$$x_1^2 + x_2^2 + \dots + x_n^2 = x_1 x_2 \dots x_n$$

Helmut Postl, Torsten Sillke *

June 1998

Introduction 1

We are looking for integral solutions of the equation $x_1^2 + x_2^2 + \cdots + x_n^2 = \alpha x_1 x_2 \cdots x_n$. This problem is called Hurwitz equation and it is known that only for $1 \leq \tilde{\alpha} \leq n$ there are integral solutions [1, section D12: Markoff numbers [2]. And for any n there is a finite set of solutions which generate all others. The special case $n = \alpha = 3$ it is called Markoff equation. The special case $\alpha = 1$ was stated by Karl Scherer [3]. The related equation $x_1 + x_2 + \cdots + x_n = x_1 x_2 \cdots x_n$ is partially analyzed in [4] [1, section D24]. In this paper we will effectively construct all solutions for a given n. We will show that the number of solutions with $2x_i^2 \le x_1x_2\cdots x_n$ is finite for every n. These solutions we call basic solutions [5]. All other solutions can be constructed from this ones.

2 Trivial cases

If one x_i is zero then the product is zero and therefore all x_i must be zero. This gives the zero solution. So assume in the following all x_i are positive integers.

Case n=1: The equation $x_1^2 = x_1$ that is $x_1(x_1 - 1) = 0$ has only one positive solution $x_1 = 1$. Case n=2: The equation $x_1^2 + x_2^2 = x_1x_2$ has no positive solution as $x_1^2 + x_2^2 \ge 2x_1x_2$. This follows from $(x_1 - x_2)^2 \ge 0.$

In the following we assume $n \geq 3$.

Reduction to basic solution

Let $P_k = \prod_{i=k}^n x_i$ and $S_k = \sum_{i=k}^n x_i^2$. Then we have a quadratic equation $x_1 P_2 = x_1^2 + S_2$ in the variable x_1 . Is x_1 a root of the equation so is $P_2 - x_1$ the other using Vieta.

A solution is called basic if $2x_k^2 \leq P_1$ for all $1 \leq k \leq n$. The transformation

$$x_k \longleftarrow \frac{P_1}{x_k} - x_k \tag{1}$$

generates further solutions. Each solution contains at most one k for which we have $2x_k^2 > P_1$. Assume on the contrary there were a solution with $2x_1^2 > P_1$ and $2x_2^2 > P_1$. Then we had $2x_1x_2 > P_1$ and this means $2 > P_3$ that is $P_3 = 1$ which is impossible. Therefore we have for each solution a unique reduction path to its basic solution. in other words – the graph of solutions is a forest. Note: If we have for a solution $d = \gcd(x_1, x_2, \dots, x_n)$ then d is the gcd for all solutions of the same tree, as d is a factor of the transformation. We will see that d=3 for n=3 and d=2 for n=4. Otherwise d=1 as the basic solutions contain the value one.

Determing the basic solutions 4

In the following let $x_1 \geq x_2 \geq \cdots \geq x_n$. For a basic solution (x_1, x_2, \ldots, x_n) we have $x_1 \leq \frac{P_2}{2}$. Then x_1 is determined by the quadratic equation $x_1P_2 = x_1^2 + S_2$ as

$$x_1 = \frac{P_2}{2} - \sqrt{\frac{P_2^2}{4} - S_2}. (2)$$

^{*}e-mail: Torsten.Sillke@uni-bielefeld.de

From the inequality $2x_2 \le 2x_1 = P_2 - \sqrt{P_2^2 - 4S_2}$ we derive $\sqrt{P_2^2 - 4S_2} \le P_2 - 2x_2$. Dividing x_2 and squaring gives $P_3 \le \frac{S_2}{x_2^2} + 1$ or the inequality

$$P_3 \le \frac{S_3}{x_2^2} + 2. (3)$$

Now we can bound S_3 as $S_3 = \sum_{i=3}^n x_i^2 \le (n-2)x_2^2$ which gives us $P_3 \le n$. As P_3 must be at least three we have

$$3 < P_3 < n \tag{4}$$

and therefore we have finitely many vectors (x_3, x_4, \ldots, x_n) which can occur in a basic solution. With inequality 3 we derive

$$x_3^2 \le x_2^2 \le \frac{S_3}{P_3 - 2} \le S_3. \tag{5}$$

This proves the theorem

Theorem 1 For each n the number of basic solutions is finite.

The lower bound for P_3 is sharp as there are infinitely many basic solutions with $P_3=3$. These are $\frac{3}{2}x_2 \ge x_1 \ge x_2 \ge 3 = x_3 > x_4 = \cdots = x_n = 1$. In this case n is determined by $n = x_1x_2 - (x_1 - x_2)^2 - 6$.

On the other hand the upper bound $P_3 \le n$ is only sharp for n=4. The basic solutions $x_1=x_2=\cdots=x_k=2>1=x_{k+1}=\cdots=x_n$ with $k\ge 4$ have $n=2^k-3k$ and $P_3=2^{k-2}$. So there are basic solutions having $P_3=\frac{1}{4}n+O(\log(n))$.

5 A question of Karl Scherer

Now it is easy to answer a question of Karl Scherer, who wanted to know: Given an integer x what is the minimal n^* for which x is member of a solution? As we know every $x \geq 3$ is member of a $P_3 = 3$ basic solution. So the sequence of Scherer is well defined. In the following table this sequence is calculated upto x = 120 showing that the constuction method given in this note is very effective.

$n^*(x)$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	1	4	3	5	5	3	13	10	5	7	13	5	10	8	3	14	13	7	25	10
+20	14	4	5	34	13	46	23	13	10	28	5	25	5	23	5	14	7	35	3	22
+40	25	23	47	5	38	19	10	10	25	86	39	8	27	39	37	58	5	7	13	5
+60	53	38	13	73	19	46	7	62	30	35	14	74	13	19	23	26	70	14	26	49
+80	5	4	13	130	53	23	3	49	23	67	43	79	13	14	10	65	59	70	35	37
+100	73	3	127	25	19	54	5	10	25	8	34	49	193	86	13	13	65	67	7	38

As an example we derive a solution with x = 84 for n = 130 from a *basic* solution. $(9, 8, 4, 1_{127}) \longrightarrow (23, 8, 4, 1_{127}) \longrightarrow (84, 23, 4, 1_{127})$.

6 Number of basic solutions

The number of basic solution of at most n terms is a slow growing function s(n).

																			1000
s(n)	1	2	3	3	4	5	5	6	6	6	7	9	9	13	45	110	286	989	2544

It is a open question to determine an asymptotic formula for this function.

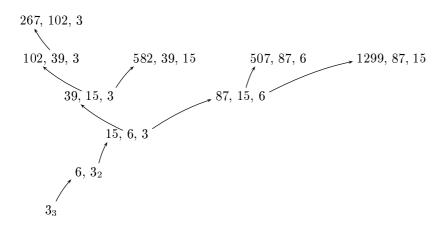
7 Table of basic solutions

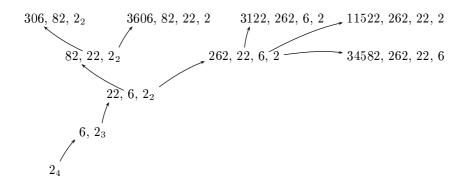
To save space the solutions are given in run-length encoding. E. g. 3_3 reads as 3, 3, 3.

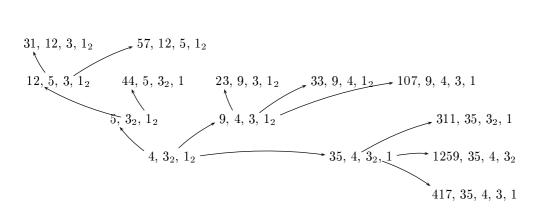
10 5	ave space	one a	Oladi	_		iven in run-ic.
n	$S_1 = P_1$	S_2	P_2	S_3	P_3	x_1, x_2, \dots
3	27	18	9	9	3	3_3
4	16	12	8	8	4	2_4
5	36	20	9	11	3	$4, 3_2, 1_2$
7	24	15	8	11	4	$3, 2_3, 1_3$
8	32	16	8	12	4	$4, 2_3, 1_4$
10	48	32	12	16	3	$4_2, 3, 1_7$
13	60	35	12	19	3	$\begin{bmatrix} 1_2, 3, 1_7 \\ 5, 4, 3, 1_{10} \end{bmatrix}$
14	72	36	12	20	3	$6, 4, 3, 1_{10}$ $6, 4, 3, 1_{11}$
14	36	$\frac{30}{27}$	12	18	4	$\begin{vmatrix} 0, 4, 5, 1_{11} \\ 3_2, 2_2, 1_{10} \end{vmatrix}$
17	$\frac{30}{32}$	28	16	$\frac{13}{24}$	8	
19	$\frac{32}{75}$					$\begin{bmatrix} 2_5, 1_{12} \\ 5, 2, 1 \end{bmatrix}$
		50	15	25	3	$5_2, 3, 1_{16}$
19	48	32	12	23	4	$[4, 3, 2_2, 1_{15}]$
19	64	48	16	32	4	$4_3, 1_{16}$
22	60	35	12	26	4	$5, 3, 2_2, 1_{18}$
23	90	54	15	29	3	$6, 5, 3, 1_{20}$
23	72	36	12	27	4	$6, 3, 2_2, 1_{19}$
25	105	56	15	31	3	$7, 5, 3, 1_{22}$
26	80	55	16	39	4	$5, 4_2, 1_{23}$
27	54	45	18	36	6	$3_3, 2, 1_{23}$
28	64	48	16	32	4	$4_2, 2_2, 1_{24}$
28	48	39	16	35	8	$3, 2_4, 1_{23}$
30	108	72	18	36	3	$6_2, 3, 1_{27}$
31	96	60	16	44	4	$6, 4_2, 1_{28}$
34	112	63	16	47	4	$7, 4_2, 1_{31}$
35	126	77	18	41	3	$7, 6, 3, 1_{32}$
35	80	55	16	39	4	$5, 4, 2_2, 1_{31}$
35	128	64	16	48	$\overline{4}$	$8, 4_2, 1_{32}$
37	100	75	20	50	4	$\begin{bmatrix} 5, 12, 132 \\ 5_2, 4, 1_{34} \end{bmatrix}$
37	64	48	16	44	8	$4, 2_4, 1_{32}$
38	144	80	18	44	$\ddot{3}$	$8, 6, 3, 1_{35}$
38	72	56	18	47		$\begin{bmatrix} 3, 3, 3, 133 \\ 4, 3_2, 2, 1_{34} \end{bmatrix}$
39	162	81	18	45	3	$9, 6, 3, 1_{36}$
40	96	60	16	44	4	$6, 4, 2_2, 1_{36}$
43	147	98	21	49		$7_2, 3, 1_{40}$
43	112	63	16	47	4	$7, 4, 2_2, 1_{39}$
44	128	64	16	48	4	$8, 4, 2_2, 1_{40}$
44	80	55	16	51	8	$[5, 4, 2_2, 1_{40}]$ $[5, 2_4, 1_{39}]$
46	100	75	20	50	4	5, 24, 139 $5_2, 2_2, 1_{42}$
46	120	84	20	59	4	$6, 5, 4, 1_{43}$
46	64	60	32	56	16	$2_6, 1_{40}$
47	90	65	18	56	6	$\begin{bmatrix} 26, 140 \\ 5, 3_2, 2, 1_{43} \end{bmatrix}$
47	72	63	24	54	8	$3_2, 2_3, 1_{42}$
49	168	104	21	55	$\frac{\circ}{3}$	$\begin{bmatrix} 3_2, 2_3, 1_{42} \\ 8, 7, 3, 1_{46} \end{bmatrix}$
49	96	60	16	56	8	$6, 7, 3, 146 $ $6, 2_4, 1_{44}$
49	81	72	27	63	9	$3_4, 1_{45}$
52	112	63	16	59	8	$7, 2_4, 1_{47}$
53	189	108	21	59	$\frac{\circ}{3}$	
53	140	91	$\frac{21}{20}$	66	3 4	$ \begin{array}{c c} 9, 7, 3, 1_{50} \\ 7, 5, 4, 1_{50} \end{array} $
53	140 125	100	$\frac{20}{25}$	75		
					5	$\begin{bmatrix} 5_3, 1_{50} \\ 2 & 2 \end{bmatrix}$
53	128	64	16	60	8	$8, 2_4, 1_{48}$
54	108	72	18	63	6	$6, 3_2, 2, 1_{50}$
55	210	110	21	61	3	$10, 7, 3, 1_{52}$
55	120	84	20	59	4	$6, 5, 2_2, 1_{51}$
55	96	80	24	64	6	$4_2, 3, 2, 1_{51}$
58	192	128	24	64	3	$8_2, 3, 1_{55}$

. E. g. 3 ₃ reads as 3, 3, 3.											
n	$S_1 = P_1$	S_2	P_2	S_3	P_3	x_1, x_2, \dots					
58	160	96	20	71	4	$8, 5, 4, 1_{55}$					
59	144	108	24	72	4	$6_2, 4, 1_{56}$					
59	126	77	18	68	6	$7, 3_2, 2, 1_{55}$					
61	180	99	20	74	4	$9, 5, 4, 1_{58}$					
62	140	91	20	66	4	$7, 5, 2_2, 1_{58}$					
62	200	100	20	75	4	$10, 5, 4, 1_{59}$					
62	144	80	18	71	6	$8, 3_2, 2, 1_{58}$					
63	162	81	18	72	6	$9, 3_2, 2, 1_{59}$					
64	96	80	$\frac{10}{24}$	71	8	$4, 3, 2_3, 1_{59}$					
65	216	135	$\frac{24}{24}$	71	3	$9, 8, 3, 1_{62}$					
67	160	96	20	71	4	$8, 5, 2_2, 1_{63}$					
67	150	$\frac{30}{114}$	$\frac{25}{25}$	89	5	6, 5, 22, 163 $6, 5_2, 1_{64}$					
68	144	108	$\frac{23}{24}$	72	4	$6, 5_2, 1_{64} $ $6_2, 2_2, 1_{64}$					
69	108	92	$\frac{24}{27}$	83	9						
						$4, 3_3, 1_{65}$					
70	240	140	24	76	3	$10, 8, 3, 1_{67}$					
70	180	99	20	74	4	$9, 5, 2_2, 1_{66}$					
70 70	168	119	24	83	4	$7, 6, 4, 1_{67}$					
70	120	95	24	79	6	$5, 4, 3, 2, 1_{66}$					
71	200	100	20	75	4	$10, 5, 2_2, 1_{67}$					
73	264	143	24	79	3	$11, 8, 3, 1_{70}$					
73	96	87	32	83	16	$3, 2_5, 1_{67}$					
74	288	144	24	80	3	$12, 8, 3, 1_{71}$					
75	243	162	27	81	3	$9_2, 3, 1_{72}$					
78	108	99	36	90	12	$3_3, 2_2, 1_{73}$					
79	168	119	24	83	4	$7, 6, 2_2, 1_{75}$					
79	192	128	24	92	4	$8, 6, 4, 1_{76}$					
79	175	126	25	101	5	$7, 5_2, 1_{76}$					
79	120	95	24	86	8	$5, 3, 2_3, 1_{74}$					
80	128	112	32	96	8	$4_3, 2, 1_{76}$					
83	270	170	27	89	3	$10, 9, 3, 1_{80}$					
83	144	108	24	92	6	$6, 4, 3, 2, 1_{79}$					
85	196	147	28	98	4	$7_2, 4, 1_{82}$					
86	216	135	24	99	4	$9, 6, 4, 1_{83}$					
86	180	144	30	108	5	$6_2, 5, 1_{83}$					
87	135	110	27	101	9	$5, 3_3, 1_{83}$					
88	192	128	24	92	4	$8, 6, 2_2, 1_{84}$					
89	297	176	27	95	3	$11, 9, 3, 1_{86}$					
89	200	136	25	111	5	$8, 5_2, 1_{86}$					
89	128	112	32	96	8	$4_2, 2_3, 1_{84}$					
91	240	140	24	104	4	$10, 6, 4, 1_{88}$					
91	150	125	30	100	6	$5_2, 3, 2, 1_{87}$					
92	144	108	24	99	8	$6, 3, 2_3, 1_{87}$					
93	324	180	$\frac{1}{27}$	99	3	$12, 9, 3, 1_{90}$					
94	300	200	30	100	3	$10_2, 3, 1_{91}$					
94	196	147	28	98	4	$7_2, 2_2, 1_{90}$					
94	264	143	$\frac{20}{24}$	107	4	$11, 6, 4, 1_{91}$					
94	168	119	24	103	6	$7, 4, 3, 2, 1_{90}$					
95	$\frac{100}{351}$	182	$\frac{24}{27}$	103	3	$13, 9, 3, 1_{92}$					
95	$\frac{331}{216}$	135	24	99	4	$9, 6, 2_2, 1_{91}$					
$\frac{95}{07}$	288	144	24	108	4	$12, 6, 4, 1_{92}$					
97	$\frac{225}{224}$	144	25	119	5	$9, 5_2, 1_{94}$					
98	224	160	28	111	4	$8, 7, 4, 1_{95}$					
98	144	128	36	112	9	$4_2, 3_2, 1_{94}$					
98	128	112	32	108	16	$4, 2_5, 1_{92}$					
100	240	140	24	104	4	$10, 6, 2_2, 1_{96}$					

8 The forest of solutions







References

- [1] Guy (Richard K.) *Unsolved Probems in Number Theory* 2nd ed., Springer Verlag, New York/Berlin, 1994
- [2] HERZBERG (N. P.) On a problem of Hurwitz, Pacific Journal of Mathematics 50 (1974) 485-493. MR 50#233, Zbl 0247.10010
- [3] SCHERER (Karl) Sums of Squares and Products,
 Journal of Recreational Mathematics 26:4 302 Question 2190 by Karl Scherer
 Journal of Recreational Mathematics 27:4 (1995) 315-318 partial solution to Q 2190
- [4] ECKER (Michael) and CONN (Herb) $\sum_{i=1}^{n} x_i = \prod_{i=1}^{n} x_i$, REC 11:5 (Mar.-Apr. 1997) issue 79, 8-10
- [5] Postl (Helmut) $\sum_{i=1}^{n} x_i^2 = \prod_{i=1}^{n} x_i$, Letter to T. Sillke dated 26 Jan. 1998.