Dr. S. Witzel Prof. Dr. K.-U. Bux

4. Übungsblatt zur Vorlesung Zopfgruppen

Aufgabe 4.1 (Homologie von B_n) In Aufgabe 2.2 haben wir einen Morphismus $\omega \colon B_n \to \mathbb{Z}$ definiert.

- a) Bestimmen Sie $\omega(\sigma_{i_1}^{k_1}\cdots\sigma_{i_n}^{k_n})$ für Erzeuger σ_{i_j} und ganze Zahlen k_j .
- b) Zeigen Sie: wenn A eine abelsche Gruppe ist und $\varphi \colon B_n \to A$ ein Homomorphismus, dann existiert ein Homomorphismus $\psi \colon \mathbb{Z} \to A$ mit $\varphi = \psi \circ \omega$. Kurz: abelsche Quotienten von B_n faktorisieren durch ω .
- c) Folgern Sie, dass die Kommutatoruntergruppe $[B_n, B_n]$ genau aus den Elementen $\sigma_{i_1}^{k_1} \cdots \sigma_{i_n}^{k_n}$ besteht für die $\sum_j k_j = 0$.

Hinweis: a) Nutzen Sie die Präsentierung von B_n um zu zeigen dass $\varphi(\sigma_i) = \varphi(\sigma_j)$ für alle i, j. b) Nutzen Sie die Charakterisierung der Kommutatoruntergruppe durch abelsche Quotienten.

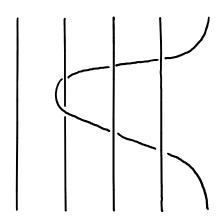
Aufgabe 4.2 (Eine Zerlegung reiner Zopfgruppen)

In der Vorlesung haben wir Homomorphismen

$$\iota_n \colon P_n \to P_{n+1} \quad \text{und} \quad f_n \colon P_n \to P_{n-1}$$

eingeführt mit $f_{n+1} \circ \iota_n = \mathrm{id}_{P_n}$ (ι_n is gegeben durch Hinzufügen eines rechten Strangs, f_n durch Entfernen des rechten Strangs). Wir setzen $U_n := \ker f_n$.

Zeigen Sie, dass jeder reine Zopf $b \in P_n$ eindeutig dargestellt werden kann als $b' \cdot u$ mit $b' \in P_{n-1}$ und $u \in U_n$. Folgern Sie, dass jeder reine Zopf $b \in P_n$ eine eindeutige Darstellung hat als $u_2 \cdots u_n$ mit $u_i \in U_i$.



Aufgabe 4.3 (Eine Monoid-Präsentierung)

Wir schreiben die Potenzmenge einer Menge M als $\mathfrak{P}(M)$.

- a) Überzeugen Sie sich, dass $P_3 := (\mathfrak{P}(\{a,b,c\}), \cup)$ ein Monoid ist. Was ist das Neutralelement?
- b) Zeigen Sie, dass $\langle a,b,c \mid a^2=a,b^2=b,c^2=c,ab=ba,bc=cb,ac=ca \rangle_M$ eine Präsentierung von P_3 ist.

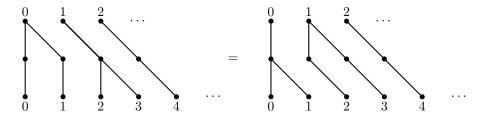
Aufgabe 4.4* (Eine unendliche Monoid-Präsentierung)

- a) Sei H die Menge der surjektiven, monoton wachsenden Funktionen $\mathbb{N} \to \mathbb{N}$, die außerhalb einer endlichen Menge injektiv sind. Überzeugen Sie sich, dass H bezüglich Hintereinanderausführung ein Monoid ist.
- b) Sei $P:=\langle x_0,x_1,\dots \mid x_ix_j=x_{j-1}x_i, i\leq j\rangle_M$. Zeigen Sie, dass es einen surjektiven Monoid-Homomorphismus $\varphi\colon P\to H$ gibt. Ist φ injektiv?

Hinweis: Setzen Sie $\varphi(x_i) = f_i$ wobei

$$f_i(m) = \begin{cases} m & m < i \\ m - 1 & m \ge i \end{cases}$$

gegeben ist.



Das Bearbeiten von Aufgaben mit Stern (*) bringt Punkte zum Erlangen der Studienleistung, die Aufgaben werden jedoch nicht bei der Anzahl der zu bearbeitenden Aufgaben mitgerechnet.