896 Chapter 20. Less-Numerical Algorithms

exhausted. Here isa piece of code for doing both G/(¢) and itsinverse.

unsigned long igray(unsigned long n, int is)
For zero or positive values of is, return the Gray code of n; if is is negative, return the inverse
Gray code of n.

{
int ish;
unsigned long ans,idiv;
if (is >= 0) This is the easy direction!
returnn ~ (n >> 1);
ish=1; This is the more complicated direction: In hierarchical
ans=n; stages, starting with a one-bit right shift, cause each
for (;;) { bit to be XORed with all more significant bits.
ans "= (idiv=ans >> ish);
if (idiv <= 1 || ish == 16) return ans;
ish <<= 1; Double the amount of shift on the next cycle.
}
}

In numerical work, Gray codes can be useful when you need to do some task
that dependsintimately on the bits of ¢, looping over many values of :. Then, if there
are economies in repeating the task for values differing by only one bit, it makes
sense to do things in Gray code order rather than consecutive order. We saw an
example of thisin §7.7, for the generation of quasi-random sequences.

CITED REFERENCES AND FURTHER READING:

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (New York: Cambridge University
Press), §8.02.

Knuth, D.E. Combinatorial Algorithms, vol. 4 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §7.2.1. [Unpublished. Will it be always so0?]

20.3 Cyclic Redundancy and Other Checksums

When you send a sequence of bits from point A to point B, you want to know
that it will arrive without error. A common form of insurance is the “parity bit,”
attached to 7-bit ASCI| characters to put them into 8-bit format. The parity bit is
chosen so as to make the total number of one-bits (versus zero-bits) either always
even (“even parity”) or dwaysodd (“odd parity”). Any singlebit error in acharacter
will thereby be detected. When errors are sufficiently rare, and do not occur closdly
bunched in time, use of parity provides sufficient error detection.

Unfortunately, in real situations, asingle noise“event” islikely to disrupt more
than one bit. Since the parity bit has two possible values (0 and 1), it gives, on
average, only a’50% chance of detecting an erroneous character with more than one
wrong bit. That probability, 50%, is not nearly good enough for most applications.
Most communications protocols[1] use a multibit generdization of the parity bit
caled a “cyclic redundancy check” or CRC. In typica applications the CRCis 16
bits long (two bytes or two characters), so that the chance of a random error going
undetected is 1 in 2 = 65536. Moreover, M-hit CRCs have the mathematical

20.3 Cyclic Redundancy and Other Checksums 897

property of detecting all errors that occur in M or fewer consecutive bits, for any
length of message. (We prove thisbeow.) Since noisein communication channels
tends to be “bursty,” with short sequences of adjacent bits getting corrupted, this
consecutive-bit property is highly desirable.

Normally CRCs lie in the province of communications software experts and
chip-level hardware designers — people with bitsunder their fingernails. However,
there are at least two kinds of situations where some understanding of CRCs can be
useful to the rest of us. First, we sometimes need to be able to communicate with
alower-level piece of hardware or software that expects a vaid CRC as part of its
input. For example, it can be convenient to have a program generate XMODEM
or Kermit [2] packets directly into the communications line rather than having to
store the data in a loca file.

Second, in the manipulation of large quantities of (e.g., experimental) data, it
is useful to be able to tag aggregates of data (whether numbers, records, lines, or
whole files) with a statisticaly unique “key,” its CRC. Aggregates of any size can
then be compared for identity by comparing only their short CRC keys. Differing
keys imply nonidentical records. ldentical keysimply, to high statistica certainty,
identical records. If you can't tolerate the very small probability of being wrong, you
can do afull comparison of the records when the keys are identical. When thereisa
possihility of files or data records being inadvertently or irresponsibly modified (for
example, by acomputer virus), itis useful to havetheir prior CRCsstored externaly
on a physicaly secure medium, like a floppy disk.

Sometimes CRCscan be used to compress dataasit isrecorded. If identical data
records occur frequently, one can keep sorted in memory the CRCs of previoudy
encountered records. A new record is archived in full if its CRC is different,
otherwise only a pointer to a previous record need be archived. In thisapplication
one might desire a 4- or 8-byte CRC, to make the odds of mistakenly discarding
a different data record be tolerably small; or, if previous records can be randomly
accessed, a full comparison can be made to decide whether records with identical
CRCs are in fact identical.

Now let us briefly discuss the theory of CRCs. After that, we will give
implementations of various (related) CRCs that are used by the officiad or de facto
standard protocols[1-3] listed in the accompanying teble.

The mathematics underlying CRCs is “polynomias over the integers modulo
2.” Any binary message can be thought of as a polynomial with coefficients 0 and 1.
For example, the message “1100001101” isthe polynomia z° + % + 23 + 22 + 1.
Since 0 and 1 are the only integers modulo 2, a power of z in the polynomia
is either present (1) or absent (0). Polynomias over the integers modulo 2 are a
so-called unique factorization domain. This means that any polynomial has a unique
factorization into so-cdled irreducible or “primitive” polynomials— analogs of the
prime integers. The polynomia =2 + = + 1 is primitive, while the polynomial
v+ 1lisnot: 22 +1 = (z + 1)(x + 1). (Remember that the integer arithmeticis
done modulo two!) A related theorem says that if a polynomia p divides another
polynomia ¢, then it must divide at least one of ¢’s factors.

An M -bitlong CRC isbased on aparticular primitivepolynomial of degree M,
called the generator polynomid. The choice of which primitive polynomial to use
is only a matter of convention. For 16-bit CRC's, the CCITT (Comité Consultatif
International Télégraphiqueet Téé&phonique) hasanointedthe“CCITT polynomial,”

898 Chapter 20. Less-Numerical Algorithms

Conventionsand Test Valuesfor Various CRC Protocols

icrc ags | Test Vaues (C2C1 in hex) Packet
Protocol |jinit|jrev| T |CatMouse987654321 Format CRC
XMODEM 0 1 [1A71 E556 S152...58C20C 0
X.25 255 | —1 |1B26 F56E S$185...85C1C% FOB8
(no name) 255 | —1 [1B26 F56E S152...58vC10 0
SDLC (IBM) same as X.25
HDLC (1SO) same as X.25
CRC-CCITT| O —1 [14A1 C28D S152...58vC10 0
(no name) 0 —1 [14A1 C28D S$185...85C1C% FOB8
Kermit same as CRC-CCITT see Notes

Notes: Overbar denotes bit complement. S; ...Sy are character data. €7 is CRC's least
significant 8 bits, C> is its most significant 8 bits, so CRC' = 256 Cy + C (shown
in hex). Kermit (block check level 3) sends the CRC as 3 printable ASCI| characters
(sends value +32). These contain, respectively, 4 most significant bits, 6 middle bits,
6 least significant bits.

whichisz!®+4 22 4+ 25 + 1. Thispolynomial isused by all of the protocolslistedin
thetable. Another common choiceisthe“CRC-16" polynomia 16 + #15 + 22 4+ 1,
which is used for EBCDIC messages in IBM’s BISYNCH [1]. A common 12-bit
choice, “CRC-12,” isz'?2 + 2! + 234+ z+1. A common 32-bit choice, “AUTODIN-
”,n iSl‘32—|—l‘26—|—l‘23—|—l‘22—|—l‘16—|—l‘12—|—l‘11—|—l‘10—|—l‘8—|—l‘7—|—l‘5—|—l‘4—|—1‘2—|—1‘—|—1.
For atable of some other primitive polynomias, see §7.4.

Given the generator polynomia G of degree M (which can be written either
in polynomial form or as a bit-string, e.g., 10001000000100001 for CCITT), hereis
how you compute the CRC for asequence of bits S: First, multiply S by 2 | that is,
append M zero bitstoit. Second divide— by long division — G into Sz . Keep
in mind that the subtractions in the long division are done modulo 2, so that there
are never any “borrows’: Modulo 2 subtraction is the same as logical exclusive-or
(XOR). Third, ignore the quotient you get. Fourth, when you eventualy get to a
remainder, itisthe CRC, cdl it C'. C will be apolynomia of degree M — 1 or less,
otherwise you would not have finished the long division. Therefore, in bit string
form, it has M bits, which may include leading zeros. (C' might even be dl zeros,
see below.) See[3] for a worked example.

If you work through the above steps in an example, you will see that most of
what you write down in the long-division tableau is superfluous. You are actually
just |eft-shifting sequential bits of .S, from the right, into an M -bit register. Every
time a 1 bit gets shifted off the left end of this register, you zap the register by an
XOR with the M low order bits of G (that is, dl the bits of G except its leading
1). When a 0 bit is shifted off the left end you don’t zap the register. When the
last bit that was originaly part of S gets shifted off the left end of the register,
what remains is the CRC.

You can immediately recognize how efficiently this procedure can be imple-
mented in hardware. It requires only a shift register with a few hard-wired XOR
tapsintoit. That ishow CRCsare computed in communications devices, by asingle

20.3 Cyclic Redundancy and Other Checksums 899

chip (or small part of one). In software, the implementation is not so elegant, since
bit-shifting is not generally very efficient. One therefore typically finds (as in our
implementation bel ow) table-driven routinesthat pre-cal cul ate the result of abunch
of shiftsand XORs, say for each of 256 possible 8-bit inputs[4].

We can now see how the CRC gets its ability to detect dl errors in M
consecutive bits. Suppose two messages, S and 7', differ only within aframe of M
bits. Then their CRCs differ by an amount that is the remainder when G is divided
into (S —T)z™ = D. Now D hastheform of |eading zeros (which can beignored),
followed by some 1'sin an M -bit frame, followed by trailing zeros (which are just
multiplicativefactors of x). Since factorization is unique, G cannot possibly divide
D: G isprimitiveof degree M, while D isapower of « times afactor of (a most)
degree M — 1. Therefore S and 1" have inevitably different CRCs.

In most protocols, a transmitted block of data consists of some N data bits,
directly followed by the M bits of their CRC (or the CRC XORed with a constant,
see below). There are two equivalent ways of validating ablock at the receiving end.
Most obviously, the receiver can compute the CRC of the databits, and compare it to
thetransmitted CRC bits. Less obviously, but more el egantly, thereceiver can simply
compute the CRC of thetotal block, with N 4+ M bits, and verify that aresult of zero
is obtained. Proof: Thetotal block is the polynomia Sz + C (dataleft-shifted to
make room for the CRC bits). The definition of C' isthat Sx™ = QG + C, where
Q isthe discarded quotient. But then Sz™ + C' = QG + C + C = QG (remember
modulo 2), which isaperfect multiple of . It remains amultiple of G when it gets
multiplied by an additional = on the receiving end, so it has azero CRC, g.e.d.

A couple of small variations on the basic procedure need to be mentioned [1,3]:
First, when the CRC is computed, the M -bit register need not be initialized to zero.
Initializingit to some other A/-bit value (eg., al 1's) in effect prefaces al blocks by
a phantom message that would have given the initialization value as its remainder.
It is advantageous to do this, since the CRC described thus far otherwise cannot
detect the addition or removal of any number of initial zero bits. (Loss of an initia
bit, or insertion of zero bits, are common “clocking errors.”) Second, one can add
(XOR) any M -bit constant K to the CRC before it is transmitted. This constant
can either be XORed away at the receiving end, or else it just changes the expected
CRC of the whole block by a known amount, namely the remainder of dividing G
into K™ . The constant K isfrequently “all bits,” changing the CRC into its ones
complement. This has the advantage of detecting another kind of error that the CRC
would otherwise not find: deletion of an initial 1 bit in the message with spurious
insertion of a 1 bit a the end of the block.

The accompanying function icrc implements the above CRC calculation,
including the possibility of the mentioned variations. Input to the function is a
pointer to an array of characters, and thelength of that array. icrc hastwo “switch”
arguments that specify variations in the CRC calculation. A zero or positive value
of jinit causes the 16-bit register to have each byte initialized with the value
jinit. A negative vaue of jrev causes each input character to be interpreted as
its bit-reverse image, and a similar bit reversal to be done on the output CRC. You
do not have to understand this; just use the values of jinit and jrev specified in
the table. (If you insist on knowing, the explanation is that serial data ports send
characters least-significant bit first (1), and many protocols shift bits into the CRC
register in exactly the order received.) The table shows how to construct a block

900 Chapter 20. Less-Numerical Algorithms

of characters from the input array and output CRC of icrc. You should not need
to do any additiond bit-reversal outside of icre.

The switch jinit has one additiona use: When negative it causes the input
valueof thearray crc to beused asinitiadizationof theregister. If you set crc tothe
result of thelast call to icre, thisin effect appends the current input array to that of
the previous call or cals. Use this feature, for example, to build up the CRC of a
wholefile aline a atime, without keeping the whole file in memory.

The routine icrc is loosaly based on the function in[4]. Here is how to
understand its operation: First look at the function icrc1. This incorporates one
input character into a 16-bit CRC register. The only trick used is that character bits
are XORed into the most significant bits, eight at a time, instead of being fed into
theleast significant bit, one bit at atime, at the time of the register shift. Thisworks
because XOR is associative and commutative — we can feed in character bits any
time before they will determine whether to zap with the generator polynomial. (The
decimal constant 4129 has the generator’s bits in it.)

unsigned short icrci(unsigned short crc, unsigned char onech)

Given a remainder up to now, return the new CRC after one character is added. This routine
is functionally equivalent to icrc(,,1,-1,1), but slower. It is used by icrc to initialize its
table.

{
int i;
unsigned short ans=(crc ~ onech << 8);
for (i=0;i<8;i++) { Here is where 8 one-bit shifts, and some XORs with the
if (ans & 0x8000) generator polynomial, are done.
ans = (ans <<= 1) ~ 4129;
else
ans <<= 1;
}
return ans;
}

Now look a icrc. There are two parts to understand, how it builds a table
when it initiaizes, and how it uses that table later on. Go back to thinking about a
character’shitsbeing shifted into the CRC register from theleast significant end. The
key observationis that while 8 bits are being shifted into the register’slow end, al
the generator zapping is being determined by the bitsaready in the high end. Since
XOR is commutative and associative, al we need is a table of the result of al this
zapping, for each of 256 possible high-bit configurations. Then we can play catch-up
and XOR an input character into the result of a lookup into this table. The only
other content to icrc isthe construction at initiaization time of an 8-bit bit-reverse
table from the 4-bit table stored in it, and the logic associated with doing the bit
reversals. References[4-6] give further details on table-driven CRC computations.

typedef unsigned char uchar;
#define LOBYTE(x) ((uchar)((x) & OxFF))
#define HIBYTE(x) ((uchar)((x) >> 8))

unsigned short icrc(unsigned short crc, unsigned char *bufptr,

unsigned long len, short jinit, int jrev)
Computes a 16-bit Cyclic Redundancy Check for an array bufptr of length len bytes, using
any of several conventions as determined by the settings of jinit and jrev (see accompanying

20.3 Cyclic Redundancy and Other Checksums 901

table). If jinit is negative, then crc is used on input to initialize the remainder register, in
effect (for crc set to the last returned value) concatenating bufptr to the previous call.

unsigned short icrci(unsigned short crc, unsigned char onech);
static unsigned short icrctb[256],init=0;

static uchar rchr[256];

unsigned short j,cword=crc;

static uchar it[161={0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
Table of 4-bit bit-reverses.

if (tinit) { Do we need to initialize tables?
init=1;
for (j=0;j<=255;j++) {
The two tables are: CRCs of all characters, and bit-reverses of all characters.
icrctb[jl=icrcl(j << 8, (uchar)0);
rchr[jl=(uchar) (it[j & OxF] << 4 | it[j >> 41);
}
}
if (jinit >= 0) cword=((uchar) jinit) | (((uchar) jinit) << 8);
Initialize the remainder register.
else if (jrev < 0) cword=rchr[HIBYTE(cword)] | rchr[LOBYTE(cword)] << §;
If not initializing, do we reverse the register?
for (j=1;j<=len;j++) Main loop over the characters in the array.
cword=icrctb[(jrev < 0 7 rchr[bufptr[j]] :
bufptr[j1) ~ HIBYTE(cword)] ~ LOBYTE(cword) << 8;
return (jrev >= 0 7 cword : rchr[HIBYTE(cword)] | rchr[LOBYTE(cword)] << 8);
Do we need to reverse the output?

What if you need a 32-bit checksum? For a true 32-bit CRC, you will need
to rewrite the routines given to work with a longer generating polynomial. For
example, #3? 4 &7 + 2° + % + 2% + = + 1 is primitivemodul o 2, and has nonleading,
nonzero bitsonly in itsleast significant byte (which makes for some simplification).
The idea of table lookup on only the most significant byte of the CRC register
goes through unchanged.

If you do not care about the M -consecutive bit property of the checksum, but
rather only need a statistically random 32 bits, then you can use icrc as given
here: Call it once with jrev = 1 to get 16 bits, and again with jrev = —1 to get
another 16 hits. The internal bit reversals make these two 16-bit CRCs in effect
totally independent of each other.

Other Kinds of Checksums

Quitedifferent from CRCsare the various techniques used to append adecimal
“check digit” to numbers that are handled by human beings (eg., typed into a
computer). Check digits need to be proof against the kinds of highly structured
errorsthat humanstend to make, such astransposing consecutive digits. Wagner and
Putter [7] giveaninteresting introductionto this subject, including specific a gorithms.

Checksums now in widespread use vary from fair to poor. The 10-digit ISBN
(Internationa Standard Book Number) that you find on most books, including this
one, uses the check equation

where dyg is the right-hand check digit. The character “X” is used to represent a
check digit value of 10. Another popular scheme isthe so-called “IBM check,” often

902 Chapter 20. Less-Numerical Algorithms

used for account numbers (including, e.g., MasterCard). Here, the check equationis
2ftdy + day + 24ds +da+--- =0 (mod 10) (20.3.2)

where 2#d means, “multiply d by two and add the resulting decimal digits.” United
States banks code checks with a 9-digit processing number whose check equationis

3a; + Tas + az + 3as+ Tas + as + 3a7 + Tas + a9 = 0 (mod 10) (20.3.3)

The bar code put on many envelopes by the U.S. Postal Service is decoded by
removing the single tall marker bars at each end, and breaking the remaining bars
into 6 or 10 groups of five. In each group the five bars signify (from left to right)
thevalues 7,4,2,1,0. Exactly two of them will betall. Their sum is the represented
digit, except that zero isrepresented as 7 + 4. The 5- or 9-digit Zip Codeisfollowed
by a check digit, with the check equation

> di=0 (mod 10) (20.3.4)

None of these schemes is close to optimal. An elegant scheme due to Verhoeff
isdescribed in[7]. The underlying ideaisto use the ten-element dihedral group Ds,
which corresponds to the symmetries of a pentagon, instead of the cyclic group of
the integers modulo 10. The check eguation is

ar* flaz)* faz)* ¥ Han) = 0 (20.3.5)

where * is (noncommutative) multiplicationin Ds, and f* denotes the ith iteration
of acertain fixed permutation. Verhoeff’s method finds all single errors in a string,
and all adjacent transpositions. It also finds about 95% of twin errors (aa — bb),
jump transpositions (acb — bea), and jump twin errors (aca — beb). Hereis an
implementation:

int decchk(char string[], int n, char *ch)
Decimal check digit computation or verification. Returns as ch a check digit for appending
to string[1..nl, that is, for storing into string[n+1]. In this mode, ignore the returned
boolean (integer) value. If string[1..n] already ends with a check digit (string[n]), re-
turns the function value true (1) if the check digit is valid, otherwise false (0). In this mode,
ignore the returned value of ch. Note that string and ch contain ASCII characters corre-
sponding to the digits 0-9, not byte values in that range. Other ASCII characters are allowed in
string, and are ignored in calculating the check digit.
{

char c;

int j,k=0,m=0;

static int ip[10][8]={0,1,5,8,9,4,2,7,1,5, 8,9,4,2,7,0,2,7,0,1,
5,8,9,4,3,6,3,6,3,6, 3,6,4,2,7,0,1,5,8,9, 5,8,9,4,2,7,0,1,6,3,
6,3,6,3,6,3,7,0,1,5, 8,9,4,2,8,9,4,2,7,0, 1,5,9,4,2,7,0,1,5,8};

static int ij[10][10]={0,1,2,3,4,5,6,7,8,9, 1,2,3,4,0,6,7,8,9,5,
2,3,4,0,1,7,8,9,5,6, 3,4,0,1,2,8,9,5,6,7, 4,0,1,2,3,9,5,6,7,8,
5,9,8,7,6,0,4,3,2,1, 6,5,9,8,7,1,0,4,3,2, 7,6,5,9,8,2,1,0,4,3,
8,7,6,5,9,3,2,1,0,4, 9,8,7,6,5,4,3,2,1,0};
Group multiplication and permutation tables.

for (j=0;j<n;j++) { Look at successive characters.

c=string[j];
if (c >= 48 &% c <= 57) Ignore everything except digits.

20.4 Huffman Coding and Compression of Data 903

k=ij[k][ip[(c+2) % 10]1[7 & m++]1];

}

for (j=0;j<=9;j++) Find which appended digit will check properly.
if ('ij[k]1[ip[jl1[m & 71]1) break;

*ch=j+48; Convert to ASCII.

return k==0;

CITED REFERENCES AND FURTHER READING:

McNamara, J.E. 1982, Technical Aspects of Data Communication, 2nd ed. (Bedford, MA: Digital
Press). [1]

da Cruz, F. 1987, Kermit, A File Transfer Protocol (Bedford, MA: Digital Press). [2]

Morse, G. 1986, Byte, vol. 11, pp. 115-124 (September). [3]

LeVan, J. 1987, Byte, vol. 12, pp. 339-341 (November). [4]

Sarwate, D.V. 1988, Communications of the ACM, vol. 31, pp. 1008-1013. [5]

Griffiths, G., and Stones, G.C. 1987, Communications of the ACM, vol. 30, pp. 617-620. [6]

Wagner, N.R., and Putter, P.S. 1989, Communications of the ACM, vol. 32, pp. 106-110. [7]

20.4 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typicaly
ASCII characters or bytes) and trandates it reversibly into another string, one that
is on the average of shorter length. The words “on the average’ are crucid; it
is obvious that no reversible agorithm can make all strings shorter — there just
aren’t enough short strings to be in one-to-one correspondence with longer strings.
Compression algorithms are possible only when, on the input side, some strings, or
some input symbols, are more common than others. These can then be encoded in
fewer bitsthan rarer input strings or symbols, giving a net average gain.

There exist many, quite different, compression techniques, corresponding to
different ways of detecting and using departuresfrom equiprobability ininput strings.
In this section and the next we shall consider only variablelength codes with defined
word inputs. In these, the input is diced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman coding[1], discussed in this section. Another
example, arithmetic compression, is discussed in §20.5.

At the opposite extreme from defined-word, variable length codes are schemes
that divideup theinputinto unitsof variablelength (wordsor phrases of Englishtext,
for example) and then transmit these, often with afixed-length output code. The most
widely used code of thistypeis the Ziv-Lempel code[2]. References[3-6] give the
flavor of some other compression techniques, with references to the large literature.

The idea behind Huffman coding is simply to use shorter bit patterns for more
common characters. We can make thisidea quantitative by considering the concept
of entropy. Suppose the input alphabet has V.; characters, and that these occur in
the input string with respective probabilitiesp;, ¢ = 1,..., Ny, sothat Y p; = 1.
Then the fundamental theorem of information theory says that strings consisting of

