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Hermitian Symmetric Domains provide a higher-dimensional version of the upper half plane.

Hermitian Symmetric Spaces
Recall that a smooth manifold is a locally ringed space that is locally isomorphic to spaces of the form
(𝑈, 𝒪∞

𝑈 ), where 𝑈 is an open subset of ℝ𝑛 and 𝒪∞
𝑈 is the sheaf of smooth functions on 𝑈 . Similarly,

a complex manifold is a locally ringed space that is locally isomorphic to (𝑈, 𝒪𝜔
𝑈 ), where 𝑈 is an open

subset of ℂ𝑛 and 𝒪𝜔
𝑈 is the sheaf of holomorphic functions on 𝑈 .

Let’s add some more structure: Given a smooth manifold 𝑀 , a Riemannian metric on 𝑀 is a positive-
definite smooth contravariant 2-tensor field 𝑔 on 𝑀 . This means: 𝑔 consists of positive-definite bilinear
forms 𝑔𝑝 ∶ T𝑝(𝑀) × T𝑝(𝑀) → ℝ for each point 𝑝 ∈ 𝑀 such that for smooth vector fields 𝑋, 𝑌 on 𝑀 , the
function 𝑔(𝑋, 𝑌 )∶ 𝑝 ↦ 𝑔𝑝(𝑋𝑝, 𝑌𝑝) is smooth. In local coordinates (𝑥𝑖)1≤𝑖≤𝑛 a Riemannian metric has the
form

𝑔𝑝 = ∑
𝑖,𝑗

𝑔𝑖𝑗(𝑝)d𝑥𝑖 ⊗ d𝑥𝑗

for some symmetric positive-definite matrix 𝑔𝑖𝑗(𝑝) that depends smoothly on 𝑝. A diffeomorphism of 𝑀
is called isometry if it preserves the metric.
In differential geometry one uses Riemannian metrics to measure distances on a manifold 𝑀 . Moreover,
one can define geodesics on 𝑀 , which are locally shortest paths between two points. Intuitively, geodesics
are obtained by “walking in a straight line” along 𝑀 .
Given a complex manifold 𝑀 of dimension 𝑛, there is an underlying smooth manifold 𝑀∞ of dimension
2𝑛. The complex structure on 𝑀 gives each tangent space of 𝑀∞ a complex structure 𝐽𝑝 ∶ T𝑝(𝑀∞) →
T𝑝(𝑀∞), 𝐽 2

𝑝 = −1. A Hermitian metric on 𝑀 is a Riemannian metric 𝑔 on 𝑀∞ such that 𝑔(𝐽𝑋, 𝐽𝑌 ) =
𝑔(𝑋, 𝑌 ) for all vector fields 𝑋, 𝑌 . A Hermitian manifold is a complex manifold together with a Hermitian
metric. An isometry of a Hermitian manifold (𝑀, 𝑔) is a holomorphic diffeomorphism of 𝑀 that is also
an isometry of (𝑀∞, 𝑔). The group of isometries is denoted Is(𝑀, 𝑔). It is known, that Is(𝑀, 𝑔) is a Lie
group.
A manifold (smooth, complex, Hermitian, etc.) is homogeneous, if its automorphism group acts trans-
itively. It “looks the same” everywhere. A symmetry 𝑠𝑝 at 𝑝 for 𝑝 ∈ 𝑀 is an automorphism of 𝑀
such that 𝑠2

𝑝 = id and in some neighbourhood, 𝑝 is the only fixed point of 𝑠𝑝. A Hermitian symmetric
space is a Hermitian manifold that is connected, homogeneous, and has a symmetry at some point 𝑝. By
homogeneity, there is a symmetry at each point.

Example. (a) Let Λ be a discrete subgroup of ℂ. Then ℂ / Λ is a Hermitian symmetric space. After
identifying ℂ with ℝ2, the metric is given by the standard form d𝑥2 + d𝑦2. The translations act
transitively on ℂ / Λ and 𝑥 ↦ −𝑥 is a symmetry at 0. Geodesics are images of straight lines in ℂ.

(b) The Riemann sphere ℙ1(ℂ) ≅ S2 is a Hermitian symmetric space. The metric is induced from the
standard metric d𝑥2 + d𝑦2 + d𝑧2 of ambient space ℝ3 of S2. Rotations act transitively on S2 and
symmetries are given by rotations by 𝜋 around a diameter. Geodesics are great circles.

(c) The upper half-plane ℋ1 is a Hermitian symmetric domain. After identifying ℂ with ℝ2, the metric
is given by d𝑥2+d𝑦2

𝑦2 . The group SL2(ℝ) acts transitively on ℋ1 by Möbius transforms (no, it’s not fun
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to that they are isometries). A symmetry at i is given by 𝑧 ↦ ̄𝑧−1. Geodesics are vertical lines and
half-circles with midpoint on the real line.

Hermitian Symmetric Domains
Given a Riemannian manifold 𝑀 , one can define the curvature at a point 𝑝. It is measured by taking
two different geodesics through 𝑝 and determining, whether they converge or diverge. If they always
converge, 𝑀 has positive curvature at 𝑝. If they always diverge, 𝑀 has negative curvature at 𝑝. If they
never converge or diverge, 𝑀 has zero curvature at 𝑝. If 𝑀 is homogeneous, this notion is independent
of 𝑝.

Example. Drawing some pictures shows:

(a) ℂ / Λ has zero curvature.

(b) ℙ1(ℂ) has positive curvature.

(c) ℋ1 has negative curvature.

An important difference between these three cases is how the group Is(𝑀, 𝑔)+ of holomorphic isometries
behaves. In positive curvature, Is(𝑀, 𝑔)+ is an adjoint compact Lie group. In negative curvature, it is an
adjoint non-compact Lie group. If (𝑀, 𝑔) has zero curvature, not much can be said.
It is known that a Hermitian symmetric space 𝑀 can be decomposed as 𝑀+ × 𝑀0 × 𝑀−, where 𝑀+ has
positive curvature, 𝑀0 has zero curvature, and 𝑀− has negative curvature. We are only interested in
the domains with negative curvature. A Hermitian symmetric domain is a Hermitian symmetric space
with negative curvature.
One way to construct Hermitian Symmetric Domains is using Bergman metrics. Let 𝐷 be an open subset
of ℂ𝑛 that is connected, bounded, homogeneous, and has a holomorphic symmetry at some point.

Theorem (Bergman). There is a (up to a constant factor) canonical Hermitian metric on 𝐷. With this
metric, 𝐷 has negative curvature.

Example. The Siegel upper half space ℋ𝑔 is given by the set of symmetric complex matrices 𝑍 = 𝑋 + i𝑌
such that 𝑌 is positive definite. The group

Sp2𝑔(ℝ) = {𝑀 ∈ M2𝑔(ℝ) ∶ 𝑀T𝐽𝑀 = 𝐽} 𝐽 = (
0 −𝟙
𝟙 0 )

acts transitively on ℋ𝑔 via

(
𝐴 𝐵
𝐶 𝐷) 𝑍 = (𝐴𝑍 + 𝐵)(𝐶𝑍 + 𝐷)−1.

𝐽 is a matrix in Sp2𝑔(ℝ) that has i𝟙 as sole fixed point. The only thing missing to give ℋ𝑔 the structure
of a Hermitian symmetric domain is a metric. The map 𝑍 ↦ (𝑍 − i𝟙)(𝑍 + i𝟙) identifies ℋ𝑔 with the set
𝒟𝑔 of symmetric complex matrices 𝑀 such that 𝟙 − 𝑀∗𝑀 is positive definite. The last condition can be
reformulated as ‖𝑀‖2 < 1. Therefore, 𝒟𝑔 is bounded. Now 𝒟𝑔 and ℋ𝑔 obtain a Bergman metric, so ℋ𝑔
is a Hermitian symmetric domain.

Automorphisms of Hermitian Symmetric Domains
If 𝐺 is a topological group, 𝐺+ denotes the connected component of the identity. Let (𝑀, 𝑔) be a Hermitian
symmetric domain.

Theorem. The groups Is(𝑀, 𝑔)+, Is(𝑀∞, 𝑔)+, and Hol(𝑀)+ are identical and act transitively on 𝑀 . Let
𝑝 ∈ 𝑀 . The stabiliser 𝐾𝑝 of 𝑝 in Is(𝑀, 𝑔)+ is compact. There is an isomorphism Is(𝑀, 𝑔)+ / 𝐾𝑝 → 𝑀 of
smooth manifolds.
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Theorem. Let 𝔥 be the Lie algebra of Hol(𝑀)+. There is a unique connected algebraic subgroup 𝐺 of
GL(𝔥), such that 𝐺(ℝ)+ = Hol(𝑀)+. Moreover, 𝐺 is adjoint.

Proof. One can show that Hol(𝑀)+ is an adjoint Lie group (= semisimple, trivial center). Therefore, the
adjoint representation of Hol(𝑀)+ on 𝔥 is faithful, so Hol(𝑀)+ can be seen as a subgroup of GL(𝔥). By
some theorem of Borel, there is an algebraic subgroup 𝐺 of GL(𝑉 ) with Lie algebra [𝔥, 𝔥]. As Hol(𝑀)+

is adjoint, 𝔥 is semisimple, so [𝔥, 𝔥] = 𝔥. It follows 𝐺(ℝ)+ = Hol(𝑀)+. Adjointness of 𝐺 follows from the
fact that 𝔥 is semisimple.

Let 𝑈(1) = {𝑧 ∈ ℂ ∶ |𝑧| = 1}. Using a lot of differential geometry, one proves:

Theorem. Let 𝑝 ∈ 𝑀 . There is a unique homomorphism 𝑢𝑝 ∶ 𝑈(1) → Hol(𝑀) such that 𝑢𝑝(𝑧)(𝑝) = 𝑝 for
all 𝑧 and 𝑢𝑝(𝑧) acts on T𝑝(𝑀) as multiplication by 𝑧.

Representations of 𝑈(1)
Let 𝑇 be a torus over a field 𝑘. Our goal is to describe the representations of 𝑇 on finite-dimensional 𝑘-
vector spaces. Firs suppose that 𝑇 is split. Given a representation 𝜌∶ 𝑇 → GL𝑉 , each 𝜌(𝑡) acts semisimply
since 𝑡 is semisimple. Additionally, all 𝜌(𝑡) commute. Therefore, they can be diagonalised simultaneously.
Now 𝑉 decompses as a sum of characters (= representations of dimension 1). We can write

𝑉 = ⨁
𝜒∈𝑋∗(𝑇 )

𝑉𝜒

where 𝑋∗(𝑇 ) is the set of characters of 𝑇 and 𝑡 ∈ 𝑇 acts on 𝑉𝜒 by multiplication with 𝜒(𝑡).
Now suppose 𝑇 does not split over 𝑘 but over some Galois extension 𝐾 of 𝑘. Then 𝑉 ⊗𝑘 𝐾 decomposes
as above

𝑉 ⊗𝑘 𝐾 = ⨁
𝜒∈𝑋∗(𝑇 )

𝑉𝜒 .

Being a 𝑘-representation, 𝜌 is stable under the action of Gal(𝐾 / 𝑘). This is equivalent to 𝜎𝑉𝜒 = 𝑉𝜎𝜒 for
all 𝜒 ∈ 𝑋∗(𝑇 ) and 𝜎 ∈ Gal(𝐾 / 𝑘).
Now consider the real torus 𝑈(1). It splits over ℂ. The characters are given by 𝜒𝑛 ∶ 𝑧 ↦ 𝑧𝑛 for 𝑛 ∈ ℤ.
The Galois group Gal(ℂ / ℝ) acts via ̄𝜒𝑛 = 𝜒−𝑛. Thus, a representation of 𝑈(1) on a real vector space 𝑉
is given by a grading

𝑉 ⊗ℝ ℂ = ⨁
𝑛∈ℤ

𝑉𝑛

such that ̄𝑉𝑛 = 𝑉−𝑛. By collecting spaces 𝑉𝑛 and 𝑉−𝑛 together and descending to ℝ one obtains that a
real representation of 𝑈(1) decomposes as a sum of the representations of the following type:

• 𝑉 = ℝ with the trivial action, 𝑉 ⊗ℝ ℂ = 𝑉0

• 𝑉 = ℝ2, 𝑥 + i𝑦 ∈ 𝑈(1) acts via the matrix (
𝑥 𝑦

−𝑦 𝑥)
𝑛

for some 𝑛 ∈ ℕ+, 𝑉 ⊗ℝ ℂ = 𝑉𝑛 ⊕ 𝑉−𝑛

Classification via Real Groups
Let 𝐺 be a connected algebraic group over ℝ. An involution 𝜗 of ℝ is a Cartan involution if the subgroup

𝐺(𝜗)(ℝ) = {𝑔 ∈ 𝐺(ℂ) ∶ 𝜗( ̄𝑔) = 𝑔}

is compact.

Example. (a) 𝐺(id)(ℝ) = {𝑔 ∈ 𝐺(ℂ) ∶ 𝑔 = ̄𝑔} = 𝐺(ℝ), so id is a Cartan involution iff 𝐺(ℝ) is compact.
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(b) 𝜗∶ 𝑀 ↦ 𝑀−T is an involution of GL𝑛.

GL(𝜗)
𝑛 (ℝ) = {𝑀 ∈ GL𝑛(ℂ) ∶ 𝑀 = 𝑀̄−T = 𝑀} = {𝑀 ∶ 𝑀∗𝑀 = 𝟙} = SU(𝑛)

is compact, so 𝜗 is a Cartan involution.

Let 𝐷 be a Hermitian symmetric domain and let 𝐺 be the connected algebraic group with 𝐺(ℝ)+ =
Hol(𝐷)+. Given 𝑝 ∈ 𝐷, we have a homomorphism 𝑢𝑝 ∶ 𝑈(1) → Hol(𝐷)+ = 𝐺(ℝ)+. One can show that it
extends to a algebraic morphism 𝑢𝑝 ∶ 𝑈(1) → 𝐺.

Theorem. The morphism 𝑢𝑝 constructed above has the following properties:

(a) The representation of 𝑈(1) on Lie(𝐺) ⊗ℝ ℂ induced by 𝑢𝑝 contains only the complex representations
𝜒0, 𝜒1, and 𝜒−1.

(b) ad(𝑢𝑝(−1)) is a Cartan involution. (ad means “conjugation with”)

(c) 𝑢𝑝(1) does not project to 1 in any simple factor of 𝐺.

Conversely, suppose 𝐺 is a real adjoint algebraic group and 𝑢∶ 𝑈(1) → 𝐺 satisfies (a), (b), and (c). Let
𝐷 be the set of conjugates of 𝑢 by elements of 𝐺(ℝ)+. Then 𝐷 is a Hermitian symmetric domain with
Hol(𝐷)+ = 𝐺(ℝ)+ and 𝑢(−1) is a symmetry at 𝑢 ∈ 𝐷.

Proof. Let 𝐾𝑝 be the stabiliser of 𝑝 inside 𝐺(ℝ)+. We have seen that 𝐺(ℝ)+ / 𝐾𝑝 ≅ 𝐷. The action of 𝑈(1)
on 𝐷 via 𝑢𝑝 corresponds to the action on the quotient by conjugation with 𝑢𝑝(𝑧). Considering tangent
spaces, we get Lie(𝐺) / Lie(𝐾𝑝) ≅ T𝑝(𝐷). One can calculate that the action of 𝑈(1) on Lie(𝐾𝑝) is trivial. By
definition of 𝑢𝑝, the action of 𝑧 ∈ 𝑈(1) on T𝑝(𝐷) is given by multiplication with 𝑧. After complexifying,
this representation therefore involves only 𝜒1 and 𝜒−1. For Lie(𝐺) ⊗ℝ ℂ this means that only 𝜒0, 𝜒1, and
𝜒−1 can occur. This proves (a).
𝑢𝑝(−1) is a symmetry at 𝑝. It is known that conjugation by a symmetry is a Cartan involution iff the
space has negative curvature. This is the case, so (b) holds.
Suppose, 𝑢𝑝(−1) maps to 1 in some factor 𝐺′ of 𝐺. Then the identity is a Cartan involution of 𝐺′, so 𝐺′

is compact. This contradicts negative curvature of 𝐷. Thus, (c) is proven.
Sketch for conversely: By (b), the centraliser 𝐾𝑢 of 𝑢 in 𝐺(ℝ)+ is compact. Then 𝐷 ≅ 𝐺(ℝ)+ / 𝐾𝑢, so 𝐷
is a real manifold. The tangent space T𝑝(𝐷) can be identified with Lie(𝐺) / Lie(𝐺)0. By (a), this space
carries a complex structure, which can be used to give 𝐷 the structure of a complex manifold. Construct
a 𝐾𝑢-invariant positive definite bilinear form on T𝑝(𝐷) and bring it to every point using homogeneity.
Then 𝐷 is a Hermitian symmetric space. Negative curvature follows from (b) and (c), since each factor
of the automorphism group is non-compact.

Corollary. There is a natural one-to-one correspondence between pointed Hermitian symmetric domains
and pairs (𝐺, 𝑢) consisting of a real adjoint algebraic group and a homomorphism 𝑢∶ 𝑈(1) → 𝐺(ℝ) such
that (a), (b), and (c) are satisfied.

Remark. Note that there is another classification theorem for Hermitian symmetric domains that in-
volves special nodes on connected Dynkin diagrams.
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