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Hermitian Symmetric Domains provide a higher-dimensional version of the upper half plane.

Hermitian Symmetric Spaces

Recall that a smooth manifold is a locally ringed space that is locally isomorphic to spaces of the form
(U, 07), where U is an open subset of R" and Op is the sheaf of smooth functions on U. Similarly,
a complex manifold is a locally ringed space that is locally isomorphic to (U, 0;7), where U is an open
subset of C" and O} is the sheaf of holomorphic functions on U.
Let’s add some more structure: Given a smooth manifold M, a Riemannian metric on M is a positive-
definite smooth contravariant 2-tensor field g on M. This means: g consists of positive-definite bilinear
forms g, : T,(M) X T,(M) — R for each point p € M such that for smooth vector fields X,Y on M, the
function g(X,Y): p — g,(X,,Y,) is smooth. In local coordinates (xi)IS[Sn a Riemannian metric has the
form

g = D &;(Pdx' ® dx’

ij

for some symmetric positive-definite matrix g;;(p) that depends smoothly on p. A diffeomorphism of M
is called isometry if it preserves the metric.
In differential geometry one uses Riemannian metrics to measure distances on a manifold M. Moreover,
one can define geodesics on M, which are locally shortest paths between two points. Intuitively, geodesics
are obtained by “walking in a straight line” along M.
Given a complex manifold M of dimension n, there is an underlying smooth manifold M® of dimension
2n. The complex structure on M gives each tangent space of M* a complex structure J,: T, (M%) —
T,(M*), Jlf = —1. A Hermitian metric on M is a Riemannian metric g on M* such that g(JX,JY) =
g(X,Y) for all vector fields X,Y. A Hermitian manifold is a complex manifold together with a Hermitian
metric. An isometry of a Hermitian manifold (M, g) is a holomorphic diffeomorphism of M that is also
an isometry of (M®, g). The group of isometries is denoted Is(M, g). It is known, that Is(M, g) is a Lie
group.
A manifold (smooth, complex, Hermitian, etc.) is homogeneous, if its automorphism group acts trans-
itively. It “looks the same” everywhere. A symmetry s, at p for p € M is an automorphism of M
such that sg = id and in some neighbourhood, p is the only fixed point of s,. A Hermitian symmetric
space is a Hermitian manifold that is connected, homogeneous, and has a symmetry at some point p. By
homogeneity, there is a symmetry at each point.

Example. (a) Let A be a discrete subgroup of C. Then C/A is a Hermitian symmetric space. After
identifying C with R?, the metric is given by the standard form dx? 4+ dy?. The translations act
transitively on C/A and x — —x is a symmetry at 0. Geodesics are images of straight lines in C.

(b) The Riemann sphere P!(C) = S? is a Hermitian symmetric space. The metric is induced from the
standard metric dx? + dy?> + dz? of ambient space R® of S>. Rotations act transitively on S? and
symmetries are given by rotations by z around a diameter. Geodesics are great circles.

(¢) The upper half-plane H, is a Hermitian symmetric domain. After identifying C with R?, the metric
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is given by dxy;zdy. The group SL,(R) acts transitively on H; by Mébius transforms (no, it’s not fun



to that they are isometries). A symmetry at i is given by z z7!. Geodesics are vertical lines and
half-circles with midpoint on the real line.

Hermitian Symmetric Domains

Given a Riemannian manifold M, one can define the curvature at a point p. It is measured by taking
two different geodesics through p and determining, whether they converge or diverge. If they always
converge, M has positive curvature at p. If they always diverge, M has negative curvature at p. If they
never converge or diverge, M has zero curvature at p. If M is homogeneous, this notion is independent
of p.

Example. Drawing some pictures shows:
(a) C/A has zero curvature.

(b) P!(C) has positive curvature.

(¢) H, has negative curvature.

An important difference between these three cases is how the group Is(M, g)* of holomorphic isometries
behaves. In positive curvature, Is(M, g)* is an adjoint compact Lie group. In negative curvature, it is an
adjoint non-compact Lie group. If (M, g) has zero curvature, not much can be said.

It is known that a Hermitian symmetric space M can be decomposed as M+ x M® x M~, where M* has
positive curvature, M° has zero curvature, and M~ has negative curvature. We are only interested in
the domains with negative curvature. A Hermitian symmetric domain is a Hermitian symmetric space
with negative curvature.

One way to construct Hermitian Symmetric Domains is using Bergman metrics. Let D be an open subset
of C" that is connected, bounded, homogeneous, and has a holomorphic symmetry at some point.

Theorem (Bergman). There is a (up to a constant factor) canonical Hermitian metric on D. With this
metric, D has negative curvature.

Example. The Siegel upper half space H, is given by the set of symmetric complex matrices Z = X +iY
such that Y is positive definite. The group

Spag(R) = (M € My, (R) : MTIM =T} T = <(1? _01]>

acts transitively on H, via

A B _ _1
<C D> Z =(AZ+B)(CZ+ D).
J is a matrix in Spy,(R) that has il as sole fixed point. The only thing missing to give H, the structure
of a Hermitian symmetric domain is a metric. The map Z — (Z —i1)(Z +i1) identifies H, with the set
D, of symmetric complex matrices M such that 1 — M *M is positive definite. The last condition can be
reformulated as [|[M ||, < 1. Therefore, D, is bounded. Now D, and H, obtain a Bergman metric, so H,
is a Hermitian symmetric domain.

Automorphisms of Hermitian Symmetric Domains

If G is a topological group, G denotes the connected component of the identity. Let (M, g) be a Hermitian
symmetric domain.

Theorem. The groups Is(M, g)t, Is(M*, g)*, and Hol(M)" are identical and act transitively on M. Let
p € M. The stabiliser K, of p in Is(M, 2)t is compact. There is an isomorphism Is(M, g)+/Kp — M of
smooth manifolds.



Theorem. Let § be the Lie algebra of Hol(M)*. There is a unique connected algebraic subgroup G of
GL(9), such that G(R)" = Hol(M)*. Moreover, G is adjoint.

Proof. One can show that Hol(M)* is an adjoint Lie group (= semisimple, trivial center). Therefore, the
adjoint representation of Hol(M)" on } is faithful, so Hol(M)" can be seen as a subgroup of GL(}). By
some theorem of Borel, there is an algebraic subgroup G of GL(V) with Lie algebra [§,§]. As Hol(M)*
is adjoint, § is semisimple, so [§, §] = §. It follows G(R)* = Hol(M)*. Adjointness of G follows from the
fact that § is semisimple. O

Let U(1) = {z € C : |z| = 1}. Using a lot of differential geometry, one proves:

Theorem. Let p € M. There is a unique homomorphism u, : U(1) — Hol(M) such that u,(z)(p) = p for
all z and u,(z) acts on T (M) as multiplication by z.

Representations of U(1)

Let T be a torus over a field k. Our goal is to describe the representations of T on finite-dimensional k-
vector spaces. Firs suppose that T is split. Given a representation p: T — GLy,, each p(?) acts semisimply
since t is semisimple. Additionally, all p(f) commute. Therefore, they can be diagonalised simultaneously.
Now V decompses as a sum of characters (= representations of dimension 1). We can write

V= @ Vy
JEXH(T)

where X*(T) is the set of characters of T and ¢t € T acts on V, by multiplication with (7).
Now suppose T does not split over k but over some Galois extension K of k. Then V' ®, K decomposes

as above
ve,K= P v,
XEX*(T)

Being a k-representation, p is stable under the action of Gal(K/k). This is equivalent to oV, =V, for
all y € X*(T) and ¢ € Gal(K /k).

Now consider the real torus U(1). It splits over C. The characters are given by y,: z — 2" for n € Z.
The Galois group Gal(C/R) acts via 7, = y_,. Thus, a representation of U(1) on a real vector space V'

is given by a grading
ve.c=@v,

nezZ

such that V,, = V_,. By collecting spaces V, and V_, together and descending to R one obtains that a
real representation of U(1) decomposes as a sum of the representations of the following type:

e ¥V =R with the trivial action, V @ C =V,

o V=R? x+iyeU() acts via the matrix <_xy j:) forsomen N, V@rC=V,®V_,

Classification via Real Groups

Let G be a connected algebraic group over R. An involution 9 of R is a Cartan involution if the subgroup
GPR) = {g €GO : @) =g)

is compact.

Example. (a) GiYR) = {g € G(C) : g = g} = G(R), so id is a Cartan involution iff G(R) is compact.



(b) 9: M — M~T is an involution of GL,,.
GLY®R)={M eGL,C): M=MT=M}={M: M*M =1} = SU(n)
is compact, so J is a Cartan involution.

Let D be a Hermitian symmetric domain and let G be the connected algebraic group with G(R)* =
Hol(D)*. Given p € D, we have a homomorphism u, : U(1) = Hol(D)* = G(R)". One can show that it
extends to a algebraic morphism u,: U(1) - G.

Theorem. The morphism u, constructed above has the following properties:

p

(a) The representation of U(1) on Lie(G) ®g C induced by u, contains only the complex representations
Xo0: X1, and y_y.

(b) ad(u,(=1)) is a Cartan involution. (ad means “conjugation with”)
(c) u,(1) does not project to 1 in any simple factor of G.

Conversely, suppose G is a real adjoint algebraic group and u: U(1) — G satisfies (a), (b), and (c). Let
D be the set of conjugates of u by elements of G(R)". Then D is a Hermitian symmetric domain with
Hol(D)t = G(R)* and u(—1) is a symmetry at u € D.

Proof. Let K, be the stabiliser of p inside G(R)*. We have seen that G(R)* /K, = D. The action of U(1)
on D via u, corresponds to the action on the quotient by conjugation with u,(z). Considering tangent
spaces, we get Lie(G)/Lie(K,) = T (D). One can calculate that the action of U(1) on Lie(K)) is trivial. By
definition of u,, the action of z € U(1) on T,(D) is given by multiplication with z. After complexifying,
this representation therefore involves only y; and y_;. For Lie(G) ®g C this means that only y,, 7, and
—1 can occur. This proves (a).

u,(—1) is a symmetry at p. It is known that conjugation by a symmetry is a Cartan involution iff the
space has negative curvature. This is the case, so (b) holds.

Suppose, u,(—1) maps to 1 in some factor G’ of G. Then the identity is a Cartan involution of G', so G’
is compact. This contradicts negative curvature of D. Thus, (c) is proven.

Sketch for conversely: By (b), the centraliser K, of u in G(R)* is compact. Then D =~ G(R)*/K,, so D
is a real manifold. The tangent space T,(D) can be identified with Lie(G)/Lie(G),. By (a), this space
carries a complex structure, which can be used to give D the structure of a complex manifold. Construct
a K,-invariant positive definite bilinear form on T,(D) and bring it to every point using homogeneity.
Then D is a Hermitian symmetric space. Negative curvature follows from (b) and (c), since each factor
of the automorphism group is non-compact. O

Corollary. There is a natural one-to-one correspondence between pointed Hermitian symmetric domains
and pairs (G, u) consisting of a real adjoint algebraic group and a homomorphism u: U(1) - G(R) such
that (a), (b), and (c) are satisfied.

Remark. Note that there is another classification theorem for Hermitian symmetric domains that in-
volves special nodes on connected Dynkin diagrams.



