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1. The associated polynomial. Let S be a finite set of lattice points (i.e. points with integral coordi-

nates) in k-dimensional Euclidean space, Ek. There will be no loss in generality in assuming that S is contained
in E′k, where E′k is that portion of Ek in which all points have nonnegative coordinates. With the point p of S
having the integral coordinates n1, n2, · · · , nk, we associate the monomial

M(p) = xn1
1 xn2

2 · · ·x
nk
k .

With S itself we associate the polynomial P (S) =
∑
M(p), the summation being extended over all points of

S. In particular, with the lattice points of the rectangluar parallelopiped R, which has one vertex at the origin
and lies in E′k, we associate the polynomial, P (R), where

(1) P (R) =
k∏
i=1

xlii − 1
xi − 1

.

Here (l1 − 1, l2 − 1, · · · , li − 1, · · · , lk − 1) is the point of R farthest from the origin.
Let T1, T2, · · · , Tr be finite sets of lattice pointes in E′k and let P (T1), P (T2), · · · , P (Tr) be their associated

polynomials. We say that S is covered by T1, T2, · · · , Tr if every point of S is covered exactly once by suitable
translations of T1, T2, · · · , Tr and if no point not in S is covered by these translations. This means that there
exist polynomials Q1, Q2, · · · , Qr in x1, x2, . . . , xk with coefficients 0 or 1 such that

(2) P (S) =
r∑
i=1

Qi(x1, x2, · · · , xk)P (Ti).

(We can assume that T1, T2, · · · , Tr have at least one point on each coordinate axis. Then no negative expo-
nents can occur in Q1, Q2, · · · , Qr.) It follows that P (S) must belong to the polynomial ideal generated by
P (T1), P (T2), · · · , P (Tr). The ring of coefficients may be any ring containing a subring isomorphic to the ring of
rational integers; we shall find it convenient to employ the fields of real and complex numbers. If (ξ1, ξ2, · · · , ξk)
is a point in the manifold of the ideal (P (T1), P (T2), · · · , P (Tr)), i.e. a point with coordinates in a suitable
extension of the ring of coefficients at which P (T1), P (T2), · · · , P (Tr) all vanish, then P (S) must vanish there
also. This is not, of course, a sufficient condition that P (S) belong to the ideal.

To every lattice point p in Ek there corresponds a unique k-dimensional unit cube having vertices with
integral coordinates, p being one of them, with no vertex having any coordinate less than the corresponding
coordinate of p. (For example, in the two-dimensional case, we have a square with horizontal and vertical sides,
and with p as its southwest corner.) Hence to every configuration S of lattice points there corresponds a solid
region, S, composed of these cubes. We set P (S) = P (S). Thus any problem involving the covering of such
solid regions by other such regions may be reduced to a problem involving the corresponding configurations
of lattice points. Note that (1) gives the associated polynomial of a solid rectangular parallelopiped with one
vertex at the origin and sides parallel to the coordinate axes of length l1, l2, · · · , lk.

In the case k = 2, such a “solid” region, when “rookwise” connected, was called a “polyomino” by Golomb,
in his interesting paper [1] on checkerboard recreations. Here we shall use the word, “polyomino,” to mean any
such solid region, for any value of k. Golomb discusses problems of covering a full or deleted checkerboard with
polyominoes of prescribed form. His principal tool is a “coloring” of the checkerboard. As will readily be seen,
this corresponds to assigning certain values to x1 and x2 in our formulation.

2. Examples. In this section we shall show how (2) may be used to obtain necessary conditions for
the existence of a solution of various problems involving coverings by polyominoes. Primarily we shall use the
fact that P (S) must vanish on the manifold of (P (T1), P (T2), · · · , P (Tr)). It seems to be more difficult to take
significant advantage of the requirement that the coefficients of Q1, Q2, · · · , Qr be 0 or 1.

Example I: We begin with a well-known checkerboard problem from [1] which may easily be solved without
recourse to our method of associated polynomials. Can one cover a checkerboard with one pair of opposite
corners removed, with 1× 2 dominoes? If S is the deleted checkerboard, then

P (S) =
x8

1 − 1
x1 − 1

· x
8
2 − 1
x2 − 1

− 1− x7
1x

7
2 .
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If T 1 is the domino in its horizontal position and T 2 is the domino in its vertical position then P (T 1) = 1 + x1

and P (T 2) = 1 + x2. From (2) we have

x8
1 − 1
x1 − 1

· x
8
2 − 1
x2 − 1

− 1− x7
1x

7
2 = Q1(x1, x2)(1 + x1) +Q2(x1, x2)(1 + x2) .

Setting x1 = −1, x2 = −1, we arrive at a contradiction, so that the desired covering is impossible. Notice that
with these values of x1 and x2, xn1

1 xn2
2 has one value (±1) on all the black squares of the checkerboard in the

usual coloring, and its negative (∓1) on the white squares. This observation relates our solution of the problem
to the more elementary solution which consists simply in remarking that the proposed covering is impossible
because the deleted checkerboard does not contain equal numbers of black and white squares.

The remaining examples in this section deal with the covering of rectangular k-dimensional parallelopipeds
by “straight” polyominoes. By a straight polyomino we shall mean the solid region corresponding to a set of
lattice points in Ek lying on a straight line parallel to one of the coordinate axes. A straight polyomino is not
necessarily connected. A straight polyomino is symmetric if it is invariant under reflection in its center.

Example II: Is there some rectangular parallelopiped which can be covered by the straight symmetric
polyomino formed by taking seven adjacent cubes and deleting the third and fifth? (In this, and in the subsequent
examples, we agree that the polyominoes may be placed parallel to any axis.) If the polyomino is parallel to
the xi-axis, the associated polynomial for this position is 1 + xi + x3

i + x5
i + x6

i . If the problem has a solution,
we see, from (1) and (2), that we must have

(3)
k∏
i=1

xlii − 1
xi − 1

=
k∑
i=1

Qi(x1, x2, . . . , xk)(1 + xi + x3
i + x5

i + x6
i ).

for some choise of the positive integers l1, l2, · · · , lk.
The polynomial 1 + x+ x3 + x5 + x6 has a root, λ, between 0 and −1. If we put x1 = x2 = . . . = xk = λ,

we obtain a contradiction from (3), inasmuch as all roots of xlii − 1 lie on the unit circle. Therefore the problem
has no solution. We have made implicit use here of the theorem that a real function continuous on a closed
interval assumes in that interval all values between its values at the end-points of the interval. The method
of associated polynomials makes available some of the simpler theorems analysis for the handling of problems
involving lattice point configurations.

Example III: Is there a rectangular k-dimensional parallelopiped which can be covered by the straight
polyomino formed by taking five consecutive cubes and deleting the middle one? Proceeding as in example II,
we obtain the condition

(4) P (S) =
k∏
i=1

xlii − 1
xi − 1

=
k∑
i=1

Qi(x1, x2, . . . , xk)(1 +xi+x3
i +x4

i ) =
k∑
i=1

Qi(x1, x2, . . . , xk)(1 +xi)2(1−xi+x2
i ).

The remainder of the argument cannot be the same as in example II because all the roots of the polynomial
1 +x+x3 +x4 are roots of unity. Thus it is possible to select the sides li so that P (S) vanishes on the manifold
of the ideal (1 + x1 + x3

1 + x4
1, · · · , 1 + xk + x3

k + x4
k). But nevertheless P (S) does not belong to this ideal, for

any polynomial in the ideal, when expanded in powers of 1 + x1, 1 + x2, · · · , 1 + xk has no term in

(1 + x1)(1 + x2) · · · (1 + xk), whereas
∂kP (S)

∂x1 · · · ∂xk
6= 0

when x1 = x2 = · · · = xk = −1 unless some li = 1. This later case is easily excluded.
Example IV: Is there a rectangular k-dimensional parallelopiped which can be covered by the straight

polyomino formed by taking seven adjacent cubes and deleting the middle one?
Proceeding just as before, we obtain

(5)

P (S) =
k∏
i=1

xlii − 1
xi − 1

=
k∑
i=1

Qi(x1, x2, . . . , xk)(1+xi+x2
i +x4

i +x5
i +x6

i ) =
k∑
i=1

Qi(x1, x2, . . . , xk)
(x4
i + 1)(x3

i − 1)
xi − 1

.

Again, the roots of 1 + x+ x2 + x4 + x5 + x6 are all roots of unity. In this case, however, P (S) will belong to
the ideal (1 + x1 + x2

1 + x4
1 + x5

1 + x6
1, · · · , 1 + xk + x2

k + x4
k + x5

k + x6
k) if the integers li are divisible by 24. This

follows from the fact that x24 − 1 is divisible by (x3 − 1)(x4 + 1). To handle the problem it is necessary then
to make use of the condition that the coefficients of the polynomials Qi(x1, x2, . . . , xk) be 0 or 1, or possibly,
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of the weaker condition, that they be nonnegative. We have had no success with this; we can say only that no
solution exists when k = 2, a fact established by trail and error. The case k > 2 is open.

Example V: The preceding examples may lead one to suspect that any straight, symmetric polyomino
which cannot cover any segment, cannot cover any rectangular parallelopiped. A polyomino formed by taking
six adjacent cubes and removing the second and fifth obviously cannot cover any segment, but such a polyomino
can cover a 7× 12 rectangle. This is shown in Figure 1. There the polyominoes are numbered from 1 to 21 and
a square numbered a, 1 ≤ a ≤ 21, is covered by the polyomino numbered a.

15 8 16 8 8 13 8 13 13 19 13 21

5 14 5 5 17 5 12 18 12 12 20 12

15 4 16 4 4 11 4 11 11 19 11 21

15 14 16 7 17 7 7 18 7 19 20 21

3 14 3 3 17 3 10 18 10 10 20 10

15 2 16 2 2 9 2 9 9 19 9 21

1 14 1 1 17 1 6 18 6 6 20 6

Fig. 1

3. The box problem. Most of the results in the preceding section were of a negative character. In
this section we shall discuss what is perhaps the simplest problem of polyomino coverings, obtain a necessary
condition for its solvability by means of the method of associated polynomials and then show that this necessary
condition, together with an auxiliary condition, is sufficiently strong to guarantee the existence of a solution.

The problem, which we have called the box problem, is the following: Under what circumstances is it
possible to stack k-dimensional “boxes” with integral sides b1, b2, · · · , bk in a k-dimensional “room” with sides
r1, r2, · · · , rk so that the room is completely filled? Clearly, the volume of one of the boxes must divide the
volume of the room and each of the numbers r1, r2, · · · , rk must be a linear combination of b1, b2, · · · , bk, with
nonnegative integral coefficients. We prove a demonstrably stronger necessary condition:
(A) If an arbitrary integer h divides th of the integers b1, b2, · · · , bk,

it must divide at least th of the integers r1, r2, · · · , rk.
It follows from (A) that, for example, a 30× 30 square cannot be covered by 4× 9 rectangles even though

30× 30 is divisible by 4× 9 and 30 = 2 · 9 + 3 · 4.
Proof of (A). From (1) and (2) we have

(6)
k∏
i=1

xrii − 1
xi − 1

=
∑
σ

Qσ(x1, x2, . . . , xk)
k∏
i=1

xbiσ(i) − 1

xσ(i) − 1
,

the summation being extended over all permutations σ of the integers 1, 2, · · · , k. Each permutation corresponds
to a different way of stacking the boxes.

Suppose that only q of the integers r1, r2, · · · , rk are divisible by h, where q < th. Then k−q of the integers
r1, r2, · · · , rk are not divisible by h. We may assume that these are r1, r2, · · · , rk−q. In (6), let x1 = x2 = . . . =
xk−q = ω where ω is a primitive hth root of unity. In each product on the right side of (6) there is at least
one factor which vanishes, since k − q + th > k − q + q = k. Thus the right side of (6) vanishes identically in
xk−q+1, · · · , xk, whereas the left side does not.

Condition (A) is clearly not sufficient. For example, it is impossible to fill a 48 × 48 × 1 room with
2 × 3 × 4 boxes, although condition (A) is satisfied. What is needed is an additional condition which ensures
that r1, r2, · · · , rk may be expressed as linear combinations, with positive integral coefficients, of b1, b2, · · · , bk.
Such a condition is
(B) r1, r2, · · · , rk are sufficiently large.

That is, there exists a positive integer, N , such that if ri > N , i = 1, 2, · · · , k, and the set* {r1, r2, · · · , rk}
satisfies condition (A), then the box problem has a solution. Here N depends upon b1, b2, · · · , bk.

We prove that condition (A) and (B) are sufficient for the existence of a solution of the box problem. Our
plan is to split the room into smaller parallelopipeds, each of whose sides is divisible by a different number in

* Set stands for multiset. The b’s and r’r need not be distinct.
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the set b1, b2, · · · , bk. These smaller parallelopipeds are then obviously coverable by boxes of sides b1, b2, · · · , bk;
hence the room is also.

Two lemmas, both well-known results, are required.
Lemma I. Let a1, a2, · · · , an be any set of positive integers, and let δ be their greatest common divisor. Any

sufficiently large integer which is divisible by δ may be expressed as a linear combination of a1, a2, · · · , an with
positive coefficients.

An account of recent work based upon this lemma may be found in [2]. It was known to Frobenius, and
may have been noticed by earlier mathematicians.

Lemma II. Given k objects, each of which possesses one or more of the attributes P1, P2, · · · , Pk. For any
set of j attributes, let there exists j objects each possessing at least one attribute of the set. Then it is possible to
pair each object with one of its attributes in such a way that no two objects are paired with the same attribute.

This lemma is due to P. Hall [3].
Let us order all nonempty subsets of b1, b2, · · · , bk by means of an index j, running from 1 to 2k − 1. Let

bj1 , bj2 , · · · , bjmj be the elements of the jth subset. Let δj be the greatest common divisor of bj1 , bj2 , · · · , bjmj .
Condition (A) implies that δj divides at least mj of the integers r1, r2, · · · , rk.

Suppose that j1, j2, · · · , jαi are the indices of those greatest common divisors which divide ri. Condition
(A) gives αi ≥ 1. Then we may write

(7) ri =
∑

A(i)(j1, l1, j2, l2, · · · , jαi , lαi),

where the summation extends over all possible sets of values of l1, l2, · · · , lαi such that

1 ≤ l1 ≤ mj1 , 1 ≤ l2 ≤ mj2 , · · · , 1 ≤ lαi ≤ mjαi
,

and where the positive integer A(i)(j1, l1, j2, l2, · · · , jαi , lαi) is divisible by each of the integers bj1l1 , bj2l2 , · · ·,
bjαi lαi . This result follows at once from the fact that the positive integers form a distributive lattice under
the operations ∩ = least common multiple and ∪ = greatest common divisor. One infers that ri is divisible
by the greatest common divisor of all the least common multiples one can form by taking one b from each set
associated with the αi δ’s dividing ri. If we apply Lemma I, identifying the integers a1, a2, · · · , an with these
least common multiples, we see that the integers A(i)(j1, l1, j2, l2, · · · , jαi , lαi) may be chosen to be positive if ri
is sufficiently large.

We now divide our k-dimensional room into smaller parallelopipeds by splitting the sides as indicated by
(7). The sides of a representative smaller parallelopiped will be

(8) A(1)(j1, l1, j2, l2, · · · , jα1 , lα1) · · ·A(k)(j′1, l
′
1, j
′
2, l
′
2, · · · , j′αk , l

′
αk

).

We apply Lemma II, the k objetcs being the sides of the smaller parallelopiped and the k attributes being
divisibility by b1, b2, · · · , bk. We show that the hypothesis of Lemma II is fulfilled. Let δj be the greatest
common divisor of some set of mj b’s. Then δj will divide at least mj of the positive integers r1, r2, · · · , rk; by
our construction, therefore, at least mj of the positive integers (8) are divisible by at least one member of the
given set of b’s. From Lemma II we conclude that it is possible to pair each side of the smaller parallelopiped
with a distinct member of the set b1, b2, · · · , bk which will divide it. Thus this parallelopiped may be covered
with boxes of sides b1, b2, · · · , bk. The larger room with sides r1, r2, · · · , rk may then also be so covered.

N. G. de Bruijn, in a problem published in the Hungarian journal, Mathematikai Lapok†, around 1960,
dealt with an interesting aspect of the box-problem. He showed that if the box problem has a solution and if
b1 divides b2, b2 divides b3, etc., then the boxes may all be given the same orientation. Moreover, if every room
covered by boxes of dimensions b1 ≤ b2 ≤ b3 ≤ · · · ≤ bk may be covered by boxes with the same orientation,
then b1 divides b2, b2 divides b3, etc. In the course of his proof, de Bruijn established the necessary portion of
our box problem for boxes with dimensions 1 × 1 × 1 × · · · ×m. His method was similar to ours and may be
extended to the more general case.

Conclusion. Certain mathematical games involving “jumping” may be discussed by means of associated
polynomials. One allows the associated polynomials to have coefficients −1, 0, 1 in such a case. In treating
questions involving multiple covering of lattice points, the sole restriction that one need place on Q1, Q2, · · · , Qr
is that they have nonnegative integral coefficients.

Interesting problems arise when one considers infinite sets of lattice points. Here the associated polynomial
becomes an associated formal power series. If one substitutes real or complex numbers for the indeterminates,

† 12 (1961) 110 Problem 109 and 13 (1962) 314 Problem 119
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convergence difficulties present themselves, particularly if the configuration extends from −∞ to +∞ in some
direction.

Fundamentally, the method of attack in this paper goes back to Descartes. The associated polynomial is
merely the “coordinate” of the polyomino.
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