Eine Bijektion zwischen Untergruppen freier Gruppen und Systemen konnexer Permutationen Summarium

Fakultät für Mathematik der Universität Bielefeld, 1992 TORSTEN SILLKE

In der vorliegenden Arbeit wird eine Bijektion zwischen:

- den Untergruppen U vom Index n der in der von $x_0, x_1, \ldots, x_{k-1}$ erzeugten Gruppe \mathcal{F}_k mit der Relation $x_0x_1 \ldots x_{k-1} \in U$,
- und den Systemen von Permutationen $(\mu_1, \mu_2, \dots, \mu_{k-1})$ auf $\{1, 2, \dots, n\}$ mit $\langle \mu_1, \dots, \mu_{k-1} \rangle (\{1, \dots, i\}) \neq \{1, \dots, i\}$ für alle $i = 1, \dots, n-1$.

konstruiert. Zu diesem Zweck werden Untergruppen U vom Index n der oben beschriebenen Art durch Systeme $(\tau_0, \tau_1, \ldots, \tau_{k-1}; e_0, e_1, \ldots, e_{k-1})$ von Permutationen $\tau_0, \tau_1, \ldots, \tau_{k-1}$ einer festen endlichen Menge E der Kardinalität n und Elementen $e_0, e_1, \ldots, e_{k-1} \in E$ repräsentiert, die den folgenden Bedingungen genügen:

- $(\Xi 0)$ $\tau_0, \tau_1, \dots, \tau_{k-1} \in E;$
- ($\Xi 1$) Es gilt $\tau_{\epsilon} e_{\epsilon+1} = e_{\epsilon}$ für alle $\epsilon \in \{0, 1, \dots, k-1\}$;
- ($\Xi 2$) Die von $\tau_0, \tau_1, \dots, \tau_{k-1}$ erzeugte Untergruppe operiert transitiv auf E.

Die Systeme von Permutationen $\mu_1, \mu_2, \ldots, \mu_{k-1}$ von $\{1, 2, \ldots, n\}$ mit $\langle \mu_1, \mu_2, \ldots, \mu_{k-1} \rangle (\{1, \ldots, n\}) \neq \{1, \ldots, n\}$ für alle $i = 1, \ldots, n$ werden dagegen durch k-Tupel von Bijektionen $w_0, w_1, \ldots, w_{k-1} : E \xrightarrow{\tilde{}} \{1, \ldots, n\}$ repräsentiert, für die es keine nicht-triviale Teilmenge E' von E mit $w_{\epsilon}(E') = \{1, \ldots, n\}$ für alle $\epsilon \in \{0, 1, \ldots, k-1\}$ gibt.

Hauptergebnis der Arbeit ist, daß es für festes E genau eine Bijektion zwischen der Menge aller oben beschriebener Systeme $(\tau_0, \tau_1, \dots, \tau_{k-1}; e_0, e_1, \dots, e_{k-1})$ auf der einen Seite und der Menge aller oben beschriebenen Systeme $(w_0, w_1, \dots, w_{k-1})$ auf der anderen Seite gibt, derart daß ein System $(\tau_0, \tau_1, \dots, \tau_{k-1}; e_0, e_1, \dots, e_{k-1})$ einem System $(w_0, w_1, \dots, w_{k-1})$ genau dann entspricht, wenn die beiden Systeme für alle $\epsilon \in \{0, 1, \dots, k-1\}$ den folgenden Bedingungen genügen:

- (T0) $w_{\epsilon}(e_{\epsilon}) = 1;$
- (T1) für alle $f \in E$ gilt $w_{\epsilon}(\tau_{\epsilon}f) \leq w_{\epsilon}(f) + 1$;
- (T2) $\{ f \in E \mid w_{\epsilon}(\tau_{\epsilon}^{i}f) \leq w_{\epsilon}(f) \text{ für alle } i \in \mathbb{Z} \} =$ $\{ f \in E \mid w_{\epsilon+1}(\tau_{\epsilon}^{i}f) \geq w_{\epsilon+1}(f) \text{ für alle } i \in \mathbb{Z} \};$
- (T3) $f', f'' \in \{ f \in E \mid w_{\epsilon}(\tau_{\epsilon}^{i}f) \leq w_{\epsilon}(f) \text{ für alle } i \in \mathbb{Z} \}$ und $w_{\epsilon}(f') < w_{\epsilon}(f'') \text{ implizient } w_{\epsilon+1}(f') < w_{\epsilon+1}(f'').$

Alle Indices sind als Indices modulo k aufzufassen.