Hermitian Symmetric Domains

Simon Paege

21st October 2021

Hermitian Symmetric Domains provide a higher-dimensional version of the upper half plane.

Hermitian Symmetric Spaces

Recall that a smooth manifold is a locally ringed space that is locally isomorphic to spaces of the form $(U, \mathcal{O}_U^{\infty})$, where U is an open subset of \mathbb{R}^n and \mathcal{O}_U^{∞} is the sheaf of smooth functions on U. Similarly, a complex manifold is a locally ringed space that is locally isomorphic to $(U, \mathcal{O}_U^{\omega})$, where U is an open subset of \mathbb{C}^n and \mathcal{O}_U^{ω} is the sheaf of holomorphic functions on U.

Let's add some more structure: Given a smooth manifold M, a Riemannian metric on M is a positivedefinite smooth contravariant 2-tensor field g on M. This means: g consists of positive-definite bilinear forms $g_p : T_p(M) \times T_p(M) \to \mathbb{R}$ for each point $p \in M$ such that for smooth vector fields X, Y on M, the function $g(X, Y) : p \mapsto g_p(X_p, Y_p)$ is smooth. In local coordinates $(x^i)_{1 \le i \le n}$ a Riemannian metric has the form

$$g_p = \sum_{i,j} g_{ij}(p) \mathrm{d} x^i \otimes \mathrm{d} x^j$$

for some symmetric positive-definite matrix $g_{ij}(p)$ that depends smoothly on p. A diffeomorphism of M is called *isometry* if it preserves the metric.

In differential geometry one uses Riemannian metrics to measure distances on a manifold M. Moreover, one can define geodesics on M, which are locally shortest paths between two points. Intuitively, geodesics are obtained by "walking in a straight line" along M.

Given a complex manifold M of dimension n, there is an underlying smooth manifold M^{∞} of dimension 2n. The complex structure on M gives each tangent space of M^{∞} a complex structure $J_p: T_p(M^{\infty}) \rightarrow T_p(M^{\infty}), J_p^2 = -1$. A Hermitian metric on M is a Riemannian metric g on M^{∞} such that g(JX, JY) = g(X, Y) for all vector fields X, Y. A Hermitian manifold is a complex manifold together with a Hermitian metric. An *isometry* of a Hermitian manifold (M, g) is a holomorphic diffeomorphism of M that is also an isometry of (M^{∞}, g) . The group of isometries is denoted Is(M, g). It is known, that Is(M, g) is a Lie group.

A manifold (smooth, complex, Hermitian, etc.) is *homogeneous*, if its automorphism group acts transitively. It "looks the same" everywhere. A symmetry s_p at p for $p \in M$ is an automorphism of M such that $s_p^2 = \text{id}$ and in some neighbourhood, p is the only fixed point of s_p . A Hermitian symmetric space is a Hermitian manifold that is connected, homogeneous, and has a symmetry at some point p. By homogeneity, there is a symmetry at each point.

- **Example.** (a) Let Λ be a discrete subgroup of \mathbb{C} . Then \mathbb{C}/Λ is a Hermitian symmetric space. After identifying \mathbb{C} with \mathbb{R}^2 , the metric is given by the standard form $dx^2 + dy^2$. The translations act transitively on \mathbb{C}/Λ and $x \mapsto -x$ is a symmetry at 0. Geodesics are images of straight lines in \mathbb{C} .
- (b) The Riemann sphere $\mathbb{P}^1(\mathbb{C}) \cong S^2$ is a Hermitian symmetric space. The metric is induced from the standard metric $dx^2 + dy^2 + dz^2$ of ambient space \mathbb{R}^3 of S^2 . Rotations act transitively on S^2 and symmetries are given by rotations by π around a diameter. Geodesics are great circles.
- (c) The upper half-plane \mathcal{H}_1 is a Hermitian symmetric domain. After identifying \mathbb{C} with \mathbb{R}^2 , the metric is given by $\frac{dx^2+dy^2}{v^2}$. The group $SL_2(\mathbb{R})$ acts transitively on \mathcal{H}_1 by Möbius transforms (no, it's not fun

to that they are isometries). A symmetry at i is given by $z \mapsto \overline{z}^{-1}$. Geodesics are vertical lines and half-circles with midpoint on the real line.

Hermitian Symmetric Domains

Given a Riemannian manifold M, one can define the curvature at a point p. It is measured by taking two different geodesics through p and determining, whether they converge or diverge. If they always converge, M has positive curvature at p. If they always diverge, M has negative curvature at p. If they always diverge or diverge or diverge, M has zero curvature at p. If M is homogeneous, this notion is independent of p.

Example. Drawing some pictures shows:

- (a) \mathbb{C}/Λ has zero curvature.
- (b) $\mathbb{P}^1(\mathbb{C})$ has positive curvature.
- (c) \mathcal{H}_1 has negative curvature.

An important difference between these three cases is how the group $Is(M, g)^+$ of holomorphic isometries behaves. In positive curvature, $Is(M, g)^+$ is an adjoint compact Lie group. In negative curvature, it is an adjoint non-compact Lie group. If (M, g) has zero curvature, not much can be said.

It is known that a Hermitian symmetric space M can be decomposed as $M^+ \times M^0 \times M^-$, where M^+ has positive curvature, M^0 has zero curvature, and M^- has negative curvature. We are only interested in the domains with negative curvature. A *Hermitian symmetric domain* is a Hermitian symmetric space with negative curvature.

One way to construct Hermitian Symmetric Domains is using Bergman metrics. Let D be an open subset of \mathbb{C}^n that is connected, bounded, homogeneous, and has a holomorphic symmetry at some point.

Theorem (Bergman). There is a (up to a constant factor) canonical Hermitian metric on D. With this metric, D has negative curvature.

Example. The Siegel upper half space \mathcal{H}_g is given by the set of symmetric complex matrices Z = X + iY such that Y is positive definite. The group

$$\operatorname{Sp}_{2g}(\mathbb{R}) = \{ M \in \operatorname{M}_{2g}(\mathbb{R}) : M^{\mathrm{T}}JM = J \} \qquad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

acts transitively on \mathcal{H}_g via

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} Z = (AZ + B)(CZ + D)^{-1}.$$

J is a matrix in $\operatorname{Sp}_{2g}(\mathbb{R})$ that has i1 as sole fixed point. The only thing missing to give \mathcal{H}_g the structure of a Hermitian symmetric domain is a metric. The map $Z \mapsto (Z - \mathrm{i1})(Z + \mathrm{i1})$ identifies \mathcal{H}_g with the set \mathcal{D}_g of symmetric complex matrices M such that $1 - M^*M$ is positive definite. The last condition can be reformulated as $\|M\|_2 < 1$. Therefore, \mathcal{D}_g is bounded. Now \mathcal{D}_g and \mathcal{H}_g obtain a Bergman metric, so \mathcal{H}_g is a Hermitian symmetric domain.

Automorphisms of Hermitian Symmetric Domains

If G is a topological group, G^+ denotes the connected component of the identity. Let (M, g) be a Hermitian symmetric domain.

Theorem. The groups $\operatorname{Is}(M,g)^+$, $\operatorname{Is}(M^{\infty},g)^+$, and $\operatorname{Hol}(M)^+$ are identical and act transitively on M. Let $p \in M$. The stabiliser K_p of p in $\operatorname{Is}(M,g)^+$ is compact. There is an isomorphism $\operatorname{Is}(M,g)^+/K_p \to M$ of smooth manifolds.

Theorem. Let \mathfrak{h} be the Lie algebra of $\operatorname{Hol}(M)^+$. There is a unique connected algebraic subgroup G of $\operatorname{GL}(\mathfrak{h})$, such that $G(\mathbb{R})^+ = \operatorname{Hol}(M)^+$. Moreover, G is adjoint.

Proof. One can show that $\operatorname{Hol}(M)^+$ is an adjoint Lie group (= semisimple, trivial center). Therefore, the adjoint representation of $\operatorname{Hol}(M)^+$ on \mathfrak{h} is faithful, so $\operatorname{Hol}(M)^+$ can be seen as a subgroup of $\operatorname{GL}(\mathfrak{h})$. By some theorem of Borel, there is an algebraic subgroup G of $\operatorname{GL}(V)$ with Lie algebra $[\mathfrak{h}, \mathfrak{h}]$. As $\operatorname{Hol}(M)^+$ is adjoint, \mathfrak{h} is semisimple, so $[\mathfrak{h}, \mathfrak{h}] = \mathfrak{h}$. It follows $G(\mathbb{R})^+ = \operatorname{Hol}(M)^+$. Adjointness of G follows from the fact that \mathfrak{h} is semisimple.

Let $U(1) = \{z \in \mathbb{C} : |z| = 1\}$. Using a lot of differential geometry, one proves:

Theorem. Let $p \in M$. There is a unique homomorphism $u_p : U(1) \to \operatorname{Hol}(M)$ such that $u_p(z)(p) = p$ for all z and $u_p(z)$ acts on $T_p(M)$ as multiplication by z.

Representations of U(1)

Let T be a torus over a field k. Our goal is to describe the representations of T on finite-dimensional k-vector spaces. Firs suppose that T is split. Given a representation $\rho: T \to \operatorname{GL}_V$, each $\rho(t)$ acts semisimply since t is semisimple. Additionally, all $\rho(t)$ commute. Therefore, they can be diagonalised simultaneously. Now V decompses as a sum of characters (= representations of dimension 1). We can write

$$V = \bigoplus_{\chi \in X^*(T)} V_{\chi}$$

where $X^*(T)$ is the set of characters of T and $t \in T$ acts on V_{χ} by multiplication with $\chi(t)$. Now suppose T does not split over k but over some Galois extension K of k. Then $V \otimes_k K$ decomposes as above

$$V\otimes_k K = \bigoplus_{\chi\in X^*(T)} V_{\chi}.$$

Being a k-representation, ρ is stable under the action of $\operatorname{Gal}(K/k)$. This is equivalent to $\sigma V_{\chi} = V_{\sigma\chi}$ for all $\chi \in X^*(T)$ and $\sigma \in \operatorname{Gal}(K/k)$.

Now consider the real torus U(1). It splits over \mathbb{C} . The characters are given by $\chi_n \colon z \mapsto z^n$ for $n \in \mathbb{Z}$. The Galois group $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ acts via $\bar{\chi}_n = \chi_{-n}$. Thus, a representation of U(1) on a real vector space V is given by a grading

$$V \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{n \in \mathbb{Z}} V_n$$

such that $\bar{V}_n = V_{-n}$. By collecting spaces V_n and V_{-n} together and descending to \mathbb{R} one obtains that a real representation of U(1) decomposes as a sum of the representations of the following type:

• $V = \mathbb{R}$ with the trivial action, $V \otimes_{\mathbb{R}} \mathbb{C} = V_0$

•
$$V = \mathbb{R}^2$$
, $x + iy \in U(1)$ acts via the matrix $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}^n$ for some $n \in \mathbb{N}_+$, $V \otimes_{\mathbb{R}} \mathbb{C} = V_n \oplus V_{-n}$

Classification via Real Groups

Let G be a connected algebraic group over \mathbb{R} . An involution ϑ of \mathbb{R} is a *Cartan involution* if the subgroup

$$G^{(\vartheta)}(\mathbb{R}) = \{ g \in G(\mathbb{C}) : \vartheta(\bar{g}) = g \}$$

is compact.

Example. (a) $G^{(\mathrm{id})}(\mathbb{R}) = \{g \in G(\mathbb{C}) : g = \overline{g}\} = G(\mathbb{R})$, so id is a Cartan involution iff $G(\mathbb{R})$ is compact.

(b) $\vartheta: M \mapsto M^{-T}$ is an involution of GL_n .

$$\operatorname{GL}_n^{(\vartheta)}(\mathbb{R}) = \{ M \in \operatorname{GL}_n(\mathbb{C}) : M = \overline{M}^{-\mathrm{T}} = M \} = \{ M : M^*M = 1 \} = \operatorname{SU}(n)$$

is compact, so ϑ is a Cartan involution.

Let D be a Hermitian symmetric domain and let G be the connected algebraic group with $G(\mathbb{R})^+ = \operatorname{Hol}(D)^+$. Given $p \in D$, we have a homomorphism $u_p \colon U(1) \to \operatorname{Hol}(D)^+ = G(\mathbb{R})^+$. One can show that it extends to a algebraic morphism $u_p \colon U(1) \to G$.

Theorem. The morphism u_p constructed above has the following properties:

- (a) The representation of U(1) on $\text{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C}$ induced by u_p contains only the complex representations $\chi_0, \chi_1, \text{ and } \chi_{-1}$.
- (b) $ad(u_n(-1))$ is a Cartan involution. (ad means "conjugation with")
- (c) $u_p(1)$ does not project to 1 in any simple factor of G.

Conversely, suppose G is a real adjoint algebraic group and $u: U(1) \to G$ satisfies (a), (b), and (c). Let D be the set of conjugates of u by elements of $G(\mathbb{R})^+$. Then D is a Hermitian symmetric domain with $\operatorname{Hol}(D)^+ = G(\mathbb{R})^+$ and u(-1) is a symmetry at $u \in D$.

Proof. Let K_p be the stabiliser of p inside $G(\mathbb{R})^+$. We have seen that $G(\mathbb{R})^+/K_p \cong D$. The action of U(1) on D via u_p corresponds to the action on the quotient by conjugation with $u_p(z)$. Considering tangent spaces, we get $\operatorname{Lie}(G)/\operatorname{Lie}(K_p) \cong \operatorname{T}_p(D)$. One can calculate that the action of U(1) on $\operatorname{Lie}(K_p)$ is trivial. By definition of u_p , the action of $z \in U(1)$ on $\operatorname{T}_p(D)$ is given by multiplication with z. After complexifying, this representation therefore involves only χ_1 and χ_{-1} . For $\operatorname{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C}$ this means that only χ_0 , χ_1 , and χ_{-1} can occur. This proves (a).

 $u_p(-1)$ is a symmetry at p. It is known that conjugation by a symmetry is a Cartan involution iff the space has negative curvature. This is the case, so (b) holds.

Suppose, $u_p(-1)$ maps to 1 in some factor G' of G. Then the identity is a Cartan involution of G', so G' is compact. This contradicts negative curvature of D. Thus, (c) is proven.

Sketch for conversely: By (b), the centraliser K_u of u in $G(\mathbb{R})^+$ is compact. Then $D \cong G(\mathbb{R})^+ / K_u$, so D is a real manifold. The tangent space $T_p(D)$ can be identified with $\text{Lie}(G) / \text{Lie}(G)_0$. By (a), this space carries a complex structure, which can be used to give D the structure of a complex manifold. Construct a K_u -invariant positive definite bilinear form on $T_p(D)$ and bring it to every point using homogeneity. Then D is a Hermitian symmetric space. Negative curvature follows from (b) and (c), since each factor of the automorphism group is non-compact.

Corollary. There is a natural one-to-one correspondence between pointed Hermitian symmetric domains and pairs (G, u) consisting of a real adjoint algebraic group and a homomorphism $u: U(1) \to G(\mathbb{R})$ such that (a), (b), and (c) are satisfied.

Remark. Note that there is another classification theorem for Hermitian symmetric domains that involves special nodes on connected Dynkin diagrams.