Universität Bielefeld

Elementare Geometrie

Sommersemester 2018

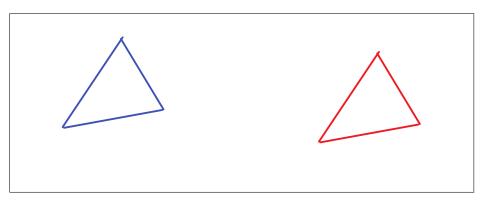
Grundlagen

Bewegungen: Intuition und Handhabung

Stefan Witzel

Warum Bewegungen?

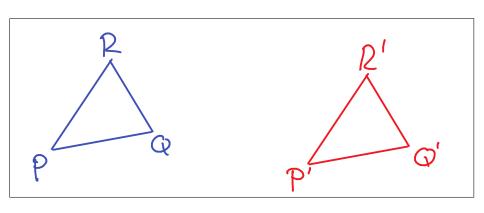
Zwei Dreiecke sind kongruent (deckungsgleich) wenn es eine Bewegung gibt, die das eine in das andere überführt.



Warum Bewegungen?

Zwei Dreiecke sind kongruent (deckungsgleich) wenn es eine Bewegung gibt, die das eine in das andere überführt.

Formal: die Dreiecke PQR und P'Q'R' sind deckungsgleich wenn es eine Bewegung φ gibt mit $\varphi(PQR) = P'Q'R'$.

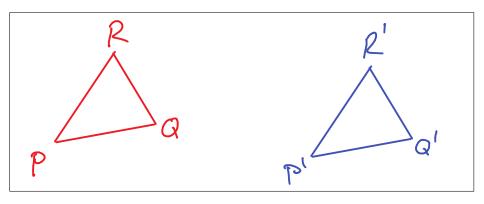


Warum Bewegungen?

Zwei Dreiecke sind kongruent (deckungsgleich) wenn es eine Bewegung gibt, die das eine in das andere überführt.

Formal: die Dreiecke PQR und P'Q'R' sind deckungsgleich wenn es eine Bewegung φ gibt mit $\varphi(PQR) = P'Q'R'$.

Die inverse (umgekehrte) Bewegung überführt dann P'Q'R' in PQR: $\varphi^{-1}(P'Q'R') = PQR$.



Eine Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ bedeutet:

Für jeden Punkt $P \in \mathbb{E}^2$ gibt es einen Punkt $Q = \varphi(P) \in \mathbb{E}^2$.

P,
$$Q_1 = \varphi(P_1)$$

P₂ $Q_2 = \varphi(P_2)$

P₃ $Q_3 = \varphi(P_3)$

P₄ $Q_4 = \varphi(P_4)$

Eine Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ bedeutet:

Für jeden Punkt $P \in \mathbb{E}^2$ gibt es einen Punkt $Q = \varphi(P) \in \mathbb{E}^2$.

Die Abbildung ist bijektiv, wenn es eine Inverse $\varphi^{-1} \colon \mathbb{E}^2 \to \mathbb{E}^2$ gibt.

Für eine Inverse gilt:

- für jeden Punkt P ist $\varphi^{-1}(\varphi(P)) = P$,
- für jeden Punkt Q ist $\varphi(\varphi^{-1}(Q)) = Q$.

Eine Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ bedeutet:

Für jeden Punkt $P \in \mathbb{E}^2$ gibt es einen Punkt $Q = \varphi(P) \in \mathbb{E}^2$.

Die Abbildung ist bijektiv, wenn es eine Inverse $\varphi^{-1} : \mathbb{E}^2 \to \mathbb{E}^2$ gibt.

Für eine Inverse gilt:

- für jeden Punkt P ist $\varphi^{-1}(\varphi(P)) = P$,
- für jeden Punkt Q ist $\varphi(\varphi^{-1}(Q)) = Q$.

Das heißt, $\varphi^{-1}(Q)$ ist die Lösung der Gleichung $\varphi(?) = Q$.

Eine Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ bedeutet:

Für jeden Punkt $P \in \mathbb{E}^2$ gibt es einen Punkt $Q = \varphi(P) \in \mathbb{E}^2$.

Die Abbildung ist bijektiv, wenn es eine Inverse $\varphi^{-1}: \mathbb{E}^2 \to \mathbb{E}^2$ gibt.

Für eine Inverse gilt:

- für jeden Punkt P ist $\varphi^{-1}(\varphi(P)) = P$,
- für jeden Punkt Q ist $\varphi(\varphi^{-1}(Q)) = Q$.

Das heißt, $\varphi^{-1}(Q)$ ist die Lösung der Gleichung $\varphi(?) = Q$.

Es ist $\varphi(P) = Q$ genau dann, wenn $P = \varphi^{-1}(Q)$.

Eine Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ bedeutet:

Für jeden Punkt $P \in \mathbb{E}^2$ gibt es einen Punkt $Q = \varphi(P) \in \mathbb{E}^2$.

Die Abbildung ist bijektiv, wenn es eine Inverse $\varphi^{-1} \colon \mathbb{E}^2 \to \mathbb{E}^2$ gibt.

Für eine Inverse gilt:

- für jeden Punkt P ist $\varphi^{-1}(\varphi(P)) = P$,
- für jeden Punkt Q ist $\varphi(\varphi^{-1}(Q)) = Q$.

Das heißt, $\varphi^{-1}(Q)$ ist die Lösung der Gleichung $\varphi(?) = Q$.

Es ist $\varphi(P) = Q$ genau dann, wenn $P = \varphi^{-1}(Q)$.

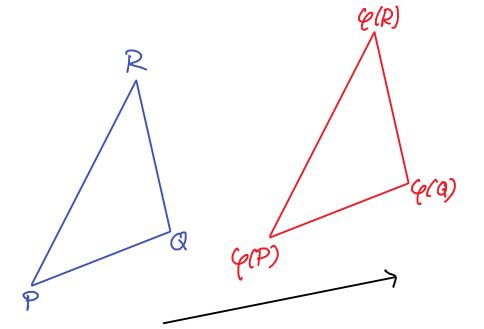
Die inverse Abbildund der inversen Abbildung ist die ursprüngliche Abbildung: $(\varphi^{-1})^{-1} = \varphi$:

$$\varphi(P) = Q$$

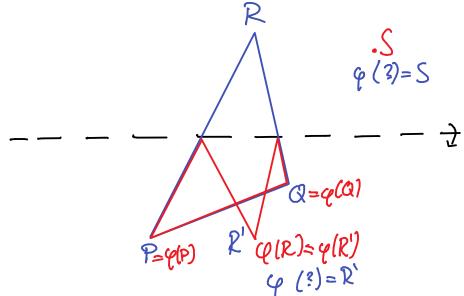
$$P = \varphi^{-1}(Q)$$

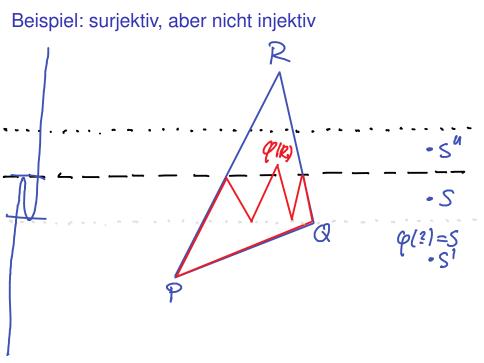
$$(\varphi^{-1})^{-1}(P) = Q$$

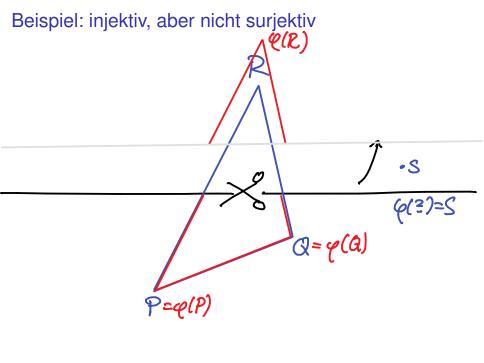
Beispiel: bijektiv



Beispiel: weder injektiv, noch surjektiv







Eine Bewegung ist eine bijektive Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ die den Abstand erhält: $|\varphi(P)\varphi(Q)| = |PQ|$.

Eine Bewegung ist eine bijektive Abbildung $\varphi\colon \mathbb{E}^2\to\mathbb{E}^2$ die den Abstand erhält: $|\varphi(P)\varphi(Q)|=|PQ|$. (**)

Sei φ eine Bewegung.

Proposition. Wenn φ eine Bewegung ist, dann ist auch die inverse Abbildung φ^{-1} eine Bewegung.

Beweis. Seien *P* und *Q* beliebige Punkte.

Anwenden der Definition auf $\varphi^{-1}(P)$ und $\varphi^{-1}(Q)$ ergibt:

$$|PQ| = |\varphi(\varphi^{-1}(P))\varphi(\varphi^{-1}(Q))| = |\varphi^{-1}(P)\varphi^{-1}(Q)|.$$

$$|\varphi(\varphi^{-1}(P))| = P$$

$$|\varphi(\varphi^{-1}(Q))| = P$$

$$|\varphi(\varphi^{-1}($$

Eine Bewegung ist eine bijektive Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ die den Abstand erhält: $|\varphi(P)\varphi(Q)| = |PQ|$. Sei φ eine Bewegung.

Proposition. Wenn R auf PQ liegt, dann liegt $\varphi(R)$ auf $\varphi(P)\varphi(Q)$. Beweis. Wenn $R \in PQ$, dann ist

$$|PQ| = |PR| + |RQ| \text{ oder } |PR| = |PQ| + |QR| \text{ oder } |RQ| = |RP| + |PQ|.$$

Da φ eine Bewegung ist, ist

$$|arphi(P)arphi(Q)|=|PQ|$$
 und $|arphi(P)arphi(R)|=|PR|$ und $|arphi(Q)arphi(R)|=|QR|$.

Also ist (einsetzen)

$$ert arphi(P)arphi(Q) ert = ert arphi(P)arphi(R) ert + ert arphi(R)arphi(Q) ert ext{ oder }
onumber \ ert arphi(P)arphi(R) ert = ert arphi(P)arphi(Q) ert + ert arphi(Q)arphi(R) ert ext{ oder }
onumber \ ert arphi(P)arphi(Q) ert = ert arphi(R)arphi(P) ert + ert arphi(P)arphi(Q) ert.$$

Eine Bewegung ist eine bijektive Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ die den Abstand erhält: $|\varphi(P)\varphi(Q)| = |PQ|$.

Sei φ eine Bewegung.

Proposition. Wenn R auf PQ liegt, dann liegt $\varphi(R)$ auf $\varphi(P)\varphi(Q)$.

Folgerung. Die Bewegung φ bildet die Gerade PQ auf die Gerade $\varphi(P)\varphi(Q)$ ab:

$$\varphi(PQ) = \varphi(P)\varphi(Q).$$

de Bildpenkk Q(P) die Gesode dusch
Q(P) not Q(Q)

Eine Bewegung ist eine bijektive Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ die den Abstand erhält: $|\varphi(P)\varphi(Q)| = |PQ|$.

Sei φ eine Bewegung.

Proposition. Wenn g und h parallel sind, dann sind $\varphi(g)$ und $\varphi(h)$ parallel.

Beweis. Wenn $\varphi(g)$ und $\varphi(h)$ nicht parallel wären, dann würden sie sich in einem Punkt Q schneiden:

$$Q \in \varphi(g) \cap \varphi(h)$$
.

Dann würden sich aber $g = \varphi^{-1}(\varphi(g))$ und $h = \varphi^{-1}(\varphi(h))$ im Punkt $\varphi^{-1}(Q)$ schneiden:

$$\varphi^{-1}(Q) \in \varphi^{-1}(\varphi(g)) \cap \varphi^{-1}(\varphi(h)) = g \cap h.$$

Eine Bewegung ist eine bijektive Abbildung $\varphi \colon \mathbb{E}^2 \to \mathbb{E}^2$ die den Abstand erhält: $|\varphi(P)\varphi(Q)| = |PQ|$.

Sei φ eine Bewegung.

Proposition. Wenn R auf M_P liegt, dann liegt $\varphi(R)$ auf $\varphi(M)_{\varphi(P)}$. Beweis. Wenn R auf M_P liegt, ist |MR| = |MP|.

Da φ eine Bewegung ist, ist

$$|\varphi(M)\varphi(R)| = |MR| \text{ und } |\varphi(M)\varphi(P)| = |MP|.$$

Also ist (einsetzen)
$$|\varphi(M)\varphi(R)| = |\varphi(M)\varphi(P)|$$
.

Folgerung. Der Kreis mit Mittelpunkt M durch P wird von φ auf den Kreis mit Mittelpunkt $\varphi(M)$ durch $\varphi(P)$ abgebildet:

$$\varphi(M_P) = \varphi(M)_{\varphi(P)}.$$

Griechische Buchstaben

```
arphi,\,\psi Abbildungen, insbesondere Bewegungen Verschiebungen (Translationen) 
ho Drehungen (Rotationen) \sigma Spiegelungen (Reflektionen) \alpha Ähnlichkeiten oder Winkel \beta,\,\gamma Winkel injektive, nicht surjektive Abbildungen surjektive, nicht injektive Abbildungen
```