated.

The proof of the deformation principle is based on Deligne’s theorem of the fixed

part [23, Théorème 4.1.1]. Moonen introduced the following notion of families of

motives, [62, Definition 4.3.3].

2.3.3. Definition. — Let S be a non-singular and connected complex variety. An

André motive over S is a triple (X/S, p, n) where

– f : X→ S is a smooth and projective morphism with connected fibers,
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– p is a global section of R2d(f × f)∗QX×SX(d), where d is the relative dimension

of f ,

– n is an integer,

such that for some s ∈ S (equivalently, by Theorem 2.3.2, for any s ∈ S), the

value p(s) ∈ H2d(Xs × Xs)(d) is a motivated idempotent correspondence.

These objects, with morphisms defined via the usual formalism of correspondences,

form a semisimple neutral Tannakian abelian category which we denote by AMS .

Obviously, the category of André motives over Spec(C) is nothing but AMC.

2.3.4. — With S as above, we denote by VHSpol
S the category of polarized variations

of Q-Hodge structures over S, [37]. There is a natural realization functor:

r : AMS
r−−→ VHSpol

S .

We call a variation V/S ∈ VHSpol
S algebraic if, possibly after restriction to some

non-empty Zariski open subset U of S, it is a direct summand of a variation of the

form Rif∗Q(j) for some smooth projective morphism f : X → S and some integer j,

cf. [23, Definition 4.2.4]. The image of the realization functor r is contained in the

subcategory VHSa
S of algebraic variations of Hodge structures on S; this is a Tannakian

and semisimple category, see [23, §4].

By construction, for any smooth projective morphism f : X → S with connected

fibres and any integer i, we have a relative André motive Hi(X/S) over S whose

realization is the variation Rif∗Q ∈ VHSa
S .

2.3.5. — If M/S ∈ AMS , we denote by Ms its fibre at a point s ∈ S; similarly,

if V/S ∈ VHSpol
S , the corresponding Hodge structure at the point s is denoted by Vs.

We aim to study the families of motivic Galois groups Gmot(Ms) and Mumford–Tate

groups MT(Vs) when s varies in S.

Given a variation V/S ∈ VHSpol
S , we consider the monodromy representa-

tion π1(S, s) → GL(Vs) associated to the underlying local system. The algebraic

monodromy group Gmono(V/S)s of V/S at s ∈ S is by definition the Zariski closure

in GL(Vs) of the image of the monodromy representation above. This group is not

necessarily connected, but it becomes so after some finite étale cover of S. Deligne

[23, Theorem 4.2.6] proved that Gmono(V/S)s is a semisimple Q-algebraic group
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whenever V is an algebraic variation. Varying s in S, we obtain a local system of

algebraic groups Gmono(V/S) over S.

The theorem below summarizes several results from [62, §4.3].

2.3.6. Theorem. — Let S be a non-singular and connected complex variety.

(i) Let V/S ∈ VHSa
S. There exists a local system of reductive algebraic groups

MT(V/S) ⊂ GL(V/S), the generic Mumford–Tate group of V/S, such that:

– for all s ∈ S, we have MT(Vs) ⊂ MT(V/S)s, and equality holds for very

general (i.e. outside of a countable union of closed subvarieties) s ∈ S;

– we have inclusions of local systems of algebraic groups

Gmono(V/S)0 ⊂ MT(V/S) ⊂ GL(V/S).

(ii) Let M/S ∈ AMS and let M/S ∈ VHSa
S denote its realization. Then there exists

a local system of reductive algebraic groups Gmot(M/S) ⊂ GL(M/S), called the

generic motivic Galois group of M/S, such that:

– for all s ∈ S, we have Gmot(Ms) ⊂ Gmot(M/S)s, and equality holds for

very general s ∈ S;

– we have inclusions of local system of algebraic groups

Gmono(M/S)0 ⊂ MT(M/S) ⊂ Gmot(M/S) ⊂ GL(M/S).

We refer to Theorems 4.1.2, 4.1.3, 4.3.6, and 4.3.9 in Moonen’s survey [62]; part (i)

is due to Deligne [23].

2.3.7. Remark. — For any s ∈ S, the inclusion MT(Ms) ⊂ MT(M/S)s

(resp. Gmot(Ms) ⊂ Gmot(M/S)s) is an equality if and only if

Gmono(M/S)0
s ⊂ MT(Ms) (resp. Gmono(M/S)0

s ⊂ Gmot(Ms)).

We will need also the following consequence of Theorem 2.3.6, which is [62, The-

orem 4.3.8].

2.3.8. Corollary. — Let M/S ∈ AMS, and let M/S denote its realization. Then,

for all s ∈ S, we have

Gmono(M/S)0
s ·MT(Ms) = MT(M/S)s,

Gmono(M/S)0
s ·Gmot(Ms) = Gmot(M/S)s.
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Proof. — We follow Moonen’s argument. By Theorem 2.3.6 we have

Gmono(M/S)0
s ·Gmot(Ms) ⊂ Gmot(M/S)s.

Since both sides are reductive, it suffices to compare their invariants in all tensor

constructions T /S = (M/S)⊗m ⊗ (M/S)∨,⊗n(j) for integers m, n and j, by [25,

Proposition 3.1].

Let T/S denote the realization of a tensor construction T /S as above. We fix a

point s ∈ S. If ξs ∈ Ts is invariant for the action of Gmono(M/S)0
s · Gmot(Ms), then

it is a motivated cohomology class which is monodromy invariant. By Theorem 2.3.2,

we obtain a global section ξ of T/S such that ξs′ is motivated at any s′ ∈ S. It

follows that ξs is invariant for Gmot(M/S)s. The proof of the assertion regarding the

Mumford–Tate group is similar.

2.3.9. Remark. — The category AMS is a neutral Tannakian semisimple abelian

category. Any point s ∈ S determines a fibre functor on AMS by mappingM/S to the

Q-vector space underlying the Hodge structure r(Ms); the corresponding Tannakian

fundamental group is precisely the generic motivic Galois group Gmot(M/S)s at s.

Similarly, the point s ∈ S determines a fibre functor on the Tannakian category VHSa
S

by mapping V/S to the Q-vector space Vs, and the corresponding Tannakian funda-

mental group is MT(V/S)s.





CHAPTER 3

CHOW MOTIVES OF MODULI SPACES

The results in this Chapter are joint work with Lie Fu and Ziyu Zhang [29].

3.1. Construction of symplectic varieties

The primary source of construction of higher dimensional holomorphic symplectic

varieties is taking moduli spaces of stable sheaves on K3 or abelian surfaces.

Let S be a projective K3 or abelian surface. Consider the algebraic Mukai lattice

ÑS(S) = H0(S,Z)⊕NS(S)⊕H4(S,Z), equipped with the following pairing: for any

v = (r, l, s) and v′ = (r, l, s′) in ÑS(S),

〈v, v′〉 := (l, l′)− rs′ − r′s ∈ Z.

To any coherent sheaf E on S is associated its Mukai vector v(E) ∈ ÑS(S), defined

as v(E) = ch(E)·
√

td(X). Given a primitive Mukai vector v ∈ ÑS(S) and a v-generic

polarization H on S, there exists a smooth and projective moduli space Mst
H(v) of

H-stable sheaves on S with Mukai vector v, see [65], [67], [92], [46]. By [64], the

moduli space Mst
H(v) carries a holomorphic symplectic form, and, if not empty, it

has dimension 2n = v2 +2. If S is a K3 surface, then the moduli space Mst
H(v) is

a hyper-Kähler manifold of K3[n]-type ([42]). If S is an abelian surface, there is an

isotrivial fibration Mst
H(v)→ S × Ŝ, where Ŝ is the dual abelian surface; the fibre of

this fibration is a hyper-Kähler variety of Kumn−1-type ([92]).

3.1.1. — Let MH(v)st be a smooth and projective moduli space as above. Let

H̃(S,Z) be the Mukai lattice of S, that is H̃(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z),
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with the pairing 〈v, v′〉 := (l, l′)− rs′ − r′s. A first relation ([67]) between MH(v)st

and the surface S is that, when v2 > 0 we have a Hodge isometry

H2(MH(v)st,Z) = v⊥ ⊂ H̃(S,Z),

while if v2 = 0 we have H2(MH(v)st,Z) = v⊥ /〈v〉. More fundamentally, Bülles has

established the following relation between the Chow motives of MH(v)st and S.

3.1.2. Theorem ([15]). — Let S be a K3 or abelian surface. Let v be a primitive

Mukai vector with v2 ≥ 0, and let H be a v-generic polarization on S. Assume that

the smooth and projective moduli space M =MH(v)st is not empty. Then the Chow

motive of M belongs to the pseudo-abelian tensor subcategory 〈h(S)〉 ⊂ CHM.

3.1.3. — When the Mukai vector v is not primitive, the moduli spaceMst
H(v) is not

proper anymore. A natural compactification is given by the moduli space MH(v) of

H-semistable sheaves on S with Mukai vector v; the moduli space MH(v) is proper

but not necessarily non-singular. Its regular locus is the open subset MH(v)st.

A crepant or symplectic resolution f : M̃ → MH(v) is a birational morphism

such that f∗(σ) extends to a holomorphic symplectic form on M̃, where σ is the

holomorphic symplectic form on MH(v)st. It is not often the case that a singular

moduli space admits a symplectic resolution. However this happens in an important

case thanks to O’Grady [68]. We will extend Bülles’ result to O’Grady’s symplectic

resolutions.

3.2. Stable loci of moduli spaces

In this section, we generalize an argument of Bülles [15] to give a relationship

between the motive of the (in general quasi-projective) moduli space of stable sheaves

on a K3 or abelian surface and the motive of the surface.

Let S be an abelian or K3 surface. Given a Mukai vector v ∈ ÑS(S) and a v-generic

polarization H, we can form the moduli space Mst of H-stable sheaves with Mukai

vector v. Let us recall the following result of Markman, [53], [54].

3.2.1. Theorem. — Let E and F be two (twisted) universal families over Mst×S.

Then

∆Mst = c2m(−Ext !
π13

(π∗12(E), π∗23(F))) ∈ CH2m(Mst×Mst),
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where 2m is the dimension ofMst and Ext !
π13

(π∗12(E), π∗23(F)) denotes the class of the

complex Rπ13,∗(π
∗
12(E)∨ ⊗L π∗23(F)) in the Grothendieck group of Mst×Mst, where

πij’s are the natural projections from Mst×S ×Mst.

Pointer to references. — In [53, Theorem 1] the result is stated for the cohomology

class, but the proof gives the equality in Chow groups. Indeed, in [54, Theorem 8],

the statement is for Chow groups. Moreover, the assumption on the existence of a

universal family can be dropped ([54, Proposition 24]): it suffices to replace in the

formula the sheaves E and F by certain universal classes in the Grothendieck group

K0(S ×Mst) constructed in [54, Definition 26].

As a consequence, we obtain the following analogue of [15, (3), p.6]

3.2.2. Proposition. — There exist finitely many integers ki and algebraic cycles

γi ∈ CHei(Mst×Ski) and δi ∈ CHdi(Ski ×Mst), such that

∆Mst =
∑

δi ◦ γi ∈ CH2m(Mst×Mst);

here dimMst = 2m = ei + di − 2ki for all i.

Proof. — We follow the proof of [15, Theorem 1]. First of all, we observe that by

Lieberman’s formula (see [5, §3.1.4] and [87, Lemma 3.3] for a proof) the following

two-sided ideal of CH•(Mst×Mst) (with respect to the ring structure given by the

composition of correspondences)

I = 〈β ◦ α | α ∈ CH•(Mst×Sk), β ∈ CH•(Sk ×Mst), k ∈ N〉 ⊆ CH•(Mst×Mst)

is closed under the intersection product, hence is a Q-subalgebra of CH•(Mst×Mst).

A computation similar to [15, (2), p.6] using the Grothendieck–Riemann–Roch theo-

rem shows that

ch(−[Ext !
π13

(π∗12(E), π∗23(F))]) = −(π13)∗(π
∗
12α · π∗23β)

where

α = ch(E∨) · π∗2
√

td(S) and β = ch(F) · π∗2
√

td(S).

It follows that chn(−[Ext !
π13

(π∗12(E), π∗23(F))]) ∈ I for any n ∈ N. An induction

argument then shows that cn(−[Ext !
π13

(π∗12(E), π∗23(F))]) ∈ I for each n ∈ N. In

particular, combined with Theorem 3.2.1, ∆Mst is in I, which is equivalent to the

conclusion.
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3.2.3. Remark. — In Proposition 3.2.2, if we let γ = ⊕γi and δ = ⊕δi, we get the

following morphisms of mixed Hodge structures.

H∗c (Mst)
γ−→
⊕
i

H∗(Ski)(2ki − ei)
δ−→ H∗(Mst),

where the composition is precisely the comparison morphism from the compact sup-

port cohomology to the cohomology.

3.2.4. Remark. — In the case that S is an abelian surface, the moduli spaceMst is

isotrivially fibered over S×Ŝ (which is the Albanese fibration whenMst is projective).

We usually denote by Kst the fibre of this fibration. The analogue of Theorem 3.2.1

seems to be unknown for Kst.

3.3. The motive of O’Grady’s moduli spaces

In this section, we study the motive of O’Grady’s 10-dimensional symplectic va-

rieties [68]. Those are obtained as symplectic resolutions of certain singular moduli

spaces of sheaves on K3 or abelian surfaces. We first recall the construction.

3.3.1. — Let S be a projective K3 surface or abelian surface, let v0 ∈ ÑS(S) be

a primitive Mukai vector with v2
0 = 2 and let v = 2 v0. Let H be a v0-generic

polarization on S. We write

Mst =MS,H(v)st

for the smooth and quasi-projective moduli space of H-stable sheaves on S with Mukai

vector v, and

M =MS,H(v)ss

for the (singular) moduli space of H-semistable sheaves with the same Mukai vector.

By [68] and [50], there exists a symplectic resolution M̃ of M, which is a projective

holomorphic symplectic manifold of dimension 10, not deformation equivalent to the

fifth Hilbert schemes of the surface S. The manifolds so obtained are all deformation

equivalent to each other by [72]. If S is a K3 surface, then M̃ is a hyper-Kähler

manifold of OG10-type, while if S is an abelian surface there is an isotrivial fibration

M̃ → S × Ŝ, whose fibre is a hyper-Kähler manifold of OG6-type ([69]).

3.3.2. Remark. — By [47], a symplectic resolution of the singular moduli spaceM
exists only in O’Grady’s case above.
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3.3.3. — Let us briefly recall the geometry of M. We follow the notation in [68],

see also [50] and [60, §2]. The moduli space M admits a filtration

M⊃ Σ ⊃ Ω

where

Σ = Sing(M) =M\Mst ∼= Sym2(MS,H(v0))

is the singular locus of M, which consists of strictly H-semistable sheaves, and

Ω = Sing(Σ) ∼=MS,H(v0)

is the singular locus of Σ, hence the diagonal in Sym2(MS,H(v0)). Note thatMS,H(v0)

is a smooth projective holomorphic symplectic fourfold, deformation equivalent to

the Hilbert square of S.

In [68], O’Grady produced a symplectic resolution M̃ of M in three steps. As

the explicit geometry is used in the proof of our main result, we briefly recall his

construction.

Step 1. We blow up M along Ω, resulting in a space M with an exceptional

divisor Ω. The only singularity ofM is an A1-singularity along the strict transform Σ

of Σ. In fact, Σ is smooth, satisfying

Σ ∼= Hilb2(MS,H(v0)),

with the morphism Σ → Σ being the corresponding Hilbert-Chow morphism, whose

exceptional divisor is precisely the intersection of Ω and Σ in M.

Step 2. We blow upM along Σ to obtain a (non-crepant) resolution M̂ ofM. The

exceptional divisor Σ̂ is thus a P1-bundle over Σ. We denote by Ω̂ the strict transform

of Ω. Then M̂ is a smooth projective compactification of Mst, with boundary

∂M̂ = M̂ \Mst = Ω̂ ∪ Σ̂

being the union of two smooth hypersurfaces which intersect transversally.

Step 3. Lastly, an extremal contraction of M̂ contracts Ω̂ as a P2-bundle to Ω̃,

which is a 3-dimensional quadric bundle (more precisely, the relative Lagrangian

Grassmannian fibration associated to the tangent bundle) over Ω. The space ob-

tained is denoted by M̃, which is shown to be a symplectic resolution of M.
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3.3.4. Remark. — By the main result of Lehn–Sorger [50], O’Grady’s symplectic

resolution can also be obtained via a single blow-up ofM along its (reduced) singular

locus Σ. The exceptional divisor Σ̃ is nothing else but the image of Σ̂ under the

contraction in the third step described above, which is singular along Ω̃, the preimage

of Ω. If we blow up M̃ along Ω̃, we will obtain again M̂, with the exceptional divisor

being Ω̂ and the strict transform of Σ̃ being Σ̂. In short, the order of blow-ups can

be “reversed”; see the following commutative diagram [60, §2]:

BlΩ̃M̃ = M̂ = BlΣM

M̃ = BlΣM M = BlΩM

M

3.3.5. — We will compute the Chow motives of the boundary components of M̂,

then describe the Chow motives of the resolutions M̂ and M̃, and prove the following

result.

3.3.6. Theorem. — The Chow motive of O’Grady symplectic resolution M̃ belongs

to the pseudo-abelian tensor subcategory of CHM generated by the Chow motive of S.

We start with an observation.

3.3.7. Lemma. — Let X be a smooth projective variety. The Chow motive

h(Hilb2(X)) belongs to 〈h(X)〉 ⊂ CHM, the pseudo-abelian tensor subcategory

of CHM generated by h(X).

Proof. — Let dimX = n. We denote by ∆X ⊆ X ×X the diagonal. By [52, §9], we

have

h (Bl∆X
(X ×X)) = h(X2)⊕

(
⊕n−1
i=1 h(X)(−i)

)
.

Since Hilb2(X) = Bl∆X
(X ×X)/Z2, its motive is the Z2-invariant part

h(Hilb2(X)) = h (Bl∆X
(X ×X))

Z2

which is a direct summand of h (Bl∆X
(X ×X)), and hence it is contained in the

desired subcategory.
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3.3.8. Lemma. — The Chow motives h(Σ̂), h(Ω̂) and h(Σ̂∩ Ω̂) are all contained in

the subcategory 〈h(S)〉 ⊂ CHM.

Proof. — By O’Grady’s construction, Σ̂ is a P1-bundle over Σ ∼= Hilb2(MS,H(v0)).

It follows from [52, §7] that

h(Σ̂) = h(Σ)⊕ h(Σ)(−1).

By Theorem 3.1.2, h(MS,H(v0)) lies in the pseudo-abelian tensor subcategory of

Chow motives generated by h(S). It follows from Lemma 3.3.7 that h(Σ) is also in

this subcategory, therefore so is h(Σ̂).

Again by O’Grady’s construction, Ω̂ is a P2-bundle over Ω̃. It follows that

h(Ω̂) = h(Ω̃)⊕ h(Ω̃)(−1)⊕ h(Ω̃)(−2).

Moreover, since Ω̃ is a 3-dimensional quadric bundle over Ω, by [86, Remark 4.6] we

have that

h(Ω̃) = h(Ω)⊕ h(Ω)(−1)⊕ h(Ω)(−2)⊕ h(Ω)(−3).

Since Ω ∼= MS,H(v0), it follows from Bülles’ Theorem 3.1.2 that h(Ω) belongs to

the pseudo-abelian tensor subcategory of Chow motives generated by h(S), hence the

same is true for h(Ω̃) and h(Ω̂).

Similarly, the intersection Σ̂ ∩ Ω̂ is a smooth conic bundle over Ω̃, and, again

by [86, Remark 4.6], its motive is in the tensor subcategory generated by that of Ω̃.

One concludes as for Ω̂.

Here comes the key step of the proof.

3.3.9. Proposition. — The Chow motive h(M̂) belongs to 〈h(S)〉 ⊂ CHM.

Proof. — By Proposition 3.2.2, we have

[∆Mst ] =
∑

δi ◦ γi ∈ CH10(Mst×Mst),

where γi ∈ CHei(Mst×Ski) and δi ∈ CHdi(Ski ×Mst). Let γ̂i ∈ CHei(M̂ × Ski)
and δ̂i ∈ CHdi(Ski × M̂) be any closure of cycles representing γi and δi respectively.

Then the support of the class

[∆M̂]−
∑

δ̂i ◦ γ̂i ∈ CH10(M̂ × M̂)
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lies in the boundary (M̂ × ∂M̂) ∪ (∂M̂ × M̂). Hence, in CH10(M̂ × M̂), we have

[∆M̂] =
∑

δ̂i ◦ γ̂i + YΣ̂ + YΩ̂ + ZΣ̂ + ZΩ̂,

for some algebraic cycles YΣ̂ ∈ CH9(M̂× Σ̂), YΩ̂ ∈ CH9(M̂× Ω̂), ZΣ̂ ∈ CH9(Σ̂×M̂)

and ZΩ̂ ∈ CH9(Ω̂× M̂).

For each i, the cycles γ̂i and δ̂i can be viewed as morphisms of motives

h(M̂)
γ̂i−→ h(Ski)(ni)

δ̂i−→ h(M̂),

where ni = ei − 10 = 2ki − di. On the other hand, denoting by jΣ̂ and jΩ̂ the closed

embedding of Σ̂ and Ω̂ in M̂ respectively, we have morphisms of motives

h(M̂)
YΣ̂−−−→ h(Σ̂)

(jΣ̂)∗−−−→ h(M̂),

h(M̂)
YΩ̂−−−→ h(Ω̂)

(jΩ̂)∗−−−→ h(M̂),

h(M̂)
j∗
Σ̂−→ h(Σ̂)(−1)

ZΣ̂−−→ h(M̂),

h(M̂)
j∗
Ω̂−→ h(Ω̂)(−1)

ZΩ̂−−→ h(M̂).

The sum of all the above compositions is the identity of h(M̂). Hence h(M̂) is a

direct summand of(
⊕i h(Ski)(ni)

)
⊕ h(Σ̂)⊕ h(Ω̂)⊕ h(Σ̂)(−1)⊕ h(Ω̂)(−1).

Combining this with Lemma 3.3.8, we finish the proof.

Proof of Theorem 3.3.6. — Since M̂ is a blow-up of M̃ along a smooth center, it

follows from [52, §9] that h(M̃) is a direct summand of h(M̂). Then the conclusion

follows from Proposition 3.3.9 together with the fact that 〈h(S)〉 ⊂ CHM is closed

under taking direct summands.

3.3.10. Corollary. — The standard conjectures hold for all crepant resolutions M̃

that appeared in Theorem 3.3.6.

Proof. — In the situation of Theorem 3.3.6, M̃ is motivated by the surface S in the

sense of Arapura [6], i.e. the Grothendieck motive of M̃ belongs to the pseudo-abelian

tensor category generated by the Grothendieck motive of S. Since the Lefschetz

standard conjecture holds for S, we can invoke Arapura’s result [6, Lemma 4.2] to

obtain the standard conjectures for M̃.
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3.3.11. Corollary. — There are infinitely many projective hyper-Kähler varieties

of OG10-type whose Chow motive is abelian.

Proof. — By Theorem 3.3.6, it suffices to see that there are infinitely many projective

K3 surfaces with abelian Chow motives. To this end, we can take for example the

Kummer K3 surfaces or K3 surfaces with Picard number at least 19, by [71].

3.3.12. Remark. — When S is an abelian surface, the previously considered moduli

spaces Mst, M, M̂ and M̃ are all isotrivally fibered over S × Ŝ. Let us denote the

corresponding fibres byKst, K, K̂ and K̃. Except for some special cases like generalized

Kummer varieties (see [33]), Proposition 3.3.9 and Theorem 3.3.6 are unknown for

those fibres in general; the missing ingredient is the analogue of Theorem 3.2.1, see

Remark 3.2.4.





CHAPTER 4

HODGE THEORY OF HYPER-KÄHLER MANIFOLDS

4.1. The Kuga–Satake category of a K3-Hodge structure

Let V be a polarizable rational Hodge structure of K3-type, i.e. the Hodge decom-

position has the form V ⊗ C = V 2,0⊕V 1,1⊕V 0,2, with V 2,0 and V 0,2 one dimensional.

The Kuga–Satake construction [22] produces out of V an abelian variety KS(V ), well-

defined up to isogeny. The main point of this section is to characterize the Tannakian

subcategory of Hodge structures generated by KS(V ), which we call the Kuga–Satake

category attached to V ,

KS(V ) := 〈H1(KS(V ))〉 ⊂ HS .

All cohomology groups are with rational coefficients and, given a Hodge structure W ,

we denote by 〈W 〉 the Tannakian subcategory of HS generated by W . We first briefly

review the classical construction.

4.1.1. — Let q be a polarization of V , and consider the Clifford algebra Cl(V, q).

Deligne has shown in [22] that there is a natural way to induce a Hodge struc-

ture Cl(V, q) ⊗ C = Cl(V, q)0,1 ⊕ Cl(V, q)0,1, which is polarizable and therefore

is H1(KS(V )) for some abelian variety KS(V ), well-defined up to isogeny. The key

relation between V and KS(V ) is the fact that the natural action of V on Cl(V, q)

via left multiplication yields an embedding of Hodge structures

V (1) ↪→ H1(KS(V ))⊗H1(KS(V ))∨.

Letting GO(V, q) denote the group of linear automorphisms of V preserving the

polarization q up to scalar, the Hodge structure on V is given by a real representation
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h : S→ GO(V, q)⊗R. There is a double cover φ : CSpin(V, q)→ GO(V, q), with ker-

nel {±1}. The key observation in Deligne’s construction is that there exists a unique

homomorphism h′ : S→ CSpin(V, q)⊗R such that h = φ ◦ h′. Via the natural action

of CSpin(V, q) on the Clifford algebra, the representation h′ induces the desired Hodge

structure on Cl(V, q). The surjective homomorphism MT(H1(KS(V )))→ MT(V ) in-

duced by the inclusion 〈V 〉 ⊂ 〈H1(KS(V ))〉 is the restriction of φ, and hence it is a

double cover as well.

4.1.2. Remark. — The Kuga–Satake construction can be performed given any

non-degenerate symmetric bilinear form q on V such that the restriction of q ⊗ R
to the subspace (H2,0(V ) ⊕ H0,2(V )) ∩ (V ⊗ R) is positive definite and q(σ, σ) = 0

for any σ ∈ H2,0(V ), see [45, §4, Remark 2.3]. If V is not polarizable, then the

Kuga–Satake construction only yields a complex torus KS(V ).

4.1.3. — Given a Tannakian subcategory C ⊂ HS we denote by Cev the full subcate-

gory of C consisting of objects of even weight. Let W ∈ HS, and let w : Gm → MT(W )

be the weight cocharacter. We let ι := w(−1); it acts as −1 on any Hodge structure

of odd weight in 〈W 〉 and as the identity on 〈W 〉ev. This means that, whenever 〈W 〉
contains a Hodge structure of odd weight, the natural morphism of algebraic groups

MT(W ) → MT(〈W 〉ev) is an isogeny of algebraic groups with kernel the order 2

central subgroup 〈ι〉; in fact, ι is the only non-trivial element of GL(W ) which acts

trivially on GL(W ⊗W ).

4.1.4. Definition. — Let V be a polarizable Hodge structure of K3-type. A Kuga–

Satake variety for V is an abelian variety A such that 〈H1(A)〉ev = 〈V 〉.

4.1.5. Lemma (Equivalent definition). — An abelian variety A is a Kuga–

Satake variety for V if and only if V ∈ 〈H1(A)〉 and the induced surjective mor-

phism MT(H1(A))→ MT(V ) is an isogeny of degree 2.

Proof. — The only if part is already clear. Conversely, assume that A is an abelian va-

riety such that V ∈ 〈H1(A)〉 and that the induced surjection MT(H1(A))→ MT(V )

is an isogeny of degree 2. This morphism factors over MT(〈H1(A)〉ev) → MT(V ),

and it follows that the latter is an isomorphism. Hence, 〈H1(A)〉ev = 〈V 〉.

By Lemma 4.1.5 and the discussion in §4.1.1, the abelian variety KS(V ) is a Kuga–

Satake variety for V in the sense of Definition 4.1.4. Kuga–Satake varieties are not
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unique, not even up to isogeny: for instance, we could apply the Kuga–Satake con-

struction to the even Clifford algebra instead than to the full Clifford algebra. The

main observation of this section is that however the corresponding Kuga–Satake cat-

egory is indeed unique. Our argument relies on the Hodge maximality of polarizable

Hodge structures of K3-type proven by Cadoret–Moonen, [16].

4.1.6. Theorem. — Let V be a polarizable Hodge structure of K3-type. Then there

exists a unique Tannakian subcategory KS(V ) of HSpol such that

〈V 〉 = KS(V )ev ( KS(V ).

We call KS(V ) the Kuga–Satake category associated to V . If A is any Kuga–Satake

variety for V , we have 〈H1(A)〉 = KS(V ).

Let us first prove the following straightforward lemma. Consider Tannakian sub-

categories C ⊂ D of HS. Assume that both contain some Hodge structure of odd

weight. The inclusion of C in D induces surjective homomorphisms of pro-algebraic

groups q : MT(D)→ MT(C) and qev : MT(Dev)→ MT(Cev). Let πD, resp. πC, denote

the double cover MT(D)→ MT(Dev), resp. MT(C)→ MT(Cev).

4.1.7. Lemma. — In the above situation, the morphism πD : MT(D) → MT(Dev)

induces an isomorphism ker(q) ∼= ker(qev), and π−1
D (ker(qev)) = 〈ι〉 × ker(q).

Proof. — Consider the commutative diagram with exact rows

1 〈ι〉 MT(D) MT(Dev) 1

1 〈ι〉 MT(C) MT(Cev) 1.

∼= q

πD

qev

πC

By the snake lemma, πD induces an isomorphism ker(q) ∼= ker(qev). By assumption,

ι /∈ ker(q) and ι is central in MT(D); we conclude that π−1
D (ker(qev)) = 〈ι〉×ker(q).

Proof of Theorem 4.1.6. — Assume given W1,W2 ∈ HS, both of odd weight, and

such that 〈Wi〉ev = 〈V 〉, for i = 1, 2. We consider W1 ⊕ W2. We have surjective

homomorphisms qi : MT(W1 ⊕W2) → MT(Wi), and a commutative diagram with

exact rows

ker(q1) MT(W1 ⊕W2) MT(W1)

〈ι2〉 MT(W2) MT(V )

j

q1

q2
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We claim that q1 and q2 are both isomorphisms. Equivalently, j is the trivial map.

Indeed, if j is trivial then ker(q1) = ker(q2), which implies 〈W1〉 = 〈W2〉 ⊂ HS.

Assume by contradiction that there exists τ ∈ ker(q1) with j(τ) 6= 1. Then, by

construction, τ = (idW1 ,−idW2) ∈ GL(W1⊕W2). Let C ⊂ 〈W1⊕W2〉 be the subcate-

gory on which τ acts trivially. Then C ⊂ HS is the Tannakian subcategory generated

by W1 and 〈W2〉ev; it follows that C = 〈W1〉. Thus, the induced homomorphism

q1 : MT(W1 ⊕W2)→ MT(W1) is the quotient by 〈τ〉. By Lemma 4.1.7

MT(〈W1 ⊕W2〉ev)→ MT(V )

is an isogeny of degree 2. Since Mumford–Tate groups are connected, this contradicts

the Hodge maximality of V , see [16, Proposition 6.2].

Thanks to Theorem 2.2.8, we can lift Theorem 4.1.6 to the category of abelian

André motives.

4.1.8. Corollary. — Let K ⊂ C be an algebraically closed field. If M ∈ AMab
K is

an abelian motive whose Hodge realization is of K3-type, then there exists a unique

Tannakian subcategory KS(M) of AMab
K such that

〈M〉 = KS(M)ev ( KS(M).

Moreover, if A is any Kuga–Satake variety for the Hodge structure r(M), we

have 〈KS(M)〉 = 〈H1(A)〉 in AMK .

Proof. — Since K ⊂ C is algebraically closed, Theorem 2.2.8 implies that the real-

ization functor r is fully faithful on AMab
K . This fact, together with Theorem 4.1.6,

immediately gives the corollary.

The above discussion leads us naturally to the following question about relations

among different Kuga–Satake abelian varieties.

4.1.9. Question. — Assume that A and B are abelian varieties such that

〈H1(A)〉 = 〈H1(B)〉 in HSpol. Does this imply the existence of integers k, l, such

that A is an isogeny factor of Bk, and viceversa B is an isogeny factor of Al?

We close this section by mentioning that [35, Example 14] seems to suggest that

in general the answer to the above question is negative.
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4.2. Mumford–Tate groups of hyper-Kähler manifolds

The main theme of this section and the next is that the Mumford–Tate group of

a hyper-Kähler manifold is controlled by the LLV-Lie algebra. As a consequence,

MT(H•(X)) is completely determined by MT(H2(X)). Similar results have already

appeared in the literature in various forms, cf. [51], [48], [36].

Let X be a complex hyper-Kähler manifold. We denote by H•(X) =
⊕

iH
i(X)

the rational singular cohomology of X. We also let H+(X) =
⊕

iH
2i(X). The

natural inclusions of H2(X) into H+(X) and H•(X) induce surjective morphisms of

Mumford–Tate groups:

π+
2 : MT(H+(X))→ MT(H2(X));

π2 : MT(H•(X))→ MT(H2(X)).

Let ι ∈ GL(H•(X)) act on each Hi(X) via the multiplication by (−1)i.

4.2.1. Proposition. — The notation is as above.

(i) The morphism π+
2 is an isomorphism. In particular, the Hodge structure H+(X)

belongs to the tensor subcategory of HS generated by H2(X).

(ii) If X has non-trivial odd cohomology, the morphism π2 is an isogeny with kernel

〈ι〉 ' Z/2Z. If X is projective, for any Kuga–Satake variety A for H2(X) we

have 〈H•(X)〉 = 〈H1(A)〉 in HS.

For instance, A could be the abelian variety obtained via the Kuga–Satake con-

struction from H2(X) equipped with the Beauville–Bogomolov form (Remark 4.1.2).

The above proposition is a consequence of the properties of the LLV-representation.

We denote by H the Q-vector space H2(X) equipped with the Beauville–Bogomolov

form. Recall (Definition 1.5.5) that we introduced the twisted LLV-representation

R : G0(X) ∼= CSpin(H)→
∏
i

GL(Hi(X)).

4.2.2. Lemma. — The Mumford–Tate group MT(H•(X)) is contained in the image

of the representation R.

Proof. — The Hodge structure on H•(X) is determined by a real representation

h : S → GL(H•(X)) ⊗ R of the Deligne torus S. The Lie algebra s of this torus is

mapped by h to the two dimensional real Lie subalgebra of gl(H•(X)) ⊗ R spanned

by θ′ and W , where θ′ is multiplication by j on each Hj(X) and W is the Weil
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operator, i.e. the endomorphism ofH•(X)⊗R whose complexification acts onHp,q(X)

as multiplication by i(p− q).
Denote by G the image of R, and let g ⊂ gl(H•(X)) be the Lie algebra of G.

By Remark 1.5.6, we have θ′ ∈ g; by Theorem 1.3.8, the Weil operator W belongs

to g ⊗ R. It follows that the image of the differential of h is contained in g ⊗ R.

Therefore, we have h(S) ⊂ G⊗R. By definition of the Mumford–Tate group (§2.1.2),

we conclude that MT(H•(X)) ⊂ G.

Proof of Proposition 4.2.1. — (i). By Lemma 1.5.7, the representationR is by graded

algebra automorphism. Let R+ : G0(X) →
∏
i GL(H2i(X)) be the induced repre-

sentation on the even part H+(X) of the cohomology. Lemma 4.2.2 implies that

MT(H+(X)) ⊂ Im(R+). The morphism π+
2 is the restriction of the natural pro-

jection pr+
2 :

∏
i GL(H2i(X)) → GL(H2(X)). By Remark 1.5.8, the restriction of

pr+
2 to Im(R+) is injective; hence its restriction to the subgroup MT(H+(X)) is also

injective, and thus π+
2 is an isomorphism.

(ii). Assume that the odd cohomology of X is non-trivial. This time the restriction

of pr2 :
∏
i GL(Hi(X))→ GL(H2(X)) to Im(R) has kernel the order 2 subgroup gen-

erated by ι = R(−1), by Remark 1.5.8. Since ι is clearly in MT(H•(X)), Lemma 4.2.2

implies that the kernel of π2 : MT(H•(X))→ MT(H2(X)) is 〈ι〉 ∼= Z/2Z.

Finally, let X be projective and let A be a Kuga–Satake abelian variety for H2(X).

Then 〈H1(A)〉 ⊂ HSpol is the unique Tannakian subcategory such that

〈H2(X)〉 = 〈H1(A)〉ev ( 〈H1(A)〉,

by Theorem 4.1.6. It is therefore enough to show that 〈H•(X)〉 ⊂ HS also has this

property. Consider the commutative diagram

MT(H•(X)) MT(H2(X))

MT(〈H•(X)〉ev).

πev

π2

πev
2

We have just seen that π2 is an isogeny of degree 2, and we know that πev is also an

isogeny of degree 2, see §4.1.3; we conclude that πev
2 is an isomorphism. Since, by

assumption, 〈H•(X)〉 contains Hodge structures of odd weight, we have

〈H2(X)〉 = 〈H•(X)〉ev ( 〈H•(X)〉,

and hence 〈H•(X)〉 = 〈H1(A)〉 in HSpol.
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4.3. The H2 determines the full Hodge structure

The next result, which is a slight generalization of a result proven by Soldatenkov

in [80], makes precise that the total Hodge structure of a hyper-Kähler variety is

determined by its component in degree 2.

In what follows, we will say that two hyper-Kähler manifolds X1 and X2 are H•-

equivalent if there exists an isomorphism of graded algebras H•(X1)
∼−−→ H•(X2)

which is an isometry in degree 2 with respect to the Beauville–Bogomolov pairings.

Since the algebra H•(Xi) and the Beauville–Bogomolov form on H2(Xi) only depend

on the topology of Xi, deformation equivalent manifolds are H•-equivalent. It seems

unknown whether, conversely, H•-equivalent varieties are deformation equivalent; this

holds for the known deformation types, though, since they are distinguished by their

second Betti number.

4.3.1. Theorem. — Let X1 and X2 be H•-equivalent complex projective hyper-

Kähler manifolds. Assume given a Hodge isometry f : H2(X1)
∼−−→ H2(X2). Then

there exists an isomorphism of graded algebras F : H•(X1)
∼−−→ H•(X2) which is an

isomorphism of Hodge structures.

Proof of Theorem 4.3.1. — By assumption, there exists an isomorphism of graded al-

gebras Ψ: H•(X1)
∼−−→ H•(X2) whose degree 2 component ψ : H2(X1)

∼−−→ H2(X2)

is an isometry. We construct the required isomorphism of graded algebras

F : H•(X1)
∼−−→ H•(X2) as follows. We have ψ−1 ◦ f ∈ O(H2(X1))(Q). We

may assume that ψ−1 ◦ f has determinant 1, for if it has determinant −1 we can

choose an ample line bundle on X1 with first Chern class e ∈ H2(X1) and replace f

with the Hodge isometry given by e 7→ −f(e) and v 7→ f(v), for any v ∈ 〈e〉⊥.

The morphism π : CSpin(H2(X1)) → SO(H2(X1)) is surjective on Q-points. In-

deed, by Hilbert’s theorem 90, the short exact sequence

1→ Gm → CSpin(H2(X1))→ SO(H2(X1))→ 1

yields a short exact sequence

1→ Q× → CSpin(H2(X1))(Q)→ SO(H2(X1))(Q)→ 1,

see [78, Chapter X, §1].

Therefore, there exists some g ∈ CSpin(H2(X1))(Q) such that π(g) = ψ−1 ◦ f . By

Lemma 1.5.7, R(g) is a graded algebra automorphism of H•(X1), and we define the
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isomorphism of graded algebras

F := Ψ ◦R(g) : H•(X1)
∼−−→ H•(X2).

By Remark 1.5.8, the degree 2 component of F is a multiple of the Hodge isometry f ;

by Proposition 4.3.3 below, F is an isomorphism of Hodge structures.

4.3.2. Remark. — The assumption that X1 and X2 are projective is only used to

change the sign of the determinant of ψ−1 ◦f . It would have been sufficient to assume

that Pic(Xi) 6= 0.

In the above proof, we used the following result.

4.3.3. Proposition. — Let X1 and X2 be complex hyper-Kähler manifolds. Let

F : H•(X1)
∼−−→ H•(X2) be an isomorphism of graded algebras and assume that the

degree 2 component F (2) : H2(X1)
∼−−→ H2(X2) is an isomorphism of Hodge struc-

tures. Then F is an isomorphism of Hodge structures.

Proof. — If S denotes the Deligne torus, the total Hodge structure on H•(Xi) corre-

sponds to a real representation hi : S→
∏
j GL(Hj(Xi))⊗R. By definition, hi factors

through MT(H•(Xi))(R). By Proposition 4.2.1, the group MT(H•(Xi)) is contained

in the image of the twisted LLV-representation R : G0(Xi) →
∏
j GL(Hj(Xi)). By

Lemma 1.2.4.(i), the induced isomorphism F∗ : GL(H•(X1))
∼−−→ GL(H•(X2)) re-

stricts to an isomorphism of LLV-Lie algebras g(X1)
∼−−→ g(X2). As F preserves the

cohomological grading, F∗ restricts to an isomorphism R(G0(X1))
∼−−→ R(G0(X2)).

We have to show that the diagram

S

R(G0(X1))(R) R(G0(X2))(R)

R(2)(G0(X1))(R) R(2)(G0(X2))(R)

h1 h2

pr1

F∗

pr2

F (2)
∗

is commutative. By Remark 1.5.8, the morphism pr2 : R(G0(X2))→ R(2)(G0(X2)) is

either an isomorphism or a central isogeny of degree 2; let C be the kernel. Since F (2)

is an isomorphism of Hodge structures, we have F
(2)
∗ ◦ pr1 ◦ h1 = pr2 ◦ h2. Hence,

there is a morphism ξ : S → C such that F∗ ◦ h1 = ξ · h2. But S is connected and C

is finite, so ξ is trivial and F is an isomorphism of Hodge structures.



CHAPTER 5

DEFECT GROUPS OF HYPER-KÄHLER VARIETIES

5.1. The defect group

A hyper-Kähler variety X over a field K ⊂ C is a smooth and projective variety

over K such that the complex manifold associated to XC is a hyper-Kähler manifold.

Proposition 4.2.1 leads us to formulate the following conjecture about the motives of

hyper-Kähler varieties.

5.1.1. Conjecture. — Let K ⊂ C be an algebraically closed field. Let X be a hyper-

Kähler variety over K, and let H•(X) =
⊕

iHi(X) ∈ AMK be its motive. Then:

(i) the even part H+(X) =
⊕

iH2i(X) of the motive of X belongs to the Tannakian

category 〈H2(X)〉 ⊂ AMK ;

(ii) if X has non-trivial cohomology in some odd degree, then, for any Kuga–Satake

variety A for the Hodge structure H2(X), the motive H•(X) belongs to the

Tannakian category 〈H1(A)〉 ⊂ AMK .

In any case, the motive of X is abelian.

Note that the results in Chapter 3 provide evidence towards the conjecture above.

We will make use of the following fundamental result due to André [3].

5.1.2. Theorem. — Let X be a hyper-Kähler variety over a field K ⊂ C. Assume

that b2(X) > 3. Then the motive H2(XK̄) is abelian. If K is finitely generated over Q,

the motivic Mumford–Tate conjecture holds for H2(X).

This result implies the Tate conjecture for divisors on hyper-Kähler varieties

with b2 > 3. The assumption on the second Betti number in Theorem 5.1.2 ensures
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that X admits non-trivial deformations; this is crucial for André’s argument. By

Hodge theory, any hyper-Kähler variety X satisfies b2(X) ≥ 3, and conjecturally

([10]) we should always have b2(X) > 3, but this is not known at present time.

Moonen [63] refined André’s method and proved the Tate and Mumford–Tate con-

jectures for divisors for varieties with H2 of K3-type and that admit a non-isotrivial

deformation.

5.1.3. — Let K ⊂ C be an algebraically closed field. To any hyper-Kähler variety X

overK with b2(X) > 3, we now attach its defect group P (X), an algebraic group which

measures the failure of Conjecture 5.1.1 for X.

Let H•(X) ∈ AMK be the motive of X, and let H+(X) =
⊕

iH2i(X) denote

the even part of H•(X). The inclusions of H2(X) in H+(X) and H•(X) determine

surjective morphisms of motivic Galois groups,

π2,mot : Gmot(H•(X)) −→ Gmot(H2(X)),

π+
2,mot : Gmot(H+(X)) −→ Gmot(H2(X)).

Let ι ∈ GL(H•(X)) be multiplication by (−1)j on Hj(X).

5.1.4. Definition. — Let X be a hyper-Kähler variety over the algebraically closed

field K ⊂ C with b2(X) > 3.

(i) The even defect group P+(X) ⊂ Gmot(H+(X)) is the kernel

P+(X) := ker
(
π+

2,mot : Gmot(H+(X))→ Gmot(H2(X))
)
.

If the odd cohomology of X is trivial, the defect group P (X) ⊂ Gmot(H•(X)) is

by definition P+(X).

(ii) Assume that X has non-trivial cohomology in odd degree. Let

P̃ (X) := ker
(
π2,mot : Gmot(H•(X))→ Gmot(H2(X))

)
.

The defect group P (X) of X is by definition the quotient P̃ (X)/〈ι〉. We will

sometimes call P̃ (X) the extended defect group of X.

5.1.5. Remark. — Note that ι belongs to Gmot(H•(X)), since it fixes all motivated

cycles in 〈H•(X)〉 ⊂ HS. Hence the defect group is well defined.

In light of Conjecture 5.1.1, we expect the defect group to be always trivial, see

Conjecture 5.2.5 below. We will prove this for all hyper-Kähler varieties of known
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deformation type. A much weaker expectation is that, in presence of odd cohomology,

the short exact sequence defining the defect group should split: P̃ (X) = 〈ι〉 × P (X).

5.1.6. — The following is the key property of the defect group. Recall (§2.2.5)

that the motivic Galois group Gmot(H•(X)) contains naturally the Mumford–Tate

group MT(H•(X)). Our result shows that the defect group is a complement.

5.1.7. Theorem. — Let K ⊂ C be an algebraically closed field, and let X be a hyper-

Kähler variety over K such that b2(X) > 3. Then, the even defect group P+(X) is a

direct complement of MT(H+(X)) inside Gmot(H+(X)) :

Gmot(H+(X)) = MT(H+(X))× P+(X).

In presence of non-trivial cohomology in odd degree, the extended defect group P̃ (X)

is a complement of MT(H•(X)) in Gmot(H•(X)), in the sense that

Gmot(H•(X)) = MT(H•(X)) · P̃ (X),

the subgroups P̃ (X) and MT(H•(X)) commute and intersect in 〈ι〉.

5.1.8. Remark. — Since in presence of non-trivial cohomology in odd degree the

defect group is defined as P (X) = P̃ (X)/〈ι〉, in this case we have

Gmot(H•(X))/〈ι〉 = MT(H•(X))/〈ι〉 × P (X).

Proof of Theorem 5.1.7. — We first treat the statement about the even defect group.

Consider the commutative diagram

Gmot(H+(X)) Gmot(H2(X))

MT(H+(X)) MT(H2(X))

π+
2,mot

i+ i2

π+
2

Here, i+ and i2 denote the natural inclusions; π+
2 and i2 are isomorphisms due to

Proposition 4.2.1 and Theorem 5.1.2 respectively. We deduce that s = i+ ◦(i2 ◦π+
2 )−1

is a section of π+
2,mot. The image of s is MT(H+(X)).

As P+(X) is defined as the kernel of the map π+
2,mot, the group Gmot(H+(X))

is generated by the subgroups P+(X) and MT(H+(X)), which intersect trivially.

In order to show that Gmot(H+(X)) = MT(H+(X)) × P+(X), we are left to prove

that P+(X) and MT(H+(X)) commute. By Lemma 4.2.2, it suffices to show
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that P+(X) commutes with the image of the twisted LLV-representation R+ (Defi-

nition 1.5.5). The action of P+(X) on H+(X) is by graded algebra automorphisms:

clearly P+(X) preserves the cohomological grading and its action is compatible with

the algebra structure since the cup-product is induced by an algebraic correspon-

dence, namely, by the class of the image of the diagonal embedding X ↪→ X×X×X.

By Lemma 1.2.4.(ii), the action of P+(X) commutes with the image of R+.

In presence of non-trivial cohomology in odd degree, the proof is similar. As

above, the algebraic group P̃ (X) acts on H•(X) by graded algebra automorphisms

trivial on H2(X); hence, its action commutes with the LLV-representation R on

the cohomology. Since, by Lemma 4.2.2, the Mumford–Tate group is contained in

the image of R, the subgroups P̃ (X) and MT(H•(X)) commute. Since the odd

cohomology of X is non-trivial, ι is the only non-trivial element in the image of R

which is trivial on H2(X), by Remark 1.5.8, and hence P̃ (X) ∩ MT(H•(X)) = 〈ι〉.
Finally, consider the commutative diagram

Gmot(H•(X)) Gmot(H2(X))

MT(H•(X)) MT(H1(A))

π2,mot

i

∼

2:1

where A is any Kuga–Satake abelian variety for H2(X); the horizontal map on the

bottom is an isomorphism by Proposition 4.2.1.(ii), while the vertical homomorphism

on the right hand side is an isogeny of degree 2, by Corollary 4.1.8. As P̃ (X) is by

definition the kernel of π2,mot, we have Gmot(H•(X)) = MT(H•(X)) · P̃ (X).

5.1.9. Remark. — The inclusion H+(X) ⊂ H•(X) yields a quotient homomor-

phism Gmot(H•(X)) → Gmot(H+(X)). It induces a surjective homomorphism

P̃ (X) → P+(X) which factors through a quotient P (X) → P+(X), because, by

definition, P (X) = P̃ (X)/〈ι〉 and ι is trivial on H+(X).

5.1.10. — As apparent from the definition, in presence of non-trivial cohomology in

odd degree, the defect group does not, a priori, act on H•(X), but only after passing

to a cover of degree 2. We expect that it should always be possible to lift the defect

group to a subgroup of Gmot(H•(X)).

5.1.11. Lemma. — In presence of non-trivial odd cohomology, the following are

equivalent:
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(i) the short exact sequence

1→ 〈ι〉 → P̃ (X)→ P (X)→ 1

splits: P̃ (X) = 〈ι〉 × P (X);

(ii) for any Kuga–Satake variety A for H2(X), we have

〈H1(A)〉 ⊂ 〈H•(X)〉 ⊂ AMK .

Proof. — Assume that (i) holds. We identify P (X) with a subgroup of P̃ (X) such

that P̃ (X) = 〈ι〉 × P (X). Since ι ∈ MT(H•(X)), Theorem 5.1.7 then implies that

Gmot(H•(X)) = MT(H•(X))× P (X). The projection Gmot(H•(X))� MT(H•(X))

corresponds to a Tannakian subcategory C ⊂ 〈H•(X)〉; by construction, we have

Gmot(C) ∼= MT(H•(X)). This implies that r(C) = 〈H•(X)〉 ⊂ HSpol, where r is the

realization functor.

It follows that Gmot(C) = MT(r(C)): any Hodge class in C is motivated. By Propo-

sition 4.2.1.(ii), the category r(C) ⊂ HSpol is the Kuga–Satake category attached to

H2(X) (see Theorem 4.1.6). It follows that C consists of abelian motives. Then, by

Corollary 4.1.8, we have C = 〈H1(A)〉 for any Kuga–Satake variety A for H2(X).

Assume conversely that (ii) holds. Let A be a Kuga–Satake abelian variety

for H2(X), and define

P ′(X) := ker
(

Gmot(H•(X))
πA,mot−−−−−→ Gmot(H1(A))

)
.

Clearly, P ′(X) is contained in the extended defect group P̃ (X). Moreover ι /∈ P ′(X),

since ι is multiplication by −1 on H1(A). Theorem 5.1.7 then implies that P ′(X)

and MT(H•(X)) commute and have trivial intersection. Consider the commutative

diagram

Gmot(H•(X)) Gmot(H1(A))

MT(H•(X)) MT(H1(A))

πA,mot

i iA

πA

The morphisms πA and iA are isomorphisms by Proposition 4.2.1.(ii) and Theo-

rem 2.2.8 respectively. We deduce the existence of a section of πA,mot with im-

age MT(H•(X)). It follows that

Gmot(H•(X)) = MT(H•(X))× P ′(X),

and therefore P̃ (X) = 〈ι〉 × P ′(X).
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5.1.12. Remark. — By the uniqueness of the Kuga–Satake category, the

group P ′(X) defined in the above proof does not depend on the choice of the

Kuga–Satake variety A. If the equivalent conditions of Lemma 5.1.11 are satis-

fied, we identify the defect group P (X) with the kernel of the homomorphism

πA,mot : Gmot(H•(X)) → Gmot(H1(A)), for any Kuga–Satake abelian variety A

for H2(X). Then the defect group becomes a direct complement of the Mumford–

Tate group, as in the even case.

5.1.13. — From the Tannakian point of view, Theorem 5.1.7 has the following con-

sequence. We denote by Gmot(AMK) the pro-algebraic group attached via Tannaka

duality to the whole category AMK . Tannakian subcategories of AMK correspond to

quotients of Gmot(AMK); we let πX : Gmot(AMK)→ Gmot(H•(X)) be the surjective

homomorphism corresponding to 〈H•(X)〉 ⊂ AMK . Theorem 5.1.7 gives a natural

Tannakian subcategory of 〈H•(X)〉, corresponding to the quotient homomorphism

π′X : Gmot(AMK)→ P (X).

This is the subcategory of 〈H•(X)〉 consisting of motives whose Hodge realization

is a trivial Hodge structure, isomorphic to Q(0)⊕k for some k ≥ 0. We refer to it as

the Hodge-trivial part of 〈H•(X)〉 ⊂ AMK ; conjecturally, any motive in this category

should be a sum of copies of the unit motive 1 ∈ AMK . By [25, Proposition 3.1] there

exists a tensor construction

T = H•(X)⊗n ⊗H•(X)∨,⊗m(j) ∈ AMK ,

with Hodge realization denoted by T , such that P (X) acts faithfully on the sub-

space W = TMT(H•(X)) ⊂ T of Hodge classes. Then W is a faithful P (X)-module,

and hence it is the Hodge realization of a submotive W ⊂ T . For any motive W
obtained in this way, the Tannakian category corresponding to π′X is 〈W〉 ⊂ AMK .

5.2. What does the defect group measure?

Let K ⊂ C be an algebraically closed field. Theorem 5.1.7 has the following

consequence, which justifies the name “defect group”.

5.2.1. Corollary. — For any hyper-Kähler variety X over K with b2(X) > 3, the

following conditions are equivalent:
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(i+) The even defect group P+(X) is trivial.

(ii+) The even André motive H+(X) lies in the Tannakian subcategory of AMK

generated by H2(X).

(iii+) The motive H+(X) is abelian.

(iv+) Conjecture 2.2.7 holds for H+(X): MT(H+(X)) = Gmot(H+(X)).

Similarly, in presence of non-trivial cohomology in odd degree, we have the following

equivalent conditions:

(i) The defect group P (X) is trivial (equivalently, the extended defect group P̃ (X)

is isomorphic to Z/2Z).

(ii) The André motive H•(X) lies in the Tannakian subcategory of AMK generated

by H1(A), where A is any Kuga–Satake abelian variety associated to H2(X).

(iii) The motive H•(X) is abelian.

(iv) Conjecture 2.2.7 holds for H•(X): MT(H•(X)) = Gmot(H•(X)).

Proof. — We first treat the even motive. It follows immediately from Theorem 5.1.7

that (i+) and (iv+) are equivalent.

(i+) implies (ii+): by the definition of P+(X), if it is trivial, then the natural

surjection Gmot(H+(X))→ Gmot(H2(X)) is an isomorphism. Then (ii+) follows from

Tannaka duality. The implication from (ii+) to (iii+) is due to the fact that H2(X) is

an abelian motive, by Theorem 5.1.2. Finally, (iii+) implies (iv+) by Theorem 2.2.8.

If the odd cohomology of X is trivial, we are done. Otherwise, the proof of

the second statement is similar: the equivalence of (i) and (iv) is an immediate

consequence of Theorem 5.1.7; it is obvious that (ii) implies (iii), and (iii) im-

plies (iv) by Theorem 2.2.8. Finally, let us show how (i) implies (ii). If P (X) is

trivial and A is any Kuga–Satake abelian variety for H2(X), Lemma 5.1.11 implies

that H1(A) ∈ 〈H•(X)〉. By Remark 5.1.12, the defect group is then identified with

the kernel of Gmot(H•(X)) → Gmot(H1(A)). Hence this homomorphism is an iso-

morphism, which, by Tannaka duality, means that 〈H•(X)〉 = 〈H1(A)〉 ⊂ AMK .

5.2.2. — Assume now that K ⊂ C is a field which is finitely generated over Q, with

algebraic closure K̄ ⊂ C, and let ` be a fixed prime number. The notion of defect

group helps us in studying the Mumford–Tate conjecture for hyper-Kähler varieties.

5.2.3. Proposition. — Let X be a hyper-Kähler variety over K, and assume

that b2(X) > 3.
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(i) If P+(XK̄) is finite, then the Mumford–Tate conjecture 2.1.6 holds for the even

part of the cohomology of X, i.e. the isomorphism H+(X) ⊗ Q` ∼= H+
` (X) in-

duces an isomorphism MT(H+(X)) ⊗ Q` ∼= G(H+
` (X))0. Moreover, the even

defect group P+(XK̄) is trivial if and only if the motivic Mumford–Tate conjec-

ture 2.2.10 holds for the motive H+(X).

(ii) Similarly, if P (XK̄) is finite, then the Mumford–Tate conjecture 2.1.6 holds

for X; moreover, the defect group P (XK̄) is trivial if and only if the motivic

Mumford–Tate conjecture 2.2.10 holds for the motive H•(X).

Proof. — Consider the commutative diagram

MT(H+(X))⊗Q` Gmot(H+(XK̄))0 ⊗Q` G(H+
` (X))0

MT(H2(X))⊗Q` Gmot(H2(XK̄))⊗Q` G(H2
` (X))0

∼

∼

∼ ∼

The two horizontal morphisms on the bottom are isomorphisms due to Theorem 5.1.2,

the vertical map on the left is an isomorphism thanks to Proposition 4.2.1, and the

top left horizontal arrow is an isomorphism by Theorem 5.1.7 since P+(XK̄) is a finite

group by assumption. Then all arrows in the diagram are isomorphisms, and hence

G(H+
` (X))0 ∼= Gmot(H+(XK̄))0 ⊗Q` ∼= MT(H+(X))⊗Q`.

If P+(XK̄) is trivial, the group Gmot(H+(XK̄)) is connected, and we conclude that

the motivic Mumford–Tate conjecture 2.2.10 holds for H+(X). Conversely, assume

that the motivic Mumford–Tate conjecture holds for H+(X). Then, in particular, we

have Gmot(H+(XK̄)) = MT(H+(X)), which forces the triviality of the even defect

group P+(XK̄) by Theorem 5.1.7. This proves (i).

Assume now that the odd cohomology of X is non-trivial and that P (XK̄) is

finite. It then follows that also the extended defect group P̃ (XK̄) is finite. Then, by

Theorem 5.1.7, the algebraic groups MT(H•(X)) and Gmot(H•(X)) have the same

dimension, and hence the inclusion MT(H•(X)) ↪→ Gmot(H•(X))0 is an isomorphism.

The even defect group P+(XK̄) is also finite, being a quotient of P (XK̄) (see

Remark 5.1.5). We consider another commutative diagram

MT(H•(X))⊗Q` Gmot(H•(XK̄))0 ⊗Q` G(H•` (X))0

MT(H+(X))⊗Q` Gmot(H+(XK̄))0 ⊗Q` G(H+
` (X))0

∼

∼ ∼
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The horizontal arrows on the bottom are isomorphisms due to (i); the top left horizon-

tal map is an isomorphism by the above discussion, while the leftmost vertical arrow

is an isogeny due to Proposition 4.2.1. It follows that the other vertical maps are iso-

genies as well. We deduce that Gmot(H•(XK̄))0 ⊗Q` and G(H•` (X))0 are connected

algebraic groups of the same dimension; hence,

G(H•` (X))0 ↪→ Gmot(H•(XK̄))0 ⊗Q`

has to be an isomorphism.

If P (XK̄) is actually trivial, then Gmot(H•(XK̄)) = MT(H•(X)) is connected,

and the motivic Mumford–Tate conjecture holds for H•(X). Conversely, the motivic

Mumford–Tate conjecture for H•(X) implies that Gmot(H•(XK̄)) = MT(H•(X)),

and then P (XK̄) has to be trivial by Theorem 5.1.7.

5.2.4. — By the above results, Conjecture 5.1.1, the Mumford–Tate conjecture 2.1.6

and Conjecture 2.2.7 for hyper-Kähler varieties with b2 > 3 are all equivalent to the

following conjecture.

5.2.5. Conjecture. — The defect group P (X) of any hyper-Kähler variety X over

an algebraically closed field K ⊂ C with b2(X) > 3 is trivial.

In the next Chapter, we will prove this conjecture for all hyper-Kähler varieties of

known deformation type.

5.3. Deformation invariance of defect groups

A remarkable property of defect groups is their deformation invariance.

5.3.1. Theorem. — Let S be a smooth and connected complex variety, and let

X → S be a smooth projective morphism with fibres hyper-Kähler varieties Xs such

that b2(Xs) > 3. Then, for any s, s′ ∈ S, the defect groups P (Xs) and P (Xs′) are

isomorphic; similarly, the even defect groups P+(Xs) and P+(Xs′) are isomorphic.

Proof. — The family X→ S determines motives in AMS (see Definition 2.3.3):

H•(X/S) =
⊕
i

Hi(X/S), H+(X/S) =
⊕
i

H2i(X/S),
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with Hodge realization

H•(X/S) =
⊕
i

Hi(X/S), H+(X/S) =
⊕
i

H2i(X/S),

respectively. Here, Hi(X/S) denotes the variation of Hodge structures Rif∗QX.

Upon taking an étale cover of S, we may assume that the algebraic monodromy

group Gmono(H•(X/S)) is connected.

We prove first the invariance of the even defect group. Since H2(X/S) ⊂ H+(X/S),

we have a natural morphism of generic motivic Galois groups

Gmot(H+(X/S))� Gmot(H2(X/S)).

Let P+(X/S) denote the kernel of this morphism. By Theorem 2.3.6, for a very

general point s0 ∈ S, we have the equalities Gmot(H+(X/S))s0 = Gmot(H+(Xs0))

and MT(H+(X/S))s0 = MT(H+(Xs0)). Hence, P+(X/S)s0 = P+(Xs0) and

Gmot(H+(X/S))s0 = MT(H+(X/S))s0 × P+(X/S)s0 ,

by Theorem 5.1.7. Since the monodromy group is connected, it is a subgroup

of MT(H+(X/S)). Therefore, it commutes with P+(X/S); in other words, P+(X/S)

is a constant local system of algebraic groups over S. We obtain a splitting

Gmot(H+(X/S)) = MT(H+(X/S))× P+(X/S)

of local systems of algebraic groups over S. For any s ∈ S, the inclusion

of Gmot(H+(Xs)) into Gmot(H+(X/S))s is the direct product of inclusions

MT(H+(Xs)) ↪→ MT(H+(X/S))s and P+(Xs) ↪→ P+(X/S)s.

It is enough to show that for all s ∈ S, the equality P+(Xs) = P+(X/S)s holds.

By Corollary 2.3.8, for all s ∈ S, we have

Gmono(H+(X/S))s ·Gmot(H+(Xs)) = Gmot(H+(X/S))s.

But we know that Gmono(H+(X/S))s is contained in

MT(H+(X/S))s × {1} ⊂ MT(H+(X/S))s × P+(X/S)s,
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and therefore

Gmono(H+(X/S))s ·Gmot(H+(Xs)) =

= Gmono(H+(X/S))s · (MT+(Xs)× P+(Xs))

= (Gmono(H+(X/S))s ·MT+(Xs))× P+(Xs)

= MT+(H+(X/S))s × P+(Xs),

which forces P+(Xs) = P+(X/S)s.

In presence of non-trivial odd cohomology, the proof is similar. The inclusion

H2(X/S) ⊂ H•(X/S) gives a surjective homomorphism of generic motivic Galois

groups

Gmot(H•(X/S))� Gmot(H2(X/S));

let P̃ (X/S) denote its kernel. Then P̃ (X/S) is a local system of algebraic groups

over S, and it contains a central sub-local system 〈ι〉S with fibre 〈ι〉 ∼= Z/2Z. We

denote by P (X/S) the quotient local system P̃ (X/S)/〈ι〉S . By Theorem 2.3.6, at a

very general point s0 ∈ S the fibre P̃ (X/S)s0 (resp. P (X/S)s0) is the extended defect

group P̃ (Xs0) (resp. the defect group P (Xs0)) of the fibre Xs0 .

Reasoning as above, from Theorem 2.3.6 and Theorem 5.1.7 we obtain that P̃ (X/S)

is a constant local system over S and Gmot(H•(X/S)) = MT(H•(X/S)) · P̃ (X/S),

with P̃ (X/S) and MT(H•(X/S)) commuting with each other and intersecting in 〈ι〉S .

For any s ∈ S, the inclusion of Gmot(H•(Xs)) into Gmot(H•(X/S))s is given by

inclusions

MT(H•(Xs)) ↪→ MT(H•(X/S))s and P̃ (Xs) ↪→ P̃ (X/S)s.

It suffices to show that P̃ (Xs) = P̃ (X/S)s for any s ∈ S. We apply Corollary 2.3.8

as in the even case: for any s ∈ S, we have

Gmono(H•(X/S))s ·Gmot(H•(Xs)) = Gmot(H•(X/S))s;

on the other hand, Gmono(H•(X/S))s · Gmot(H•(Xs)) ⊂ MT(H•(X/S))s · P̃ (Xs),

which forces P̃ (Xs) = P̃ (X/S)s.

As the proof shows, for a family X → S as above with connected mondromy, the

defect groups of the fibres arrange into a constant local system P (X/S) of algebraic
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groups over S. The Tannakian interpretation of Theorem 5.1.7 leads to the follow-

ing more precise result, which says that, in such a family, the Hodge-trivial part

(see §5.1.13) of the categories 〈H•(X)s)〉 ⊂ AMC does not depend on s ∈ S.

5.3.2. Corollary. — Let X → S be as above and assume that the monodromy

group Gmono(H•(X/S)) is connected. Let a, b be points of S. Choose a continuous

path γ from a to b, and let Ξ: P (Xa) → P (Xb) be the isomorphism obtained via

parallel transport along γ in the local system P (X/S). Then Ξ does not depend on

the choice of γ and the diagram

P (Xa)

Gmot(AMC)

P (Xb)

Ξ

π′Xa

π′Xb

is commutative. The analogous statement holds for the even defect groups.

Proof. — Since Gmot(AMC)� P+(X) factors over the quotient P (X)→ P+(X) by

Remark 5.1.5, the statement for defect groups implies that for even defect groups.

The local system P (X/S) is constant, so Ξ does not depend on the choice of γ.

Consider a motive T /S := H•(X/S)⊗m ⊗ H•(X/S)∨,⊗n ⊗ 1S(j) ∈ AMS , for

integers m,n, j. Let T/S denote the realization of T /S. For any s ∈ S we let Ws ⊂ Ts
be the subspace of invariants for the generic Mumford–Tate group MT(T/S)s at s; this

yields a subvariation of Hodge structures W/S ⊂ T/S. Moreover, since MT(T/S)s is

normal in Gmot(T /S)s by Theorem 5.1.7, the variation W/S is the Hodge realization

of a submotive W/S ⊂ T /S over S.

The motive W/S is a constant motive over S. Indeed, let us denote by D the

motive Wb, and let D/S be the constant motive over S with fibre D; let D/S be the

realization of D/S. Then idb : Wb → Db is monodromy invariant and obviously an

isomorphism of motives. By Theorem 2.3.2, this morphism extends to an isomorphism

W/S ∼= D/S in AMS . It follows that the isomorphism Ψ: Wa →Wb given by parallel

transport along γ in the local system W/S is the realization of an isomorphism of

motives Wa
∼= Wb. Hence, the induced isomorphism Ψ∗ : GL(Wa) → GL(Wb) fits
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into a commutative diagram

Gmot(Wa)

Gmot(AMC)

Gmot(Wb)

Ψ∗

Note that since the generic Mumford–Tate group acts trivially on Ws by construction,

the group Gmot(Ws) is a quotient of the defect group P (Xs).

We now choose the tensor construction T/S in such a way that the action of P (Xs)

on the subspace Ws is faithful; in this case we have Gmot(Ws) = P (Xs) for all

points s ∈ S, and the homomorphism Gmot(AMC) � Gmot(Ws) is identified with

the projection π′Xs
: Gmot(AMC) → P (Xs). Moreover, P (X/S) ⊂ GL(W/S) is a sub-

local system of algebraic groups, and therefore the isomorphism Ξ: P (Xa) → P (Xb)

obtained via parallel transport along γ in the local system P (X/S) is the restriction

of the isomorphism Ψ∗ : GL(Wa)→ GL(Wb) to P (Xa). This concludes the proof.





CHAPTER 6

APPLICATIONS

6.1. Invariance of the defect group in a deformation class

The following is the key to our applications.

6.1.1. Theorem. — Let X1, X2 be deformation equivalent (in the complex analytic

sense) projective hyper-Kähler manifolds. Assume that b2(X) > 6. Then there exist:

– finitely many connected and non-singular complex varieties Si, i = 1, . . . , N ;

– for each i = 1, . . . , N , a smooth and projective family Xi → Si with fibres hyper-

Kähler varieties;

– for i = 1, . . . , N , points ai, bi ∈ Si together with birational maps

X1 99K X
1
a1
, Xibi 99K X

i+1
ai+1

, for i = 1, . . . , N − 1, XNbN 99K X2.

This theorem is proven in Appendix A. Combining it with Theorem 5.3.1, we obtain

the following result.

6.1.2. Corollary. — Let Y and Y ′ be deformation equivalent projective complex

hyper-Kähler manifolds with b2 > 6. Then their (even) defect groups are isomorphic:

P (Y ) ∼= P (Y ′) (P+(Y ) ∼= P+(Y ′)).

Thus, Conjecture 5.1.1 and the equivalent statements in Corollary 5.2.1 hold for Y if

and only if they hold for Y ′.

Proof. — Riess [76] proved that birationally equivalent hyper-Kähler varieties have

isomorphic Chow motives. In particular, they have isomorphic defect groups. Given
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smooth projective families Xi → Si and points ai, bi as in Theorem 6.1.1, the conclu-

sion follows by repeated application of Theorem 5.3.1.

6.1.3. Remark. — With notation and assumptions as in the above proof, choose

a continuous path γi in Si from ai to bi, i = 1, . . . , N . We may assume that the

monodromy groups Gmono(H•(Xi/Si)) are connected. Let Ξi : P (Xiai) → P (Xibi) be

the isomorphism induced via parallel transport along γi in the local system P (Xi/Si),

and let Ξ: P (Y ) → P (Y ′) be the composition Ξ = ΞN ◦ · · · ◦ Ξ1. Then, by repeated

application of Corollary 5.3.2, the isomorphism Ξ fits into a commutative diagram

P (Y )

Gmot(AMC)

P (Y ′)

Ξ

π′′Y

π′′
Y ′

This implies that the subcategories 〈H•(Y )〉 and 〈H•(Y ′)〉 of AMC share the same

Hodge-trivial part (see §5.1.13).

6.2. Motives of known hyper-Kähler varieties

In this section we use the defect group to establish Conjecture 5.2.5 and the

Mumford–Tate conjecture for all known hyper-Kähler varieties. These results have

appeared in the joint work with Lie Fu and Ziyu Zhang [29].

In what follows, we will say that a hyper-Kähler variety X over a field K ⊂ C
is known if the base change XC is deformation equivalent (in the complex analytic

sense) to one of the known examples. This means that XC is either a K3 surface, or of

one of the deformation types K3[n], Kumn, OG10 or OG6. The second Betti number

of X is 22 if X is a K3 surface, and 23, 7, 24 and 8 for X of type K3[n], Kumn, OG10

and OG6 respectively.

6.2.1. Theorem. — Let X be a known hyper-Kähler variety over an algebraically

closed field K ⊂ C. Then its defect group P (X) is trivial. Hence, the motive of X is

abelian and satisfies Conjectures 5.1.1 and 2.2.7.
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Proof. — Since K is algebraically closed, for any hyper-Kähler variety X over K we

have an isomorphism Gmot(H•(X)) ∼= Gmot(H•(XC)), see §2.2.5. Thanks to Corol-

lary 6.1.2 and Corollary 5.2.1, it suffices to find a projective complex hyper-Kähler

manifold with abelian André motive in each of the known deformation classes.

– For K3 surfaces, this follows immediately from Theorem 5.1.2.

– For the K3[n]-type, de Cataldo–Migliorini [17] described the motive of a Hilbert

scheme on a K3 surface in terms of the motive of the surface. The André

motive of such a Hilbert scheme is abelian, because motives of K3 surfaces are

so. Alternatively, we could have used Bülles’ result (Theorem 3.1.2).

– For the Kumn-type, a motivic decomposition of a generalized Kummer variety

associated to an abelian surface was obtained in [90] and [33, Corollary 6.3]

using the work of de Cataldo–Migliorini [18] on semi-small resolutions. This

decomposition shows that the motive of the generalized Kummer variety belongs

to the category generated by the motive of the abelian surface.

– For the OG10-type, we use Theorem 3.3.6.

– Finally, for the OG6-type, as observed by Soldatenkov in [79], we can use a con-

struction from [60] which describes a hyper-Kähler variety in this deformation

class as the quotient of a hyper-Kähler variety of K3[3]-type by a birational invo-

lution (with well-understood indeterminacy loci). Since varieties of K3[n]-type

have abelian motive, this yields a variety of OG6-type with abelian motive.

6.2.2. — Let now K ⊂ C be a field finitely generated over Q, let K̄ ⊂ C be the

algebraic closure of K, and let ` be a prime number. We define the category

HKknown
K ⊂ AMK

as the Tannakian subcategory generated by the motives of all known hyper-Kähler

varieties over K. This category contains already the motive of cubic fourfolds, as

their motives belong to the category generated by the motives of their Fano varieties

of lines (see for example [49]). Very likely, HKknown
K also contains the motive of some

interesting Fano varieties whose cohomology is of K3-type, for instance, Gushel–Mukai

varieties [40] [66], Debarre–Voisin Fano varieties [21] and many more, see [26].
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6.2.3. Theorem. — The motivic Mumford–Tate Conjecture 2.2.10 holds for any

motiveM∈ HKknown
K . In particular, if Y is any smooth and projective variety over K

such that H•(Y ) ∈ HKknown
K , then the Hodge and Tate conjectures for any power Y m

are equivalent.

Proof. — For any hyper-Kähler variety X over K of known deformation type, the

defect group P (XK̄) is trivial, by Theorem 6.2.1. Therefore, Proposition 5.2.3 implies

that the motivic Mumford–Tate conjecture holds for H•(X).

To conclude the proof, we have to establish the motivic Mumford–Tate conjecture

for H•(Y ), where Y = X1 × · · · × Xk is any product of known hyper-Kähler vari-

eties over K. With Y as above, we can find a finitely generated field extension L

of K such that the motives H•(Xi,L) are abelian. Since we have already shown that

the Mumford–Tate conjecture holds for the factors, the motivic Mumford–Tate con-

jecture holds for H•(YL) by a result of Commelin [20, Theorem 10.3]. But then it

holds for H•(Y ) as well, since the Mumford–Tate conjecture is insensitive to finitely

generated field extensions.

6.2.4. Remark. — Thanks to [20], we can put even more generators in the cate-

gory HKknown
K to obtain new evidence for the Mumford–Tate conjecture. Since the

conjecture is known to hold for

(i) geometrically simple abelian varieties of prime dimension, by Tankeev [81],

(ii) abelian varieties of dimension g with trivial endomorphism ring over K̄ such

that 2g is neither a k-th power for some odd k > 1 nor of the form
(

2k
k

)
for some

odd k > 1, thanks to Pink [73],

we deduce that the Mumford–Tate conjecture holds for any product of varieties in (i)

and (ii) above and hyper-Kähler varieties of the known deformation types. See Moo-

nen [63] for more potential examples.

6.3. The H2 determines the full motive

Even when we do not know that the defect group is trivial, we can still show that

the motive of a hyper-Kähler variety X is determined by its degree 2 component,

analogously to what happens for the Hodge theory of X, cf. Theorem 4.3.1.
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6.3.1. Theorem. — Let K ⊂ C be an algebraically closed field, and let X1 and X2

be hyper-Kähler varieties over K such that b2(Xi) > 6. Assume that X1,C and X2,C

are deformation equivalent and that f : H2(X1)
∼−−→ H2(X2) is a Hodge isometry. If

the odd cohomology of Xi is not trivial, assume further that there exists a Kuga–Satake

abelian variety Ai for H2(Xi) such that H1(Ai) ⊂ 〈H•(Xi)〉. Then, there exists an

isomorphism of graded algebras F : H•(X1)
∼−−→ H•(X2) which is the realization of

an isomorphism of motives H•(X1)
∼−−→ H•(X2) in AMK .

6.3.2. Remark. — The condition that 〈H•(X)〉 contains the motive of a Kuga–

Satake abelian variety is deformation invariant, by Corollary 6.1.2 and Lemma 5.1.11.

Proof. — Applying Theorem 6.1.1 we find finitely many smooth projective fami-

lies Xi → Si of hyper-Kähler varieties over non-singular and connected complex

varieties Si, for i = 1, . . . , N , and points ai, bi ∈ Si with birational maps

X1,C 99K X
1
a1

; Xibi 99K X
i+1
ai+1

, for i = 1, . . . , N − 1; XNbN 99K X2,C.

We may and will assume that the monodromy groups Gmono(H•(Xi/Si)) are

connected. For i = 1, . . . , N , we choose a path γi in Si from ai to bi, and

we define Ψ: H•(X1)
∼−−→ H•(X2) as the composition of the isomorphisms

Ψi : H
•(Xiai)

∼−−→ H•(Xibi) obtained via parallel transport along γi and the iso-

morphisms H•(Xibi)
∼= H•(Xi+1

ai+1
) induced by the birational maps Xibi 99K X

i+1
ai+1

. We

denote by ψ : H2(X1)
∼−−→ H2(X2) the isometry induced by Ψ.

We construct the isomorphism of graded algebras F : H•(X1)
∼−−→ H•(X2) as in

the proof of Theorem 4.3.1: we may assume that ψ−1 ◦ f ∈ SO(H2(X1))(Q); by

Hilbert’s Theorem 90, the morphism π : CSpin(H2(X1))→ SO(H2(X1)) is surjective

on Q-points and hence we find g ∈ CSpin(H2(X1))(Q) such that π(g) = ψ−1 ◦ f . By

Lemma 1.5.7, R(g) is an automorphism of the graded algebra H•(X1), and we define

F := Ψ ◦R(g) : H•(X1)
∼−−→ H•(X2).

It is an isomorphism of graded algebras. By Remark 1.5.8, the degree 2 component

of F is a multiple of the Hodge isometry f ; hence, F is an isomorphism of Hodge

structures by Proposition 4.3.3.

We claim that F is the realization of an isomorphism H•(X1)
∼−−→ H•(X2) of mo-

tives. Denoting by F∗ : GL(H•(X1))
∼−−→ GL(H•(X2)) the induced isomorphism, we
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have to prove that F∗ is Gmot(AMK)-equivariant, i.e. F∗ restricts to an isomorphism

F∗ : Gmot(H•(X1))
∼−−→ Gmot(H•(X2)) which fits in a commutative diagram

Gmot(H•(X1))

Gmot(AMK)

Gmot(H•(X2))

F∗

π1

π2

Theorem 5.1.7 (and, in presence of non-trivial cohomology in odd degree, Re-

mark 5.1.12, thanks to our extra assumption) gives

Gmot(H•(Xi)) = P (Xi)×MT(H•(Xi)).

The isomorphism F∗ preserves this decomposition. Indeed, since F is an isomorphism

of Hodge structure, F∗ maps MT(H•(X1)) isomorphically onto MT(H•(X2)). More-

over, the automorphism R(g) of H•(X1) commutes with P (X1) since the defect group

commutes with the LLV-representation, and Ψ∗ : GL(H•(X1))
∼−−→ GL(H•(X2)) re-

stricts to an isomorphism Ξ: P (X1)
∼−−→ P (X2), because Ψ is the composition of

parallel transport operators along smooth projective families and isomorphisms of

motives.

Hence F∗ restricts to an isomorphism F∗ : Gmot(H•(X1))
∼−−→ Gmot(H•(X2))

which is the direct product of

Ξ: P (X1)
∼−−→ P (X2) and F∗ : MT(H•(X1))

∼−−→ MT(H•(X2)).

Therefore, it is enough to show that the two diagrams

P (X1) MT(H•(X1))

Gmot(AMK) Gmot(AMK)

P (X2) MT(H•(X2))

Ξ F∗

π′1

π′2

π′′1

π′′2

are commutative. Since Gmot(H•(Xi)) ∼= Gmot(H•(Xi,C)), the left triangle is com-

mutative by Remark 6.1.3.

For the right one, we proceed as follows. If the odd cohomology of Xi is trivial, the

quotient π′′i corresponds to the Tannakian subcategory 〈H2(Xi)〉 ⊂ 〈H•(Xi)〉, while
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otherwise π′′i corresponds to 〈H1(Ai)〉 ⊂ 〈H•(Xi)〉, for any Kuga–Satake abelian va-

riety Ai for H2(Xi). In any case, π′′i corresponds to a subcategory of abelian motives.

It follows that the homomorphism π′′i factors through Gmot(AMK) → Gmot(AM
ab
K ).

Denoting by HSab ⊂ HSpol the Tannakian subcategory generated by the Hodge struc-

tures of abelian varieties, Theorem 2.2.8 gives MT(HSab) = Gmot(AM
ab
K ). But then

the diagram

MT(H•(X1))

Gmot(AM
ab
K ) = MT(HSab)

MT(H•(X2))

F∗

π′1

π′2

is commutative, since F is an isomorphism of Hodge structures.

6.3.3. — Consider now a field K ⊂ C which is finitely generated over Q, and fix a

prime number `. Theorem 6.3.1 has the following consequence for the Galois represen-

tations on the cohomology of hyper-Kähler varieties. If X is a hyper-Kähler variety

over K, the Beauville–Bogomolov form yields a Q`-valued non-degenerate symmetric

bilinear pairing on H2
` (X) via the comparison isomorphism H•(X)⊗Q` ∼= H•` (X).

6.3.4. Corollary. — Let X1, X2 be hyper-Kähler varieties with b2(Xi) > 6 over K

such that X1,C and X2,C are deformation equivalent (in the complex analytic sense).

If Xi has non-trivial cohomology in odd degree assume further that 〈H•(Xi,K̄)〉 con-

tains the motive of a Kuga–Satake abelian variety Ai for H2(Xi). Assume that

f : H2
` (X1)

∼−−→ H2
` (X2) is a Gal(K̄/K)-equivariant isometry. Then, there exist

a finite field extension K ′/K and a Gal(K̄/K ′)-equivariant isomorphism of graded

algebras F : H•` (X1)
∼−−→ H•` (X2).

Proof. — By Theorem 5.1.2, the motivic Mumford–Tate Conjecture 2.2.10 holds for

the motives H2(X1) and H2(X2). Hence, there exists a finite field extension K ′

of K such that the isometry f is the `-adic realization of an isomorphism of mo-

tives H2(X1) ⊗Q Q`
∼−−→ H2(X2) ⊗Q Q` in AMK′ ⊗Q Q`. Theorem 6.3.1 yields an

isomorphism F : H•` (X1)
∼−−→ H•` (X2) of graded algebras which, up to further replac-

ing K ′ with a finite extension, is the realization of an isomorphism of motives over K ′

with Q`-coefficients. Hence, F is Gal(K̄/K ′)-equivariant.
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6.4. Galois representations from hyper-Kähler varieties

Assuming the validity of the Mumford–Tate conjecture we can sharpen Corol-

lary 6.3.4 and obtain a more precise statement about the Galois representations on

the cohomology of hyper-Kähler varieties. Thanks to Theorem 6.2.3, the result applies

to all known hyper-Kähler varieties. As a consequence, we show that the Galois repre-

sentation on the cohomology of a hyper-Kähler variety over a finite field is determined

by the representation on the second cohomology group.

6.4.1. — Let K1, K2 be subfields of C, finitely generated over Q, and consider

hyper-Kähler varieties X1, X2 over K1 and K2 respectively.

6.4.2. Definition. — We say that X1 and X2 are H•` -equivalent if there exists

an isomorphism of graded algebras H•` (X1)
∼−−→ H•` (X2) which is an isometry in

degree 2.

Note that if X1,C and X2,C are deformation equivalent (in the complex analytic

sense), then X1 and X2 are H•` -equivalent, since in this case the complex mani-

folds associated to X1,C and X2,C are homeomorphic, and both the graded algebra

H•` (Xi) ∼= H•(Xi)⊗Q` and the Beauville–Bogomolov form only depend on the topol-

ogy of Xi,C as a complex manifold.

With notation as above, we let σi : Gal(K̄i/Ki) → GL(H•` (Xi)) be the Galois

representation on the cohomology of Xi.

6.4.3. Proposition. — Assume that X1 and X2 are H•` -equivalent. As-

sume that Γ ⊂ Gal(K̄1/K1) is a subgroup and that we have a homomorphism

ε : Γ → Gal(K̄2/K2); we let Γ act on H•` (X1) via σ1 and on H•` (X2) via ε ◦ σ2. If

there exists an isometry f : H2
` (X1)

∼−−→ H2
` (X2) which is Γ-equivariant, then there

exists an isomorphism F : H•` (X1)
∼−−→ H•` (X2) of graded algebras whose degree 2

component is again Γ-equivariant.

Proof. — The argument is the same as the one given in the proof of Theorems 4.3.1

and 6.3.1. We recall it once again. Since X1 and X2 are H•` -equivalent, there exists

an isomorphism of graded algebras Ψ: H•` (X1)
∼−−→ H•` (X2) which is an isometry in

degree 2. Let ψ denote this isometry; we may assume that ψ−1 ◦ f ∈ SO(H2
X1

)(Q`).
Since the morphism π : CSpin(H2(X1)) → SO(H2(X1)) is surjective on Q`-points,
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we find g ∈ CSpin(H2(X1))(Q`) such that π(g) = ψ−1 ◦ f . We then define

F := Ψ ◦R(g) : H•` (X1)
∼−−→ H•` (X2).

Then F is a graded algebra isomorphism by Lemma 1.5.7, and its degree 2 component

is Γ-equivariant, since it is a multiple of f .

6.4.4. Theorem. — Assume that X1 and X2 are H•` -equivalent and that the

Mumford–Tate conjecture 2.1.6 holds for both of them. Let Γ ⊂ Gal(K̄1/K1) be a sub-

group, let ε : Γ → Gal(K̄2/K2) be a homomorphism and let f : H2
` (X1)

∼−−→ H2
` (X2)

be a Γ-equivariant isometry. Then, there exist a subgroup Γ′ ⊂ Γ of finite index and

a Γ′-equivariant isomorphism of graded algebras F : H•` (X1)
∼−−→ H•` (X2).

Proof. — Replacing Ki by a finite field extension if necessary, we may assume that

G(H•` (Xi)) is connected for i = 1, 2. Since the Mumford–Tate conjecture holds for Xi,

the representation σi : Gal(K̄i/Ki) → GL(H•` (Xi)) factors through the Q`-points of

the image of the LLV-representation R : G0(Xi)→
∏
j GL(Hj(Xi)), by Lemma 4.2.2.

Applying Proposition 6.4.3 we find an isomorphism F : H•` (X1)
∼−−→ H•` (X2) of

graded algebras whose degree 2 component F (2) is Γ-equivariant. Now the argu-

ment is the same as in the proof of Proposition 4.3.3. We consider the isomorphism

F∗ : GL(H•` (X1))
∼−−→ GL(H•` (X2)) given by A 7→ FAF−1, and the analogous iso-

morphism F
(2)
∗ : GL(H2

` (X1))
∼−−→ GL(H2

` (X2)). By Lemma 1.2.4.(i), the isomor-

phism F∗ restricts to an isomorphism R(G0(X1))(Q`)
∼−−→ R(G0(X2))(Q`).

We consider the diagram

Γ

Gal(K̄1/K1) Gal(K̄2/K2)

R(G0(X1))(Q`) R(G0(X2))(Q`)

R(2)(G0(X1))(Q`) R(2)(G0(X2))(Q`)

ε

σ1 σ2

pr1

F∗

pr2

F (2)
∗

We have to show that, up to replacing Γ by one of its subgroups of finite index, this

diagram commutes. Since F (2) is Γ-equivariant, we have

F
(2)
∗ ◦ pr1 ◦ σ1 = pr2 ◦ σ2 ◦ ε.
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By Remark 1.5.8, the homomorphism pr2 : R(G0(X2)) → R(2)(G0(X2)) is either an

isomorphism or a central isogeny of degree 2; let C be its kernel. Then there exists

a homomorphism χ : Γ → C(Q`) such that F∗ ◦ σ1(γ) = χ(γ) · σ2(γ) for any γ ∈ Γ.

The kernel Γ′ ⊂ Γ of χ is a subgroup of finite index, and F is Γ′-equivariant.

6.4.5. Remark. — Note that in the above proof we have only used that

G(H•` (Xi))
0 ⊂ MT(H•(Xi))(Q`), so we only need one of the two inclusions predicted

by the Mumford–Tate conjecture.

6.4.6. — We apply Theorem 6.4.4 to the study of Galois representations on the

cohomology of hyper-Kähler varieties over finite fields. We will consider the following

situation. Let k be a finite field with algebraic closure k̄, and let Z1 and Z2 be smooth

projective varieties over k. We assume that there exist hyper-Kähler varieties X1

and X2 over fields of characteristic 0 which lift Z1 and Z2. More precisely, we assume

that there exist:

– normal integral domains Ri ⊂ C essentially of finite type over Z with fraction

fields Ki of characteristic 0;

– smooth and projective morphisms Xi → Spec(Ri) whose generic fibres Xi are

hyper-Kähler varieties;

– homomorphismsRi → k together with isomorphisms Xi⊗Ri
k ∼= Zi of k-schemes.

We let ` be a prime number invertible in k and considerH•` (Zi) :=
⊕

j H
j
ét(Zi,k̄,Q`).

By the smooth and proper base-change theorems we have an isomorphism of graded

algebras H•` (Xi) ∼= H•` (Zi). Via this isomorphism, the Beauville–Bogomolov form

induces a non-degenerate symmetric bilinear form on H2
` (Zi) with values in Q`.

6.4.7. Remark. — A priori, the bilinear form that we obtain on H2
` (Zi) depends

on the choices of Ri and Xi. However, by [34, Remark 4.12], the formula

α 7→
∫
Xi

α2 ∧
√

td(Xi)

defines a non-degenerate quadratic form on H2(Xi) which is a non-zero multiple of

the Beauville–Bogomolov form. The form induced on H2
` (Zi) via base change is given

by α 7→
∫
Zi
α2 ∧

√
td(Zi), and it is thus independent from the choices of Ri and Xi.

6.4.8. Theorem. — With notations and assumptions as above, assume that X1

and X2 are H•` -equivalent, and that the Mumford–Tate conjecture holds for both of
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them. Let f : H2
` (Z1)

∼−−→ H2
` (Z2) be a Gal(k̄/k)-equivariant isometry. Then, there

exist a finite field extension k′ of k and a Gal(k̄/k′)-equivariant isomorphism of graded

algebras F : H•` (Z1)
∼−−→ H•` (Z2).

Proof. — Let |k| = pr, and let Frk ∈ Gal(k̄/k) be the Frobenius automorphism. With

notations as in §6.4.6, let mi ⊂ Ri be the kernel of Ri → k; let |Ri/mi| = pr/ai and

denote by φi ∈ Gal(K̄i/Ki) a Frobenius element at mi, for i = 1, 2.

By construction, we have isomorphisms of groups 〈φaii 〉 ∼= 〈Frk〉 (both isomor-

phic to Z) such that the action of φai on H•` (Zi) via the base-change isomor-

phism H•` (Xi) ∼= H•` (Zi) corresponds to that of Frk.

Let now Γ = 〈φa1
1 〉 ⊂ Gal(K̄1/K) and let ε : Γ → Gal(K̄2/K2) be the homomor-

phism such that φa1
1 7→ φa2

2 . By Theorem 6.4.4, there exists an integer m and an

isomorphism H•` (Z1)→ H•` (Z2) of graded algebras which is Frmk -equivariant.





CHAPTER 7

COHOMOLOGICAL RIGIDITY OF HYPER-KÄHLER

MANIFOLDS

7.1. A conjecture

In §6.2 we used a deformation argument to show the triviality of the defect group

for the known hyper-Kähler varieties. This argument cannot however be used to prove

that the defect group is trivial in general, since this would require some knowledge on

a specific example in each deformation class, which amounts to achieve a topological

classification of hyper-Kähler manifolds. This is a notoriously difficult problem.

In this chapter we present a different approach towards at least the finiteness of

defect groups; by Proposition 5.2.3 this would suffice to prove the Mumford–Tate

conjecture. The idea is to exploit the constraints imposed on the defect group by

the LLV-representation and the algebra structure on the cohomology. We propose a

conjecture on the cohomology algebras of hyper-Kähler manifolds, which would imply

that the defect group is finite.

7.1.1. — Let X be a hyper-Kähler manifold. Let Aut(H•(X)) ⊂
∏
i GL(Hi(X)) be

the group of graded algebra automorphisms of the rational cohomology H•(X) of X.

We aim to study the subgroup Aut0(H•(X)) ⊂ Aut(H•(X)) of automorphisms that

act trivially on H2(X).

Let H denote H2(X) equipped with the Beauville–Bogomolov form. By

Lemma 1.5.7, the LLV-representation yields a morphism R : Spin(H)→ Aut(H•(X)),

and the kernel of the induced representation Spin(H) → GL(H2(X)) is generated

by −1 ∈ Spin(H), by Remark 1.5.4. If we denote by Aut+(H•(X)) ⊂ Aut(H•(X))
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the subgroup of those automorphisms acting on H2(X) by isometries of determi-

nant 1, both Aut0(H•(X)) and the image of R are contained in Aut+(H•(X)).

7.1.2. Lemma. — We have Aut+(H•(X)) = R(Spin(H)) · Aut0(H•(X)); the sub-

groups Aut0(H•(X)) and R(Spin(H)) commute and intersect in 〈R(−1)〉. If X has

trivial cohomology in odd degree then Aut+(H•(X)) = R(Spin(H))×Aut0(H•(X)).

Proof. — By definition, we have a short exact sequence

1→ Aut0(H•(X))→ Aut+(H•(X))
π−→ SO(H)→ 1.

The restriction of π to the subgroup R(Spin(H)) is an isogeny onto SO(H). There-

fore Aut+(H•(X)) = R(Spin(H)) · Aut0(H•(X)). We have already remarked

that −1 is the only non-trivial element of Spin(H) which acts trivially on H2(X). By

Lemma 1.2.4.(ii), the action of Aut0(H•(X)) commutes with the LLV-representation.

The last assertion follows since R(−1) acts as (−1)j on Hj(X).

The following example shows that Aut0(H•(X)) is not finite in general.

7.1.3. Example. — Let X be a hyper-Kähler fourfold of Kum2-type. Its Betti

numbers are

1 0 7 8 108 8 7 0 1.

Note that X has non zero odd Betti numbers: b3(X) = b5(X) = 8. By [51], there is

a subspace U ⊂ H4(X) such that:

– the LLV-Lie algebra g(X) acts trivially on U ;

– the dimension of U is 80;

– there is a decomposition H4(X) = U ⊕ Sym2(H2(X)) which is orthogonal with

respect to the intersection pairing on H4(X).

The algebra H•(X) is generated by H2(X), H3(X) and U . The image of the

product map H2(X)⊗H2(X)→ H4(X) is Sym2(H2(X)) ⊂ H4(X).

The product map H2(X) ⊗ U → H6(X) is zero, because U is a trivial g(X)-

representation and hence x · u = Lx(u) = 0 for any x ∈ H2(X) and u ∈ U . The

product map H3(X) ⊗ U → H7(X) is also zero. If H ′ ⊂ H•(X) is the subalgebra

generated by H2(X) and H3(X), we then have

H•(X) = H ′ ⊕ U,

and the product map H ′ ⊗ U → H•(X) is zero.
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It follows that the action of Aut0(H•(X)) on H4(X) preserves the subspace U .

The intersection product on H4(X) restricts to a non-degenerate pairing φ on U .

The image of Aut0(H•(X)) → GL(U) is contained in O(U, φ). By the above, for

any isometry g ∈ O(U, φ), the linear automorphism G : H•(X) → H•(X) defined as

G = (idH′ ⊕ g) is a graded algebra automorphism. Hence, O(U, φ) ⊂ Aut(H•(X)).

7.1.4. — Let Aut(X) be the group of automorphisms of the hyper-Kähler man-

ifold X. Mapping an automorphism g : X → X to the pull-back automorphism

(g−1)
∗

: H•(X)→ H•(X) of the cohomology algebra, we obtain a homomorphism

ν : Aut(X)→ Aut(H•(X)).

We define Γ as the kernel of the induced representation ν(2) : Aut(X)→ GL(H2(X)).

Huybrechts [42, Proposition 9.1] proved that Γ is a finite group, and Hassett–

Tschinkel [41, Theorem 2.1] have shown that it is deformation invariant.

Our cohomological rigidity conjecture is the following statement.

7.1.5. Conjecture. — The commutator

Aut0(H•(X))Γ := {g ∈ Aut0(H•(X)) | g(h−1)∗ = (h−1)∗g for any h ∈ Γ}

is a finite group.

If Y is a hyper-Kähler manifold deformation equivalent to X, the conjecture holds

for X if and only if it holds for Y . Note that, since Γ is a group of automorphisms, the

defect group P (X) is a subgroup of Aut0(H•(X))Γ; hence, thanks to Proposition 5.2.3,

the above conjecture would imply the Mumford–Tate conjecture.

7.1.6. — The group Γ has been computed for each of the known deformation types.

– If X is of K3[n]-type, Beauville has shown [8, Proposition 10] that Γ is trivial.

– For X of Kumn-type, the group Γ has been calculated by Boissiére–Nieper-

Wisskirken–Sarti [13, Corollary 5], and we have

Γ = (Z/(n+ 1)Z)4 o Z/2Z,

where Z/2Z acts on (Z/(n + 1)Z)4 via ±1. Oguiso [70] has shown that Γ acts

faithfully on H•(X).

– Mongardi–Wandel [61] computed Γ for the O’Grady deformation types: forX

of OG10-type, Γ is trivial, while for X of OG6-type, we have Γ = (Z/2Z)8.
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7.1.7. Remark. — It does not seem generally known whether

ν : Aut(X)→ Aut(H•(X))

is injective; note however that by the above ν is injective for X of K3[n], OG10

and Kumn-type.

We now verify the conjecture for the fourfolds of Example 7.1.3.

7.1.8. Proposition. — Let X be a hyper-Kähler fourfold of Kum2-type. Then Con-

jecture 7.1.5 holds for X.

Proof. — Let U ⊂ H4(X) be as in Example 7.1.3. The cohomology algebra H•(X)

is generated by H2(X), H3(X) and U ; therefore, any algebra automorphism is de-

termined by its action on these subspaces. The group Aut0(H•(X)) acts trivially

on H2(X); it follows that

Aut0(H•(X)) ⊂ GL(H3(X))×GL(U).

It suffices to show that Aut0(H•(X))Γ acts on H3(X) and U via a finite group.

The action of Aut0(H•(X)) on H3(X) already factors through Z/2Z. In fact, under

the representation R, the subspace H3(X) is the absolutely irreducible 8-dimensional

spin representation of Spin(H) ([51, §4.6]). Since the action of Aut0(H•(X)) com-

mutes with the representation R, any g ∈ Aut0(H•(X)) acts on H3(X) as multiplica-

tion by a scalar. Any x ∈ H2(X) with the Lefschetz property yields a non-degenerate

pairing φx on H3(X) via φx(α, β) =
∫
X
x ·α · β, which is preserved by Aut0(H•(X)).

It follows that g is multiplication by ±1 on H3(X).

By Example 7.1.3, the action of the whole Aut0(H•(X)) on U does not factor

through a finite group. We have Γ = (Z/3Z)4 o Z/2Z. Hasset–Tschinkel [41] have

shown that, as a representation of (Z/3Z)4 ⊂ Γ, the subspace U ⊂ H4(X) is identi-

fied with the complement of the trivial representation in the regular representation

of (Z/3Z)4. Equivalently, U ⊗ C is the sum of the 80 distinct irreducible non-trivial

representations of (Z/3Z)4. Any element of Aut0(H•(X))Γ ⊗ C must preserve this

decomposition. By Proposition 1.2.9, the intersection product φ on U is definite.

Since Aut0(H•(X))Γ preserves the non-degenerate form φ on U , it will preserve

its hermitian extension to U ⊗ C. This implies that the image of Aut(H•(X))Γ

in GL(U)⊗ C is contained in a subgroup of (Z/2Z)80.
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7.2. A decomposition of the cohomology

As we have seen in Proposition 7.1.8, the action of the LLV-Lie algebra is very

useful in the investigation of Conjecture 7.1.5. Following Markman [55] we use the

Lie algebra g(X) to introduce a minimal subspace which generates the cohomology

algebra of a hyper-Kähler manifold X.

7.2.1. — Let 2n = dimX. There is a g(X)-invariant non-degenerate bilinear form φ

on H•(X), given by φ(α, β) = (−1)k
∫
X
α · β for α of degree 2k + 2n or 2k + 2n+ 1.

By Proposition 1.2.9, the restriction of φ to any g(X)-submodule V ⊂ H•(X) is

non-degenerate.

For any integer i ≥ 0, let A•i (X) ⊂ H•(X) be the subalgebra generated

by
⊕

j≤iH
j(X), and let Ã•i (X) be the g(X)-submodule of H•(X) generated by A•i .

Since φ restricts to a non-degenerate pairing on Ã•i (X), for all i, we obtain an

orthogonal decomposition

H•(X) = Ã•i (X)⊕ Ã•i (X)⊥

into g(X)-submodules. We now define, for i > 2, the subspace

Ci(X) := Ã•i−2(X)⊥ ∩Hi(X).

In other words, Ci(X) consists of the cohomology classes in Hi(X) which are orthog-

onal with respect to φ to all products of cohomology classes of degree lower than i.

We let C0(X) = H0(X), C1(X) = 0 and C2(X) = H2(X). Note that Ci(X) = 0

for i > 2n. We introduce the notation C•(X) =
⊕

i C
i(X).

7.2.2. Proposition. — (i) For all i, we have a g0(X)-invariant decomposition

Hi(X) = Aii−2(X)⊕ Ci(X).

(ii) The g0(X)-module C•(X) generates the algebra H•(X).

(iii) For all i, the subspace Ci(X) is stable under the action of Aut0(H•(X)).

Proof. — Statement (i) is [55, Lemma 4.6], while (ii) is clear. For (iii),

note that Aut0(H•(X)) stabilizes each A•i (X) and preserves the pairing φ.

Since Aut0(H•(X)) commutes with the LLV-Lie algebra, it acts on the g(X)-

module Ã•i (X). Hence, Ã•i (X)⊥ is also stable under the action of Aut0(H•(X)).
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7.2.3. — We now establish Conjecture 7.1.5 for the deformation types K3[n]

and OG10. These are the two known cases in which Γ is trivial (§7.1.6).

7.2.4. Theorem. — Let X be a hyper-Kähler manifold of deformation type K3[n]

or OG10. Then Conjecture 7.1.5 holds for X.

Proof. — Assume first that X is of K3[n]-type. Let C•(X) ⊂ H•(X) be the subspace

given by Proposition 7.2.2. Since X has trivial odd cohomology, Ci(X) = 0 for odd i.

Let H denote H2(X) equipped with the Beauville–Bogomolov form; the semisimple

part of g0(X) is so(H) (see Theorem 1.2.12).

Specializing to the case in which X is a moduli space of stable sheaves on a K3

surface, Markman [55, Lemma 4.8] has shown that the so(H)-module C2i is a quotient

of the representation H2(X)⊕T , where T is a trivial one dimensional representation.

Thus, any irreducible g0(X)-module V ⊂ C2i is absolutely irreducible and appears

with multiplicity one. Moreover, for any x ∈ H2(X) with the Lefschetz property, the

formula φx(α, β) := φ(α, x2n−2i ·β) defines a non-degenerate bilinear form on V . Since

the action of Aut0(H•(X)) commutes with that of g0(X), any V as above is stable un-

der Aut0(H•(X)); moreover, Aut0(H•(X)) preserves the form φx. It follows that the

action of Aut0(H•(X)) on V factors through {±1}. As C•(X) generates H•(X), the

group Aut0(H•(X)) acts faithfully on it; we conclude that Aut0(H•(X)) ⊂ (Z/2Z)m

is a finite group.

Assume now that X is of OG10-type, and let C•(X) ⊂ H•(X) be the sub-

space given by Proposition 7.2.2. The LLV-representation on H•(X) was calcu-

lated in [36, Theorem 1.1]. By their result, if i ≥ 3, we have Ci(X) = 0 except

for i = 6, in which case C6(X) is the unique non-trivial so(H)-subrepresentation

of Sym2(H2(X)). This is an absolutely irreducible representation of so(H). Any

x ∈ H2(X) with the Lefschetz property yields a non-degenerate bilinear form φx

on C6(X), given by φx(α, β) = (α, x4 ·β). Since Aut0(H•(X)) preserves the form φx,

we have Aut0(H•(X)) ⊂ Z/2Z.

7.2.5. Remark. — We are not yet able to prove Conjecture 7.1.5 for the remaining

known deformation types OG6 and Kumn, for n > 2. In these cases the group Γ is

not trivial, and we lack a full understanding of its action on the generators C•(X) of

the cohomology. On the positive side, the LLV-representation on their cohomology
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has been described in [36], and [57] contains strong results on the cohomology of

generalized Kummer varieties.

7.3. Interpretation via monodromy

We now present a slightly weaker version of Conjecture 7.1.5 which involves Mark-

man’s monodromy group [56].

Let X be a hyper-Kähler manifold, and let X → S be a smooth and proper holo-

morphic map of connected complex manifolds such that Xs = X for some s ∈ S. For

any loop γ in S based at s, we have a monodromy operator γ∗ : H•(X,Z)→ H•(X,Z)

induced by parallel transport along γ. The monodromy group Mon(X) of a hyper-

Kähler manifold X is defined as the subgroup of GL(H•(X,Z)) generated by the mon-

odromy operators coming from all families X → S as above. The action of Mon(X)

on H•(X) is by graded algebra automorphisms. Moreover, since the Beauville–

Bogomolov form is deformation invariant, Mon(X) acts on H2(X) by isometries.

7.3.1. Conjecture. — The commutator

Aut0(H•(X))Mon(X) := {g ∈ Aut0(H•(X)) | gh = hg for any h ∈ Mon(X)}

is a finite group.

This statement would be a consequence of Conjecture 7.1.5. In fact, by [84, The-

orems 3.4, 3.5] (see also [85]), the image Mon2(X) of Mon(X) in GL(H2(X,Z)) is

a subgroup of O(H2(X,Z)) of finite index, and the kernel of Mon(X) → Mon2(X)

is a finite group. Moreover, Verbitsky has shown [84, Remark 7.5] that this kernel

is identified with the image of Γ in Aut0(H•(X)). Thus, Aut0(H•(X))Mon(X) is a

subgroup of Aut0(H•(X))Γ, and hence Conjecture 7.1.5 implies Conjecture 7.3.1.

Note however that Conjecture 7.3.1 does not immediately imply the Mumford–Tate

conjecture. The reason is that it is not clear that the defect group commutes with

the whole group Mon(X). In fact, P (X) commutes with the subgroup of Mon(X)

of elements whose action on H2(X) has determinant 1, but it is known [56] that in

general Mon2(X) contains also some isometry with determinant −1.





APPENDIX A

PROJECTIVE FAMILIES OF HYPER-KÄHLER

VARIETIES

In this appendix we prove the following result.

A.0.1. Theorem. — Let X1, X2 be deformation equivalent complex projective

hyper-Kähler varieties. Assume that b2(X) > 6. Then there exist:

– finitely many connected and non-singular complex varieties Si, for i = 1, . . . , N ;

– for each i = 1, . . . , N , a smooth and projective family Xi → Si with fibres hyper-

Kähler varieties;

– for i = 1, . . . , N , points ai, bi ∈ Si together with birational maps

X1 99K X
1
a1
, Xibi 99K X

i+1
ai+1

, for i = 1, . . . , N − 1, XNbN 99K X2.

If X1 and X2 satisfy the condition in the Theorem, we will write X1 ∼ X2.

A.1. Polarized hyper-Kähler varieties

We start by recalling some facts on polarized hyper-Kähler varieties.

A.1.1. — For any hyper-Kähler manifold X, the cone of those x ∈ H1,1(X,R) such

that (x, x) > 0 has two connected components; the positive cone is the component

containing the Kähler cone. Here, we denote by (·, ·) the Beauville–Bogomolov pair-

ing. Equivalently, the positive cone consists of x ∈ H1,1(X,R) such that (x, x) > 0

and (x, ω) > 0 for a Kähler class ω on X, see [42].

We denote by NS+(X) ⊂ NS(X) the intersection of the positive cone with the

Néron-Severi group; if h ∈ NS(X) is such that (h, h) > 0, exactly one among h

and −h belongs to NS+(X). If X is projective, the ample cone Amp(X) ⊂ NS+(X)
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is the open cone consisting of classes representing ample divisors. In [2], Amerik–

Verbitsky described the ample cone in terms of what they call MBM classes; this

notion is equivalent to that of wall divisors introduced by Mongardi [59]. These

classes are the analogue of −2-classes for K3 surfaces. We will need the following

result, proven in [2]. Let MBM(X) ⊂ NS(X) be the subset of MBM classes on X.

A.1.2. Theorem. — (i) Let X be a projective hyper-Kähler manifold. The ample

cone is one of the connected components of

NS+(X) \
⋃

z∈MBM(X)

z⊥.

In particular, if NS(X) does not contain any MBM class, then

Amp(X) = NS+(X).

(ii) Fix a deformation class of hyper-Kähler manifolds with b2 ≥ 5. There exists a

positive integer N , depending only on the deformation class, such that for any

projective X of the given deformation type, every MBM class z on X satisfies

−N < (z, z) < 0.

A.1.3. — Let X be a hyper-Kähler manifold and let Λ be a lattice isometric

to H2(X,Z) equipped with the Beauville–Bogomolov form. Let

Ω = {x ∈ P(Λ⊗ C) | (x, x) = 0, (x, x̄) > 0}

be the period domain. Fix a connected component M of the moduli space of Λ-marked

hyper-Kähler manifolds containing X (for some choice of a marking). The period map

P : M → Ω is surjective with discrete fibres, and each fibre represents a birational

class of marked hyper-Kähler manifolds, by the Torelli theorem (Theorem 1.1.11).

By Huybrechts’ projectivity criterion [42], the hyper-Kähler manifold X is pro-

jective if and only if NS(X) contains a class h with (h, h) > 0. For any positive

class h ∈ Λ, we have a hypersurface

Ωh⊥ = {x ∈ Ω | (x, h) = 0} ⊂ Ω.

Any point in Ωh⊥ represents a class of birational Λ-marked hyper-Kähler vari-

eties (Y, τ) such that τ−1(h) is an integral (1, 1) class on Y . The period space Ωh⊥

has two connected components; we denote by Ω+
h⊥

the component parametrizing
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those (Y, τ) ∈M such that τ−1(h) belongs to the positive cone. Thus, the locus in Ω

of the periods of (Z, φ) ∈M with Z projective is the subset⋃
h∈Λ, (h,h)>0

Ω+
h⊥
.

Let Ωa
h⊥ ⊂ Ω+

h⊥
be the subset of those period points x such that there exists (Y, τ) ∈M

with period x on which τ−1(h) is an ample class. Then Ωa
h⊥ is an open, connected

and dense subset of Ω+
h⊥

, by [56, Corollary 7.3].

A.1.4. — A polarization type for hyper-Kähler manifolds with H2(X,Z) ∼= Λ is a

O(Λ)-orbit h̄ in Λ. By work of Viehweg [88], there exists a coarse moduli space Fh̄,

parametrizing h̄-polarized hyper-Kähler varieties of the chosen deformation type; Fh̄
is a non-singular quasi-projective variety. Fix a representative h ∈ h̄ and let F0

h̄
⊂ Fh̄

be a connected component. By [56, Theorem 8.4], see also [38, §1], we can find a

torsion free arithmetic subgroup Γ ⊂ O(h⊥) acting freely on Ω+
h⊥

, and an embedding

F0
h̄ ↪→ Γ\Ω+

h⊥
.

By [14], Γ\Ω+
h⊥

is a non-singular quasi-projective variety, and F0
h̄

is embedded in it as

a Zariski open subset. Hence, any connected component F0
h̄

of Fh̄ has dimension b2−3.

The arithmetic group Γ preserves Ωa
h⊥ , and the image of F0

h̄
is contained in Γ\Ωa

h⊥ .

A.2. A special case

The rest of this Appendix is devoted to the proof of Theorem A.0.1. Let X be a

hyper-Kähler manifold and assume that b2(X) > 6. We fix a connected component M

of the moduli space of Λ-marked hyper-Kähler manifolds. We will show that given

any (X1, τ1) and (X2, τ2) in M with X1 and X2 projective, then X1 ∼ X2, in the

notation of the Theorem. We start by considering the following case.

A.2.1. Proposition. — Let (X1, τ1) and (X2, τ2) be points of M. Assume

that P(X1, τ1) and P(X2, τ2) are both in Ωa
h⊥ , for some positive class h ∈ Λ.

Then X1 ∼ X2.

Proof. — Let (Y, φ) ∈M be such that P(Y, φ) ∈ Ωa
h⊥ . Replacing Y with a birational

hyper-Kähler variety if necessary, we may assume that φ−1(h) = c1(L) for an ample

divisor L on Y . Following André [3, §3.3], there exists a local universal polarized
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deformation Y → S of (Y,L). This is a smooth and projective family of hyper-

Kähler varieties over a non-singular and connected variety S, with a distinguished

fibre Ys = Y . Moreover, denoting by S̃ → S the universal covering of S, we obtain a

period map S̃ → Ωa
h⊥ , which, upon replacing S with a finite étale cover, descends to

a map Ψ: S → Γ\Ωa
h⊥ . The period map Ψ is a generically finite, dominant morphism

of schemes, by [14].

Let (X1, τ1) and (X2, τ2) be as in the statement of the proposition. Replacing

Xi with a birational model if necessary, the class τ−1
i (h) is the first Chern class

of an ample line bundle Li on Xi. Consider the respective polarized universal de-

formations X1 → S1 and X2 → S2 of (X1, L1) and (X2, L2) obtained as above,

and let Ψ1 : S1 → Γ\Ωa
h⊥ and Ψ2 : S2 → Γ\Ωa

h⊥ be the corresponding period maps.

Since Ωa
h⊥ is connected, Ψ1(S1) ∩ Ψ2(S2) is not empty; by the surjectivity of the

period map there exists (Y, φ) ∈ M such that the image of P(Y, φ) in Γ\Ωa
h⊥ lies

in Ψ1(S1) ∩ Ψ2(S2). We can then find hyper-Kähler varieties Y1 and Y2 which are

both birational to Y and such that Y1 (resp. Y2) is a fibre of X1 → S1 (resp. X2 → S2).

We therefore have X1 ∼ Y1 ∼ Y2 ∼ X2.

By the proposition, to prove Theorem A.0.1 it is sufficient to establish the following.

A.2.2. Claim. — Let h1 and h2 be two positive classes in Λ. Then there ex-

ist (X1, τ1) and (X2, τ2) in M with P(X1, τ1) ∈ Ωa
h⊥1

and P(X2, τ2) ∈ Ωa
h⊥2

such

that X1 ∼ X2.

We will first deal with the following special case, which is the key step in the proof.

We will complete the proof of Claim A.2.2 in the next section.

A.2.3. Proposition. — Let h1 and h2 be positive classes in Λ such that the lat-

tice 〈h1, h2〉 is of signature (1, 1) and (h1, h2) > 0. Then the conclusion of Claim A.2.2

holds for h1 and h2.

Let h1 and h2 be as above. We fix the constant N given by Theorem A.1.2 for our

deformation type. To prove Proposition A.2.3, we will state and use several results

whose proofs are collected in §A.2.8. First of all, we replace h1 and h2 with classes

of which we can control the square.

A.2.4. Lemma. — There exist a prime number p > N congruent to 3 modulo 4,

an odd integer j � 0 and positive classes l1 and l2 in Λ such that:
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– Ωa
h⊥1
∩ Ωa

l⊥1
6= ∅ and Ωa

h⊥2
∩ Ωa

l⊥2
6= ∅;

– we have (l1, l1) = pjf1 and (l2, l2) = pjf2, for positive integers f1 and f2 not

divisible by p and such that f1f2 is not a square modulo p;

– the lattice generated by l1 and l2 has signature (1, 1), and (l1, l2) > 0.

Thanks to Proposition A.2.1, we may therefore assume that h1 and h2 have

Beauville–Bogomolov square pjf1 and pjf2 respectively, with p, j, f1 and f2 as in

Lemma A.2.4 above. These assumptions on h1 and h2 are now in force.

A.2.5. Lemma. — There exist classes v1, v2 ∈ 〈h1, h2〉⊥ ⊂ Λ such that:

– (v1, v1) = pε1 and (v2, v2) = pε2, for negative integers ε1 and ε2 not divisible

by p;

– ε1f1, ε2f2 and ε1ε2 are not squares modulo p;

– (v1, v2) is divisible by p2.

Let v1 and v2 be as above. Consider the rank 2 sublattices of Λ:

L1 = 〈h1, v1〉 and L2 = 〈h2, v2〉.

By construction, they have signature (1, 1).

A.2.6. Lemma. — Let v ∈ L1 ⊗Q or v ∈ L2 ⊗Q. Then p divides (v, v).

For k > 0, we define w1,k ∈ L1 and w2,k ∈ L2 as:

w1,k = pkh1 + v1 w2,k = pkh2 + v2.

We let Sk ⊂ Λ be the lattice generated by w1,k and w2,k. If k � 0, this lattice has

signature (1, 1), because this is the signature of the lattice generated by h1 and h2.

A.2.7. Lemma. — For k � 0, given any v ∈ Sk ⊗Q, the prime p divides (v, v).

We can now complete the proof of Proposition A.2.3.

Proof of Proposition A.2.3. — Let L1 and L2 be the lattices of Lemma A.2.6. Since

they are of signature (1, 1), by the surjectivity of the period map we can find (Y1, φ1)

and (Y2, φ2) in M such that NS(Y1) = φ−1
1 (L1) and NS(Y2) = φ−1

2 (L2). Moreover, the

class φ−1
1 (h1) (resp. φ−1

2 (h2)) belongs to the positive cone NS+(Y1) (resp. NS+(Y2)).
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Since p > N , Lemma A.2.6 ensures that NS(Y1) and NS(Y2) contain no MBM classes;

hence, by Theorem A.1.2,

Amp(Y1) = NS+(Y1) and Amp(Y2) = NS+(Y2).

We fix k � 0. There exists (Z,ψ) ∈M such that NS(Z) = ψ−1(Sk) and both the

classes ψ−1(w1,k) and ψ−1(w2,k) belong to the positive cone NS+(Z); this is possible

because (w1,k, w2,k) > 0. By Lemma A.2.7, there are no MBM classes in NS(Z);

hence, we have Amp(Z) = NS+(Z), by Theorem A.1.2.

We therefore obtain:

P(Y1, φ1) ∈ Ωa
h⊥1
∩ Ωa

w⊥1,k
, P(Z,ψ) ∈ Ωa

w⊥1,k
∩ Ωa

w⊥2,k
, P(Y2, φ2) ∈ Ωa

w⊥2,k
∩ Ωa

h⊥2
.

Applying Proposition A.2.1, we conclude that Y1 ∼ Z ∼ Y2.

A.2.8. Technical proofs. — We give here the proof of the announced lemmata.

Proof of Lemma A.2.4. — Pick projective marked hyper-Kähler manifolds (X ′1, ψ1)

and (X ′2, ψ2) in M such that:

– P(X ′i, ψi) ∈ Ωa
h⊥i

, for i = 1, 2;

– NS(X ′i) contains an isotropic class ψ−1
i (yi), for i = 1, 2.

This is possible because b2 > 6: the maximal Picard number is then b2 − 2 ≥ 5; by

Meyer’s theorem [58], any indefinite lattice of rank at least 5 contains an isotropic

vector. Hence, the Néron-Severi lattice of any Y with maximal Picard number of the

given deformation type will contain an isotropic vector. Since hyper-Kähler varieties

of maximal Picard rank are dense in the moduli space, we find X ′1 and X ′2 as above.

By assumption, up to replacing X ′1 (resp. X ′2) with a different birational

model, ψ−1
1 (h1) (resp. ψ−1

2 (h2)) is the first Chern class of an ample divisor on X ′1

(resp. on X ′2). Hence, the class ψ−1
1 (λh1+y1) (resp. ψ−1

2 (λh2+y2)) is also ample on X ′1

(resp. on X ′2) for λ � 0. We introduce the notation ei = (hi, yi) and di = (hi, hi),

for i = 1, 2. By the Hodge index theorem [42, §1.10], the orthogonal to hi in NS(X ′i)

is negative definite; since yi is isotropic, ei must be not zero, for i = 1, 2.

We now choose a large prime number p > N which does not divide neither d1d2

nor e1e2, and such that p ≡ 3 modulo 4. For a big enough odd integer j, the classes

l1 = pjh1 + y1 and l2 = pjh2 + y2,
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are such that ψ−1
1 (l1) (resp. ψ−1

2 (l2)) is ample on X ′1 (resp. on X ′2). We have

(l1, l1) = pj(pjd1 + 2e1) and (l2, l2) = pj(pjd2 + 2e2).

We let fi = (pjdi+2ei); then fi is not divisible by p. Moreover, for j sufficiently large,

the lattice generated by l1 and l2 is of signature (1, 1) and (l1, l2) > 0, because (h1, h2)

is positive by assumption.

Finally, we may assume that f1f2 is not a square modulo p. Otherwise, we must

have that e1e2 is a square modulo p. We then choose an integer r which is not a square

modulo p, and replace l2 with pjh2 + ry2; if j is an odd integer large enough, the

class ψ−1
2 (pjh2+ry2) is the first Chern class of an ample divisor on X ′2, with Beauville–

Bogomolov square pj(pjd2 + 2re2). Note that re1e2 is not a square modulo p; if we

now let f2 = pjd2 + 2re2, then f1f2 is not a square modulo p.

Proof of Lemma A.2.5. — The orthogonal 〈h1, h2〉⊥ ⊂ Λ to the sublattice generated

by h1 and h2 is of signature (2, b2 − 4). Since b2 ≥ 7, we can find non-proportional

isotropic vectors w1 and w2 in 〈h1, h2〉⊥ such that (w1, w2) = t < 0. We may assume

that p does not divide t.

Since f1f2 is not a square modulo p, exactly one of them, say f1, is a square

modulo p. Assume that 2t is a square modulo p. Then we define:

v1 = pw1 + (p− 1)w2,

v2 = pw1 + w2.

We have

(v1, v1) = 2(p− 1)pt = pε1,

(v1, v2) = p(p− 1)t+ pt = p2t,

(v2, v2) = 2pt = pε2,

where ε1 = 2(p − 1)t and ε2 = 2t. By construction, (v1, v2) is divisible by p2 and ε1

and ε2 are negative integers not divisible by p. Moreover, ε1 is not a square modulo p,

while ε2 is a square modulo p; note that p − 1 is not a square modulo p since p ≡ 3

modulo 4. It follows that ε1f1, ε2f2 and ε1ε2 are not squares modulo p, as desired.
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If instead 2t is not a square modulo p, we define

v1 = pw1 + w2,

v2 = pw1 + (p− 1)w2,

and conclude similarly.

Proof of Lemma A.2.6. — By construction, the intersection matrices of L1 and L2

are (
pjf1 0

0 pε1

)
and

(
pjf2 0

0 pε2

)
,

respectively, with j � 0 odd and f1, f2, ε1, ε2 not divisible by p. Moreover, ε1f1

and ε2f2 are not squares modulo p.

Let v ∈ L1 ⊗ Q; the case of v ∈ L2 ⊗ Q is analogous. There exist integers γ, λ, δ

such that γv = λh1 + δv1. We then have

γ2(v, v) = p(λ2pj−1f1 + δ2ε1).

Assume by contradiction that (v, v) is not divisible by p, and let m be the biggest

integer such that pm divides both λ and δ. We can then write

γ2(v, v) = p2m+1(λ2
0p
j−1f1 + δ2

0ε1),

where p does not divide both λ0 and δ0. The left hand-side is divisible by an even

power of p. This forces δ0 to be divisible by p, and hence δ0 = pδ1 for some integer δ1.

Therefore, λ0 is not divisible by p. We obtain

γ2(v, v) = p2m+3(λ2
0p
j−3f1 + δ2

1ε1).

Again, p has to divide δ1, so δ0 = p2δ2 and

γ2(v, v) = p2m+5(λ2
0p
j−5f1 + δ2

2ε1).

Proceeding in this way we find δ(j−1)/2 such that δ0 = p(j−1)/2δ(j−1)/2 and

γ2(v, v) = p2m+j(λ2
0f1 + δ2

(j−1)/2ε1).

Now p has to divide λ2
0f1 + δ2

(j−1)/2ε1. But, since f1ε1 is not a square modulo p, this

implies that p divides λ0, a contradiction.
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Proof of Lemma A.2.7. — We let b = (h1, h2) and (v1, v2) = p2e. Recall that the

classes v1 and v2 are orthogonal to 〈h1, h2〉. The intersection matrix of Sk is(
p2k+jf1 + pε1 p2kb+ p2e

p2kb+ p2e p2k+jf2 + pε2

)
,

where f1f2, ε1f1, ε2f2 and ε1ε2 are not squares modulo p (in particular, p does not

divide f1, f2, ε1, ε2).

Given v ∈ Sk ⊗Q, we find integers γ, λ, δ such that γv = λw1,k + δw2,k. Then:

γ2(v, v) = p(λ2(p2k+j−1f1 + ε1) + 2λδ(p2k−1b+ pe) + δ2(p2k+j−1f2 + ε2)).

Let m be the biggest integer such that pm divides both λ and δ; we have λ = pmλ0

and δ = pmδ0, with at least one among λ0 and δ0 not divisible by p. We can then

write

γ2(v, v) = p2m+1(λ2
0ε1 + δ2

0ε2 +D),

where

D = λ2
0p

2k+j−1f1 + 2λ0δ0(p2k−1b+ pe) + δ2
0p

2k+j−1f2

is divisible by p, since k � 0.

Assume by contradiction that p does not divide (v, v). Then γ2(v, v) is divisible

by an even power of p, and hence p necessarily divides the term (λ2
0ε1 + δ2

0ε2 + D).

But then we must have

λ2
0ε1 + δ2

0ε2 ≡ 0 modulo p.

Since ε1ε2 is not a square modulo p, this implies λ0 ≡ δ0 ≡ 0 modulo p, which is a

contradiction.

A.3. Conclusion of the proof

We now complete the proof of Claim A.2.2 and, hence, of Theorem A.0.1. By

Proposition A.2.3, we are reduced to prove the following statement.

A.3.1. Claim. — Let h1, h2 be positive classes in Λ. Then there exists finitely many

vectors v1, v2, v3, . . . , vk ∈ Λ such that:

– v1 = h1 and v2 = h2;

– (vi, vi) > 0, for each i = 1, . . . , k;

– 〈vi, vi+1〉 has signature (1, 1) and (vi, vi+1) > 0, for each i = 1, . . . , k − 1.
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Proof. — We distinguish several cases. We follow an argument due to Sol-

datenkov [79, §6.2].

Case 0: 〈h1, h2〉 is of signature (1, 1) and (h1, h2) > 0. In this case, there is

nothing to do.

Case 1: 〈h1, h2〉 is positive definite. We will then find a positive class v ∈ Λ

such that (h1, v) > 0 and (h2, v) > 0, and the lattices 〈h1, v〉 and 〈h2, v〉 are both

of signature (1, 1), reducing to the previous case. We may assume that (h1, h2) = 0,

for, otherwise, we pick a positive class h3 ∈ 〈h1, h2〉⊥ and apply the argument below

to h1, h3 and h3, h2 in place of h1, h2.

The subset V of v ∈ Λ⊗R such that 〈h1, v〉 and 〈v, h2〉 are both of signature (1, 1)

with both (h1, v) and (h2, v) positive is an open cone in Λ ⊗ R; therefore, it suffices

to show that V is not empty. We choose w ∈ 〈h1, h2〉⊥ such that (w,w) < 0. We

let u1, u2, u3 be the orthogonal basis of 〈h1, h2, w〉 ⊗ R such that

(u1, u1) = 1, (u2, u2) = 1, (u3, u3) = −1,

and h1 = αu1, h2 = βu2 and w = γu3, for positive real numbers α, β and γ. A

straightforward computation shows that the vector v = e1 + e2 + δu3 is positive

for δ2 < 2, and both the real vector spaces 〈h1, v〉 and 〈h2, v〉 are of signature (1, 1)

for δ2 > 1. Moreover, (h1, v) = α and (h2, v) = β are positive. Hence, if 1 < δ2 < 2,

the vector v ∈ V .

Case 2: 〈h1, h2〉 is of signature (1, 1) and (h1, h2) < 0. In this case we simply

let v be a positive class in 〈h1, h2〉⊥. Then 〈h1, v〉 and 〈h2, v〉 are positive definite,

and we conclude by Case 1.

Case 3: 〈h1, h2〉 is degenerate. Then it suffices to find a positive class v such

that 〈h1, v〉 and 〈v, h2〉 are both non-degenerate to reduce to the previous cases. The

subset V of v ∈ Λ ⊗ R such that 〈h1, v〉 and 〈v, h2〉 are both non-degenerate is an

open cone in Λ ⊗ R; it suffices to show that V is not empty. But this is obvious, as

otherwise the open cone of z ∈ Λ ⊗ R such that (z, z) > 0 would be contained in a

hypersurface, which is impossible.
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(1980), p. 137–252.

[25] , “Hodge cycles on abelian varieties”, in Hodge cycles, motives, and

Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer, 1982, p. 9–

100.

[26] E. Fatighenti & G. Mongardi – “Fano varieties of K3 type and IHS mani-

folds”, International Mathematics Research Notices 2021 (2021), no. 4, p. 3097–

3142.

[27] S. Floccari – “On the Mumford-Tate conjecture for hyper-Kähler varieties”,

arXiv preprint: 1904.06238 (2019).

[28] , “Galois representations on the cohomology of hyper-Kähler varieties”,

arXiv preprint: 2007.01841 (2020).

[29] S. Floccari, L. Fu & Z. Zhang – “On the motive of O’Grady’s ten-

dimensional hyper-Kähler varieties”, Communications in Contemporary Math-

ematics (2020), 2050034.

[30] S. Frei – “Moduli spaces of sheaves on K3 surfaces and Galois representations”,

Selecta Mathematica 26 (2020), no. 6, p. 1–16.

[31] L. Fu & Z. Li – “Supersingular irreducible symplectic varieties”, in Rationality

of Algebraic Varieties, Schiermonnikoog, 2019, to appear.



118 BIBLIOGRAPHY

[32] L. Fu, Z. Li & H. Zou – “Supersingular O’Grady varieties of dimension six”,

International Mathematics Research Notices (2021), rnaa349.

[33] L. Fu, Z. Tian & C. Vial – “Motivic hyper-Kähler resolution conjecture I:

Generalized Kummer varieties”, Geometry & Topology 23 (2019), no. 1, p. 427–

492.

[34] A. Fujiki – “On the de Rham Cohomology Group of a Compact Kähler Sym-

plectic Manifold”, in Algebraic Geometry, Sendai, 1985, Mathematical Society

of Japan, 1987, p. 105–165.

[35] B. v. Geemen & C. Voisin – “On a conjecture of Matsushita”, International

Mathematics Research Notices 2016 (2016), no. 10, p. 3111–3123.

[36] M. Green, Y.-J. Kim, R. Laza & C. Robles – “The LLV decomposition of

hyper-Kähler cohomology”, arXiv preprint: 1906.03432 (2019).

[37] P. A. Griffiths – “Periods of integrals on algebraic manifolds: Summary of

main results and discussion of open problems”, Bull. Amer. Math. Soc. 76 (1970),

no. 2, p. 228–296.

[38] V. Gritsenko, K. Hulek & G. K. Sankaran – “Moduli spaces of irreducible

symplectic manifolds”, Compositio Mathematica 146 (2010), no. 2, p. 404–434.

[39] A. Grothendieck – “Standard conjectures on algebraic cycles”, in Algebraic ge-

ometry, Tata Institute, Bombay 1968, Oxford Univ. Press, London, 1969, p. 193–

199.

[40] N. P. Gushel – “On Fano varieties of genus 6”, Izv. Math. 21 (1983), no. 3,

p. 445–459.

[41] B. Hassett & Y. Tschinkel – “Hodge theory and Lagrangian planes on gen-

eralized Kummer fourfolds”, Moscow Mathematical Journal 13 (2013), no. 1,

p. 33–56.

[42] D. Huybrechts – “Compact hyperkähler manifolds: basic results”, Invent.

Math. 135 (1999), p. 63–113.



BIBLIOGRAPHY 119

[43] , Complex Geometry: An Introduction, Universitext (Berlin. Print),

Springer, 2005.

[44] , “A global Torelli Theorem for hyperkähler manifolds [after M. Verbit-
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SAMENVATTIG

Hyper-Kähler variëteiten vormen een belangrijke en interessante klasse van hoger-

dimensionale algebräısche variëteiten. In dimensie 2 zijn het K3-oppervlakken, en

dankzij het werk van vele auteurs hebben we nu een rijke theorie van hyper-Kähler

variëteiten die in veel opzichten gelijkenis vertoont met die van deze oppervlakken.

Desondanks zijn er nog veel fundamentele vragen onbeantwoord; zo ontbreekt er

bijvoorbeeld een topologische classificatie van hyper-Kähler variëteiten.

Veel van de bekende constructiemethoden van hyper-Kähler variëteiten zijn

gebaseerd op het nemen van moduliruimten van schoven op een abels oppervlak of

een K3-oppervlak. In zulke gevallen moeten de oppervlakken op de een of andere

manier de meetkunde van de verkregen hyper-Kähler variëteit bepalen. Deformaties

van zo’n moduliruimte geven hyper-Kähler variëteiten die niet meer van deze vorm

zijn en die, a priori, niet direct gerelateerd zijn aan een oppervlak.

In dit proefschrift wordt onderzocht hoe de motieven van hyper-Kähler variëteiten

worden beheerst door kleinere, “oppervlakte-achtige” motieven. Meer precies for-

muleren we de verwachting dat het André motief H•(X) van een hyper-Kähler

variëteit X gereconstrueerd kan worden uit zijn Künneth component in graad 2 door

middel van tensorconstructies.

Om dit probleem aan te pakken, koppelen we aan elke hyper-Kähler variëteit X

(met b2(X) > 3) een algebräısche groep P (X), die het falen van onze verwachting

meet. We noemen P (X) de defectgroep van X; deze groep is triviaal dan en slechts

dan als het motief H•(X) behoort tot de tensorcategorie die wordt voortgebracht

door H2(X). Door diepgaande ideeën over families van motieven, die teruggaan tot
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Deligne, André en Moonen, te combineren met een representatietheoretische con-

structie van Verbitsky en Looijenga–Lunts, kunnen we aantonen dat P (X) een aantal

mooie eigenschappen heeft. Dit leidt ertoe dat we onze voorspelling over motieven

van hyper-Kähler variëteiten kunnen bewijzen voor alle momenteel bekende defor-

matietypen van hyper-Kähler variëteiten.

Stelling. — De defectgroep van alle thans bekende voorbeelden van hyper-Kähler

variëteiten is triviaal.

De vraag blijft open voor mogelijk nog te ontdekken deformatietypen van hyper-

Kähler variëteiten. Niettemin kunnen we aantonen dat hun motieven bepaald worden

door de Künneth component in graad 2, in de volgende zin.

Stelling. — Stel X en Y zijn deformatie-equivalente hyper-Kähler variëteiten

met b2 > 6 en triviale oneven cohomologie, en neem aan dat er een Hodge isome-

trie H2(X) ' H2(Y ) bestaat. Dan zijn de André motieven van X en Y isomorf.

Voor hyper-Kähler variëteiten waarvan de cohomologie in oneven graad niet triviaal

is bewijzen we een vergelijkbaar resultaat onder een extra technische aanname.

De belangrijkste toepassing van deze resultaten is het Mumford–Tate vermoeden

voor hyper-Kähler variëteiten. Voor een gladde en projectieve variëteit X voorspelt

het Mumford–Tate vermoeden dat er een direct verband is tussen de Hodgestructuur

en de `-adische Galoisrepresentatie op de cohomologie van X. Dit moeilijke vermoe-

den is zeer opmerkelijk doordat de structuren die in deze relatie een rol spelen heel

verschillend van aard zijn. We bewijzen dat het Mumford–Tate vermoeden waar is

voor alle thans bekende hyper-Kähler variëteiten.

Stelling. — Het Mumford–Tate vermoeden is waar voor alle thans bekende hyper-

Kähler variëteiten en alle producten van zulke variëteiten.

Een direct gevolg van deze stelling is dat voor elk product van thans bekende hyper-

Kähler variëteiten het Hodge-vermoeden equivalent is met het Tate-vermoeden.



SUMMARY

Hyper-Kähler varieties are an important class of higher dimensional algebraic vari-

eties. In dimension 2 they are K3 surfaces, and, thanks to the work of many authors,

we now have a rich theory of hyper-Kähler varieties which parallels in many respects

that of these surfaces. Despite this, many fundamental questions remain out of reach,

for instance, the topological classification of hyper-Kähler varieties is still unknown.

Many of the known construction methods of hyper-Kähler varieties involve taking

moduli spaces of sheaves on an abelian or K3 surface. In such cases, the surface should

somehow govern the geometry of the hyper-Kähler variety obtained. Deformations of

such a moduli space give hyper-Kähler varieties which are not anymore of this form,

and a priori, not related to any surface.

This thesis investigates how the motives of hyper-Kähler varieties are controlled

by smaller, “surface-like” motives. More precisely, we formulate the expectation that

the André motive H•(X) of a hyper-Kähler variety X can be reconstructed from its

Künneth component in degree 2 by means of tensor constructions.

To tackle this problem, to any hyper-Kähler variety X (with b2(X) > 3) we attach

an algebraic group P (X), which measures the failure of our expectation. We call P (X)

the defect group of X; it is trivial if and only if the motiveH•(X) belongs to the tensor

category generated by H2(X). Combining deep ideas on families of motives going

back to Deligne, André and Moonen with a representation theoretic construction

by Verbitsky and Looijenga–Lunts, we are able to show that P (X) enjoys several

nice property, and confirm our prediction for all hyper-Kähler varieties of known

deformation type.
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Theorem. — The defect group of any known hyper-Kähler variety is trivial.

The question remains open for potentially yet to be discovered deformation types

of hyper-Kähler varieties. Nevertheless, we are still able to show that their motives

are determined by the Künneth component in degree 2, in the following sense.

Theorem. — Let X and Y be deformation equivalent hyper-Kähler varieties

with b2 > 6 and trivial odd cohomology, and assume that there exists a Hodge

isometry H2(X) ' H2(Y ). Then the André motives of X and Y are isomorphic.

In presence of non-trivial odd cohomology we prove a similar result under an ad-

ditional technical assumption.

Our main application is to the Mumford–Tate conjecture for hyper-Kähler varieties.

For any smooth and projective variety X, the Mumford–Tate conjecture predicts a

comparison between the Hodge structure and the `-adic Galois representation at-

tached to X. This challenging conjecture is most remarkable due to the very different

nature of the objects involved in the comparison. We obtain new evidence towards

the validity of the Mumford–Tate conjecture.

Theorem. — The Mumford–Tate conjecture holds for any known hyper-Kähler va-

riety and any product of such varieties.

A direct consequence of this theorem is that the conjectures of Hodge and Tate are

equivalent for any product of known hyper-Kähler varieties.
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