
Fibrations IV

Tyrone Cutler

July 8, 2020

Contents

1 Pointed Fibrations 1
1.1 The Pointed Mapping Path Space . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Replacing a Map With a Fibration 6
2.1 Dependence on f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Functorality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Homotopy Fibre of f 11

4 Fibre Sequences 13

5 Examples 19
5.1 The Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Loop Spaces of Projetive Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Delooping the Unit Sphere S(K) . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Pointed Fibrations

The theory of fibrations may also be set up in the pointed category. The theory is more
or less analogous so we will be scarce with details. However there are important issues
which need to be addressed. For instance, in contrast to the story for cofibrations there are
actually more unpointed fibrations than pointed fibrations. While the idea of keeping track
of basepoints may seem unnecessary, it will of course be essential when we come to making
sense of long fiber sequences.

Proposition 1.1 A pointed map p : E → B is said to satisfy the based homotopy lifting
property (bHLP) with respect to a based space X if whenever given the solid part of a strictly
commutative diagram in Top∗ of the form

X

in0

��

f // E

p

��
X ∧ I+

H̃
;;w

w
w

w
w

H // B

(1.1)
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the dotted arrow can be completed so as to make the whole diagram commute. The map p is
said to be a pointed fibration if it satisfies the bHLP with respect to all based spaces. �

We will also say that a pointed fibration is based, or that it is a fibration in Top∗. By
unpointed, unbased, or free fibrations we will understand the objects discussed in previous
lectures, and we shall also refer to these objects as fibrations in Top. Notice that if p : E → B
is a pointed fibration, then it always has a well-defined fibre F = p−1(∗) ⊆ E. We call a
sequence of pointed spaces and maps

F
i−→ E

p−→ B (1.2)

a strict fibration sequence if p is a pointed fibration and i is the inclusion of the fibre of
p.

Proposition 1.2 Let p : E → B be a pointed map. If p is a fibration in Top∗, then p is a
fibration in Top.

Proof Let M be an unbased space and suppose given a pair (f,H) consisting of free maps
f : M → E and H : M × I → B satisfying pf = H0. Add a disjoint basepoint to M and
consider the following diagram in Top∗.

M+

in0

��

f+ // E

p

��
(M × I)+

∼= M+ ∧ I+

H̃

66nnnnnnn
H+ // B

(1.3)

where f+, H+ are the obvious extensions to basepoint preserving maps. Since p is a pointed
fibration, the dotted arrow can be filled in so as to make the diagram commute. Then the
restriction H̃|M×I solves the free homotopy lifting problem posed by (f,H). We conclude
that p is a fibration in Top.

A consequence of the proposition is that the same comments with regards to surjectivity
apply to both pointed and unpointed fibrations. Namely that a pointed fibration need not
be surjective but does surject onto any path component which meets its image. Clearly this
includes the path-component containing the basepoint. This can be a bit misleading, since
a pointed fibration p : E → B has a fibre F = p−1(∗) ⊆ E, but does not in general have
a fibre over an arbitrary point b ∈ B (since the inverse image may be empty). It is always
possible to restrict p to the path-component of B containing the basepoint, but of course
non-connected base spaces do arise in practice.

Example 1.1 For any space X the unique map ∅ → X is an unpointed fibration which is
not even a pointed map. �

Example 1.2 Let E = 0× I ∪ I × 0 ⊆ R2 and B = I with p : E → B the projection onto
the first factor. Then p is not a fibration in Top. For example, in Top the diagram

∗
in0

��

(0,1) // E

p

��
I
t7→(t,0)// B

(1.4)
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admits no diagonal. Since E,B are CW complexes, p cannot be a pointed fibration for any
choice of basepoint for E.

On the other hand, if E is given the basepoint (0, 0), then p : E → B is has the bHLP
with respect to all path-connected based spaces. �

Example 1.3 Let S be the Sierpinski space. Then the evaluation e0 : SI → S is an
unpointed fibration. It is shown in [1] that e0 is not regular. i.e. it is not always possible to
lift constant homotopies through e0 as constant homotopies. Consequently if S is based at
its open point u, and SI is based at the constant path at u, then e0 is not a pointed fibration.
Note that the inclusion u ↪→ S is a non-closed cofibration. Thus below the requirements of
well-pointedness over almost well-pointedness is essential. �

Putting Proposition 1.2 and the last example together we see that there are strictly more
pointed fibrations than unpointed. Nevertheless, free fibrations will always be well-behaved
if we restrict to well-pointed spaces.

Lemma 1.3 Let p : E → B be a free fibration. Then p satisfies the based homotopy lifting
property with respect to any well-pointed space.

Proof Assume given a homotopy lifting problem in Top∗

X

in0

��

f // E

p

��
X ∧ I+

H̃
;;w

w
w

w
w

H // B

(1.5)

in which X is well-pointed. By Proposition 1.2 p is an unpointed fibration, so we can consider
(1.5) to be a diagram of unpointed spaces. Since X is well-pointed the inclusion X ↪→ X∧I+

is a free cofibration (cf. Cofiber Sequences Th. 2.2) and also a homotopy equivalence. Thus
we may apply the fundamental lifting property to complete the dotted arrow in (1.5) so as
to make the whole diagram commute. But this arrow is necessarily a basepoint preserving
map, and hence is also a solution to the problem in Top∗.

The formal properties of pointed and unpointed fibrations are identical irrespective of
any special properties of the basepoints. For example, the following statements all follow
from purely diagrammatic arguments.

Proposition 1.4 The following statements hold.

1) If p1 : E1 → E2 and p2 : E2 → E3 are pointed fibrations, then so is p2p1 : E1 → E3.

2) If pi : Ei → Bi, i = 1, 2, are pointed fibrations, then so is the cartesian product
p1 × p2 : E1 × E2 → B1 ×B2.

The next proposition is also formal and is dual to a similar statement made regarding
cofibrations. We record it specially since we will need it in the sequel.
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Proposition 1.5 Assume that the square

f ∗E

q

��

f̂ // E

p

��
A

f // B

p (1.6)

is a pullback in Top∗ and that p is a pointed fibration. Then the pullback map q : f ∗E → A
is a pointed fibration, and the covering map f̂ : f ∗E → E induces a homeomorphism between
the fibres

q−1(∗)
∼=−→ p−1(∗). (1.7)

Proof We prove only the last part of the statement, for which we can assume that

f ∗E = {(a, e) | f(a) = p(e)} (1.8)

is the canonical pullback, topologised as a subspace of A×E. Then q is the projection onto
the first factor and

q−1(∗) = {(∗, e) | f(∗) = ∗ = p(e)} = ∗ × p−1(∗). (1.9)

We end this section with a simple but important result. Although the statement will be
greatly generalised in the sequel, this first step is fundamental.

Proposition 1.6 Let

F
i−→ E

p−→ B (1.10)

be a strict fibration sequence. Then for any pointed space K, the sequence

[K,F ]
i∗−→ [K,E]

p∗−→ [K,B] (1.11)

is exact in Set∗.

Proof We work in Top∗. It is sufficient to show that if f : K → E is a map such that pf is
null homotopic, then f factors through i up to homotopy. So choose a homotopy H : pf ' ∗
and apply the based HLP to the diagram

K
f //

in0

��

E

p

��
K ∧ I+

H //

H̃
;;w

w
w

w
w

B

(1.12)

to get a homotopy H̃ with H̃0 = f and pH̃1 = ∗. Let f ′ : K → F be the corestriction of H̃1.
Then H̃ is a homotopy f ' if ′.
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1.1 The Pointed Mapping Path Space

Recall that the mapping path space Wf of an arbitrary map f : X → Y was defined in
Fibrations I by the pullback square

Wf

πf

��

qf // Y I

e0

��
X

f // Y.

p (1.13)

Notice that if X, Y are based spaces and f is basepoint preserving, then (2.1) is a diagram
of based spaces and is a pullback in Top∗. Here Y I = C(I, Y ) is the space of unbased maps
I → Y in the compact-open topology and is based at the constant map c∗ at the basepoint
of Y . In this case the pullback space

Wf
∼= {(x, l) ∈ X × Y I | f(x) = l(0)} (1.14)

has the canonical basepoint (∗, c∗) which is preserved by the maps πf : Wf → X and
qf : Wf → Y I .

Recall that there is a map f̃ : XI → Wf given by f̃(l) = (l(0), f l) and that a lifting

function for f is a map λ : Wf → XI which is a section of f̃ . We say that λ is a pointed
lifting function if it is a pointed map.

Lemma 1.7 A pointed map f : X → Y is fibration in Top∗ if and only if it has a pointed
lifting function.

Proof The proof is purely formal and is identical to the unpointed case.

When is a free fibration a pointed fibration? A sufficient condition is given in the next
proposition.

Proposition 1.8 Let f : X → Y be a map in Top which is a free fibration. Assume that Y
has a basepoint y0 which is the zero set of some map ϕ : Y → I. Then f becomes a pointed
fibration when X is given any basepoint x0 ∈ f−1(∗).

Proof We produce a pointed lifting function for f . Begin by letting φ : Y I → I be the map

φ(l) = max
t∈I
{ϕ(l(t))}. (1.15)

Notice that φ−1(0) = cy0 . Use this to define Φ : Y I → Y I by setting

Φ(l)(t) =

{
l(t/φ(l)) t < φ(l)

l(t) φ(l) ≤ t ≤ 1.
(1.16)

Now, since f is a fibration it admits a lifting function λ : Wf → XI . Let λ̃ : Wf → XI be
the map

λ̃(x, l)(t) = λ(x,Φ(l))(φ(l) · t). (1.17)
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Then because λ is a lifting function we have for all (x, t) ∈ Wf that

λ̃(x, l)(t) = λ(x,Φ(l))(0) = x (1.18)

and
(f ◦ λ̃(x, l))(t) = (f ◦ λ(x,Φ(l))(φ(l) · t) = Φ(l)(φ(l) · t) = l(t) (1.19)

which shows that λ̃ is also a lifting function for f . On the other hand, since φ̃(c∗) = 0 we
have Φ(cy0) = cy0 , which implies that for any x0 ∈ f−1(y0) it holds that

λ̃(x0, cy0)(t) = λ(x0, cy0)(0). (1.20)

Together with (1.18) this shows that λ̃(x0, cy0) ∈ XI is the constant path at x0. In particular

λ̃ is a pointed lifting function for f when X is equipped with x0 as basepoint.

Corollary 1.9 Let f : X → Y be a pointed map to a well-pointed space Y . Then f is a
pointed fibration if and only if it is a free fibration.

Proof The forwards implication is Proposition 1.2. To prove the backwards implication
choose a Strøm structure (ϕ,H) for f with ϕ−1(0) = {∗} and apply Corollary 1.8.

Corollary 1.10 If Y is well-pointed, then the evaluation maps

e0 : Y I → Y, e0,1 : Y I → Y × Y (1.21)

are pointed fibrations.

2 Replacing a Map With a Fibration

Let f : X → Y be a map and form its mapping path space Wf as the pullback

Wf

πf

��

qf // Y I

e0

��
X

f // Y.

p (2.1)

The evaluation e0 is a fibration and a homotopy equivalence and in particular is shrinkable
(cf. Fibrations II Corollary 4.5). Our favoured choice of section is the map c• : Y → Y I

which sends a point y ∈ Y to the constant path cy at that point. The implication is that
the pullback map πf : Wf → X is a both a fibration and a homotopy equivalence, so is
shrinkable over X. The section in this case is the map

sf : X → Wf , x 7→ (x, cf(x)) (2.2)

and the homotopy F : sfπf ' idWf
is given by

Fs(x, l) = (x, l[s]) (2.3)
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where l[s] : I → Y is the path
l[s](t) = l (s · t) . (2.4)

Now define a map pf : Wf → Y as the composite

pf : Wf

qf−→ Y I e1−→ Y, (x, l) 7→ l(1). (2.5)

Then this fits into a strictly commutative diagram

X

f ��@
@@

@@
@@

@
sf //Wf

pf~~||
||
||
|

Y.

(2.6)

Proposition 2.1 The map pf : Wf → Y is a fibration.

Proof The idea is to ‘pull back’ a lifting function for the fibration e1 : Y I → Y to get one
for pf . Here are the details. Letting

Wf ×Y Y I = {((x, l),m) ∈ X × Y I × Y I | f(x) = l(0), l(1) = m(0)} (2.7)

be the pullback of Wf

pf−→ Y
e0←− Y I we need to define a map λ : Wf ×Y Y I → W I

f satisfying

λ((x, l),m)(0) = (x, l), (pf∗ ◦ λ((x, l),m))(t) = pf∗(λ((x, l),m)(t)) = m(t). (2.8)

To define λ we need to introduce some notation for a parametrised concatenation of paths.
For two composable paths l,m : I → Y with l(1) = m(0) and s ∈ I we let l +[s] m : I → Y
be the path

(l +[s] m)(t) =

{
l((1 + s) · t) t ≤ 1

1+s

m((1 + s) · t− 1) t ≥ 1
1+s

(2.9)

Notice that
(l +[0] m)(t) = l(t), (l +[1] m)(t) = (l +m)(t) (2.10)

and
(l +[s] m)(0) = l(0), (l +[s] m)(1) = m(s) (2.11)

Now define λ by setting

λ((x, l),m)(t) = (x, l +[t] m), ((x, l),m) ∈ Wf ×Y Y I . (2.12)

This is well defined by (2.11). The first equation of (2.12) is clearly satisfied, and to check
the second we have

(pf∗ ◦ λ((x, l),m))(t) = pf∗((x, l +[t] m)) = (l +[t] m)(1) = m(t). (2.13)

Thus λ is a lifting function for pf .
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Thus in the diagram (2.6) we have succeeded in factoring f as a homotopy equivalence
followed by a fibration. We say that pf : Wf → Y is the result of converting f into a
fibration.

Notice that if X, Y are based and the map f is basepoint preserving, then so is the
section sf and the homotopy (2.3) is one of pointed maps. Furthermore, in this case the
lifting function produced in equation (2.12) preserves basepoints. Thus we are free to apply
Lemma 1.7.

Corollary 2.2 If f : X → Y is a based map, then sf : Wf → Y is both a pointed and
unpointed fibration.

In what sense, if any, is the construction of this section unique? Assume that we have
found a space V and another factorisation of f as a homotopy equivalence t : X

'−→ V
followed by a fibration q : V → Y . Then we have a commutative diagram

V

q
��?

??
??

??
? Xtoo

f

��

sf //Wf

pf~~||
||
||
|

Y

(2.14)

and the question is how to relate V and Wf . If u : V → X is a homotopy inverse to t, then

pf (sfu) = fu = q(tu) ' q (2.15)

so we can use the fact that pf is a fibration to homotope sfu : V → Wf to a map v : V → Wf

satisfying pfv = q. Then v is a map over Y and an ordinary homotopy equivalence. Applying
Fibrations II Th. 4.4 we see that v is a homotopy equivalence over Y .

Proposition 2.3 Fix a map f : X → Y . Then up to homotopy equivalence over Y , the
map pf : Wf → Y is the unique way to replace f by a pointwise equivalent fibration. In
particular, if f is already a fibration, then X is homotopy equivalent to Wf in Top/Y .

Example 2.1

1) If f : ∗ → Y , then Wf
∼= P0Y = {l : I → X | l(0) = ∗} and pf is the map pf (l) = l(1).

2) If f = ∗ : X → Y is the constant map, then Wf
∼= X × P0Y . In particular, if

f : X → ∗, then Wf
∼= X.

3) If f = idX : X
=−→ X, then Wf

∼= XI and pf is the evaluation map e1 : l 7→ l(1).

4) If f : X → Y and f ′ : X ′ → Y ′ are given, then there is a canonical homeomorphism
Wf×f ′ ∼= Wf ×Wf ′. As a special case, if f = prX : X × Y → X, then Wf

∼= XI × Y .
�
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2.1 Dependence on f

Recall the Homotopy Theorem 3.5 from Fibrations II, which state that if f ' g : X → Y
are homotopic maps and E → Y is a fibration, then the pullback spaces f ∗E → X and
g∗E → X are homotopy equivalent over X. We apply this to the pullbacks defining the
mapping path spaces.

Proposition 2.4 Fix spaces X, Y . If f ' g : X → Y are homotopic maps, then there is a
fibrewise homotopy equivalence Wf 'X Wg over X.

The conclusion is that the construction of the mapping path space Wf makes sense on the
level of the homotopy category. If [f ] : X → Y is a homotopy class of maps, then as long as
we are willing to replace X with an equivalent object, we can always choose a representative
for [f ] which is a fibration. The proposition says that this makes complete sense if we stay
within the homotopy category.

2.2 Functorality

Assume given a square with homotopy

X

α

��

f // Y

β
��

X ′
f ′
//

F⇒

Y ′.

(2.16)

We use this to define a map

θF = θ(α, F, β) : Wf → Wf ′ (2.17)

by setting
θF (x, l) = (α(x), F (x) + βl), (x, l) ∈ Wf . (2.18)

This is well-defined since F0 = f ′α and F1 = βf . In the diagram

X

α

��

sf //Wf

θF
��

pf // Y

β

��
X ′

sf ′ //Wf ′
pf ′ // Y ′

(2.19)

the left-hand square commutes up to homotopy and the right-hand square commutes strictly.
With regards to the left-hand square we have

sf ′α(x) = (α(x), cα(x)), θF sf (x) = (α(x), F (x) + cβf(x)). (2.20)

and we get a homotopy L : sf ′α ' θF sf by setting Ls(x, l) = (x, L(1)(x, l) +L(2)(x, l)), where
L(1)(x, l), L(1)(x, l) are the paths

L(1)
s (x, t) =

{
f ′(α(x)) 0 ≤ t ≤ 1− s
F (x, t− (1− s)) 1− s ≤ t ≤ 1

L(2)
s (x, t) =

{
F
(
x, 2

2−st
)

0 ≤ t ≤ 2−s
2

βf(x) 2−s
2
≤ t ≤ 1.

(2.21)

9



Lemma 2.5 The homotopy class of θF : Wf → Wf ′ depends only on the track homotopy
class of F .

Proof Let ψ : F ∼ F ′ be a track homotopy, considered as a map X × I → Y ′I satisfying

• ψ0(x)(t) = Ft(x), ψ1(x)(t) = F ′t(x)

• ψs(x)(0) = f ′(α(x)), ψs(x)(1) = β(f(x))

for x ∈ X, s, t ∈ I. Now consider the homotopy Ψ : Wf × I → Wf ′ defined by

Ψs(x, l) = (x, ψs(x, l) + βl) (2.22)

The conditions above show that this is well-defined and we check that it is a homotopy
θF ' θF ′ .

Now assume given a second square

X ′

α′

��

f ′ // Y ′

β′

��
X ′′

f ′′
//

F ′⇒

Y ′′

(2.23)

and define θF ′ : Wf ′ → Wf ′′ as above.

Lemma 2.6 There is a homotopy θF ′ ◦ θF ' θF ′�F : Wf → Wf ′′, where

F ′�F = F ′α + β′F :′′ (α′α) ' (β′β)f. (2.24)

Proof We have
θF ′θF (x, l) =

(
α′α(x), F ′α(x) + (β′F (x) + β′βl)

)
(2.25)

and
θF ′�F (x, l) =

(
α′α(x), (F ′α(x) + β′F (x)) + β′βl

)
. (2.26)

Cclearly these maps are related by a linear reparametrisation of the path coordinate.

Define a category Top(→) as follows. The objects are maps f : X → Y . A morphism
from f to f ′ : X ′ → Y ′ is given by a homotopy commutative square

X

α

��

f // Y

β
��

X ′
f ′
//

[F ]⇒

Y ′
(2.27)

which is equipped with a particular track homotopy class of homotopy F : βf ' f ′α. If
f ′′ : X ′′ → Y ′′ is a third map and

X ′

α

��

f ′ // Y ′

β

��
X ′′

f ′′
//

[F ′]⇒

Y ′′

(2.28)
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represents a morphism f ′ → f ′′, then we define the composite square

X

α′α
��

f // Y

β′β
��

X ′′
f ′′
//

[F ′�F ]⇒

Y ′′
(2.29)

where F ′�F is as in (2.24). The track class of F ′�F depends only on the track classes of
F, F ′ so this is well-defined. Putting Lemmas 2.5, 2.6 together we get the following.

Proposition 2.7 The mapping path space defines a functor Top(→)
f 7→Wf−−−−→ hTop.

3 The Homotopy Fibre of f

We now specialise to the case that f : X → Y is a pointed map between based spaces X, Y .
All spaces, maps and homotopies will be based in this section, and by fibration we will mean
pointed fibration. Recall that we give I the basepoint 1 and denote

PY = C∗(I, Y ) = {l : I → Y | l(1) = ∗}. (3.1)

The evaluation map e0 : PY → Y is a fibration and we showed in Pointed Homotopy Lemma
1.5 that PY is contractible.

Definition 1 Define the homotopy fibre of a pointed map f : X → Y by means of the
following pullback diagram in Top∗

Ff

if
��

// PY

e0

��
X

f // Y.

p (3.2)

We denote by
if : Ff → X (3.3)

the canonical map. �

The homotopy fibre is defined with a special purpose in mind. The universal property of the
pullback shows that maps K → Ff are in one-to-one correspondence with pairs consisting
of i) a map g : K → X, and ii) a null homotopy H : fg ' ∗. Our favoured model for the
homotopy fibre is

Ff = {(x, l) ∈ X × Y I | f(x) = l(0), l(1) = ∗} ⊆ X × Y I (3.4)

with if being the projection onto the first factor. We apply Proposition 1.5: if is a fibration
and there is a homeomorphism

i−1
f (∗) ∼= ΩY (3.5)

between the fibre of if and the fibre of e0 : PY → Y .
Reasoning similarly to the last subsection we have the following very important fact.
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Proposition 3.1 Fix spaces X, Y . If f ' g : X → Y are homotopic maps, then there is a
fibrewise homotopy equivalence Ff 'X Fg over X.

The point is that the homotopy type of the homotopy fibre of f : X → Y depends only on
the homotopy class of f . Thus we are able to make sense of the construction at the level of
the homotopy category. We would like to stress that really it is not the space Ff which is
the homotopy fibre of f , but rather the entire pullback square (3.2) including Ff , the map
if , and the canonical null homotopy fif ' ∗. Of course even this makes sense in light of
Proposition 3.1.

Now recall the mapping path space Wf and the fibration pf : Wf → Y , (x, l) 7→ l(1).
Notice that p−1

f (∗) = Ff . That is, the fibre of pf is exactly the homotopy fibre of f and there
is a strict fibration sequence of the form

Ff → Wf

pf−→ Y. (3.6)

There is also a factorisation of if as in the strictly commutative diagram

Ff

~~}}
}}
}}
}} if

  @
@@

@@
@@

@

Wf

πf // X.

(3.7)

Proposition 3.2 Let f : X → Y be a pointed map. Then for any pointed space K the
sequence

[K,Ff ]
if−→ [K,X]

f∗−→ [K,Y ] (3.8)

is exact in Set∗.

Proof Consider the following diagram

[K,Ff ] // [K,Wf ]

πf∗
��

pf∗ // [K,Y ]

[K,Ff ]
if∗ // [K,X]

f∗ // [K,Y ].

(3.9)

The left-hand square commutes due to (3.8) and the right-hand square commutes because
fπf = (pfsf )πf ' pf . By Proposition 1.6 the top row is exact, and since the homotopy
equivalence πf induces a bijection πf∗ we get the proposition.

We call the sequence

Ff
if−→ X

f−→ Y (3.10)

a (short) homotopy fibration sequence. It is pointwise equivalent to a strict fibration
sequence and the proposition shows that in many respects it behaves like one.

So what is the difference between a ‘strict’ and a ‘homotopy’ fibration sequence? As
we now show, there is no difference if f is a fibration. Let F = f−1(∗) ⊆ X and denote
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the inclusion i : F ↪→ X. Since fi = ∗ we take the constant homotopy to get a canonical
factorisation of i through the homotopy fibre if by a map

ϕ : F → Ff . (3.11)

Proposition 3.3 If f : X → Y is a fibration between well-pointed space X, Y . Then ϕ is a
homotopy equivalence.

Proof This follows from Proposition 2.3. We know that Wf is homotopy equivalent to
X over Y , and since the pullback functor is homotopical a choice of fibrewise homotopy
equivalence X ' Wf induces one between the fibres F = f−1(∗) and Wf = p−1

f (∗). For such
an equivalence we choose the map sf : X → Wf , and then the map induced between fibres
is exactly ϕ. The assumptions of well-pointedness are sufficient to guarantee that we do not
leave the pointed category.

Example 3.1 Let f : ∗ → Y . Then Ff ∼= ΩY and there is a homotopy fibration sequence

ΩY → ∗ → Y. (3.12)

On the other hand the strict fibre of f is a single point. �

Example 3.2 Let f = ∗ : X → Y . Then

Ff ∼= X × ΩY. (3.13)

This can be seen directly, but an easier to get it is to use Lemma 4.1 below. �

Example 3.3 If f : X → Y and f ′ : X ′ → Y ′ are given, then the homotopy fibre of
f × f ′ : X×X ′ → Y ×Y ′ is homeomorphic to Ff ×Ff ′. Note that P (X×X ′) ∼= PX×PX ′.
�

4 Fibre Sequences

In this section we will generalise Proposition 1.6 and produce for any map f a long fibration
sequence. We continue to work exclusively in the pointed category.

Lemma 4.1 Consider the following pair of diagrams

A

(I)
��

// C

��
(II)

// E

��
B // D // F

A //

��
(III)

E

��
B // F

(4.1)

where the horizontal maps in the right-hand diagram are the composites of those in the left-
hand diagram. The following statements hold.
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1) If squares (I) and (II) are pullbacks, then so is (III).

2) If squares (II) and (III) are pullbacks, then so is (I).

Proof This is a simple check of the universal properties.

Fix a pointed map f : X → Y . Set i0 = if : F0 = Ff → X and for n ≥ 1 inductively
write in = iin−1 : Fn = Fin−1 → Fn−1 for the homotopy fibre of in−1. Now consider the
following diagram of iterated pullbacks

F3
i3 //

��

F2

i2
��

// PF0

��
PF1

// F1

��

i1 //

��

p

F0

i0
��

//

p

PY

��
PX // X

f //

p

Y.

p

(4.2)

Each subsequent square defines the homototopy fibre of the map generated by the previous
square. Notice that the left-hand squares are twisted. This is essentially the cause of the
appearance of a −1 sign below. We apply Lemma 4.1 to get pullback squares

F1
//

��

PY

��
PX // Y

p

F2
//

��

PF0

��
PX // X

p

F3
//

��

PF0

��
PF1

// F0.

p
(4.3)

Since PY → Y is a fibration, so is F1 → PX and the fibres of both maps are homeomor-
phic to ΩY . Moreover, because PX is contractible the inclusion ΩY ↪→ F1 is a homotopy
equivalence. Similarly statements apply to the other two pullbacks. In the middle square
the map F2 → PF0 is a fibration with fibre ΩX and the inclusion ΩX ↪→ Fi2 is a homotopy
equivalence, and in the right-hand square F3 → PF1 is a fibration whose fibre inclusion
ΩF0 ↪→ F3 is a homotopy equivalence.

Lemma 4.2 The following diagram commutes up to homotopy

ΩX ' //

−Ωf

��

F2

i2
��

ΩY ' // F1

(4.4)

where the horizontal arrows are the fibre inclusions described above.

Proof We’ll record all the details, making reference to (4.3) for ease. We have

F1
∼= {(k, l) ∈ PX × PY | f(k(0)) = l(0)} (4.5)

F2
∼= {(k,m) ∈ PX × PF0 | k(0) = i0(m(0))} (4.6)
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and the map i2 is given by
i2(k,m) = (k, i0 ◦m). (4.7)

The inclusions are the maps

ΩY
'−→ Fi0 l 7→ (∗, l) (4.8)

ΩX
'−→ Fi1 k 7→ (k, ∗) (4.9)

which as discussed above are homotopy equivalences. We claim that the maps

F1
'−→ ΩY (k, l) 7→ −f ◦ k + l (4.10)

F2
'−→ ΩX (k,m) 7→ −i0 ◦m+ k (4.11)

are their respective inverses. To check this it will suffice to show that they are right homotopy
inverses, since we know a priori that (4.8), (4.9) are homotopy equivalences. But this is easy
to see, since the composite ΩY → F1 → ΩY is the map l 7→ − ∗ +l, which is clearly
homotopic to the identity. Similarly, the composite ΩX → F2 → ΩX is the map k 7→ −∗+k
which is homotopic to the identity.

Finally we check that the composite

ΩX
'−→ F2

i2−→ F1
'−→ ΩY (4.12)

is the map
l 7→ −Ωf(l) (4.13)

which is exactly what was claimed.

Lemma 4.3 The following diagram commutes up to homotopy

ΩF0
' //

−Ωi0
��

F3

i3
��

ΩX ' // F2

(4.14)

where the horizontal arrows are the fibre inclusions described above.

Proof The proof is similar to the last lemma so we will be brief. We have

F3
∼= {(m,n) ∈ PF1 × PF0 | i1(m(0)) = n(0)} (4.15)

and i3(m,n) = (m(0), n). With reference to (4.11) the composite

ΩF0
'−→ F3

i3−→ F2
'−→ ΩX (4.16)

is the map n 7→ −Ωi0(n) + ∗.

Next we show that ΩF0 identifies canonically with the homotopy fibre of −Ωf . For this we
need the switch of variables homeomorphism

PΩY = C∗(I, C∗(S
1, Y )) ∼= C∗(I ∧ S1, Y ) ∼= C∗(S

1, C∗(I, Y )) ∼= ΩPY. (4.17)
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Lemma 4.4 The pair of −Ωif and the switch map (4.17) induce a homeomorphism

ΩF0
∼= F−Ωf (4.18)

Proof Since the loop functor is a right adjoint it preserves pullbacks, meaning that

ΩF0

Ωi0
��

// ΩPY

��
ΩX

Ωf // ΩY

p (4.19)

is a pullback. This square is related to the pullback defining F−Ωf by the induced map in
the diagram

ΩF0
//

Ωi0

��

##G
G

G
G

G ΩPY

∼=
��

F−Ωf

��

// PΩY

��
ΩX

−1
∼=
// ΩX

−Ωf // ΩY.

p

(4.20)

We have (−1) ◦ Ωi0 = −Ωi0 by definition and (−Ωf) ◦ (−1) = −(−Ωf) = Ωf since Ωf is a
loop map. Thus (4.19) and (4.20) are the same pullback.

Define the fibration connecting map δf : ΩY → F0 to be the composite

δf : ΩY
'−→ F1

i1−→ F0, l 7→ (∗, l). (4.21)

where the first map is (4.8). Then we have the following diagram of spaces and maps

. . . // ΩF0
−Ωi0 //

'
��

ΩX

'
��

−Ωf // ΩY

'
��

δf

!!C
C

C
C

. . . // F3
// F2

// F1
// F0

i0 // X
f // Y.

(4.22)

Each pair of composable maps in the bottom row consists of a map and its homotopy fibre
and the vertical arrows are homotopy equivalences. According to Lemma 4.4 the two maps
on the top row form a homotopy fibration sequence, so by replacing f, i0 with −Ωf,−Ωi0
we can interate the construction and so extend the diagram infinitely to the left. We arrive
at the sequence of spaces and maps

. . .→ ΩnFf
(−1)nΩnif−−−−−−→ ΩnX

(−1)nΩnf−−−−−−→ ΩnY → . . .→ ΩFf
−Ωif−−−→ ΩX

−Ωf−−→ ΩY
δ−→ Ff

if−→ X
f−→ Y

(4.23)
which we call the long fibration sequence associated with f . Each pair of subsequent
maps is pointwise equivalent to a short homotopy fibration sequence, and thus pointwise
equivalent to a strict fibration sequence.
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Theorem 4.5 Let f : X → Y be a pointed map. Then for any space K the sequence

. . . // [K,ΩX]
Ωf∗ // [K,ΩY ]

δf∗ // [K,Ff ]
if∗ // [K,X]

f∗ // [K,Y ]

. . . // [K,Ωn+1Y ]
Ωnδf∗ // [K,ΩnFf ]

Ωnif∗ // [K,ΩnX]
Ωnf∗ // [K,ΩnY ] // . . .

(4.24)
is exact. Here the first three terms on the right are exact as pointed sets, the next three terms
exact as groups, and all subsequent terms exact as abelian groups.

Proof Exactness of the first three terms was verified in Proposition 3.2. The same analysis
applies to any term obtained by looping them, since the conclusion above was that

ΩnFf
(−1)nΩnif−−−−−−→ ΩnX

(−1)nΩf−−−−−→ ΩnY (4.25)

is a homotopy fibration sequence. The appearance of the (−1) signs is inconsequential to
the exactness of (4.24). For instance if α ∈ [K,ΩX], then

− Ωf ◦ α ' ∗ ⇔ Ωf ◦ α ' ∗. (4.26)

It remains to show exactness at the sets involving ΩnFf . Before looping this follows from
the construction of (4.23), since Lemmas 4.2 and 4.3 give commutative diagrams

[K,ΩX]

∼=
��

δf∗ // [K,Ff ]
if∗ // [K,X]

[K,F1]
i1∗ // [K,F0]

i0∗ // [K,X].

[K,ΩY ]

∼=
��

−Ωf∗ // [K,ΩX]
δf∗ //

∼=
��

[K,Ff ]

[K,Fi2 ]
ii1∗ // [K,Fi1 ]

i0∗ // [K,F0].

(4.27)

with exact bottom rows and bijective vertical arrows. After looping the same diagrams
commute and the bottom rows remain exact.

It remains to comment on the group structures. We know from our analysis of H-spaces
that the homotopy sets of the form [K,ΩQ] are groups, and are abelian if Q ' ΩQ′. Since
the loop maps that appear in (4.23) induce group homomorphisms we find that the exactness
in the sense of pointed sets improves to the familar exactness for groups and abelian groups.

Now assume that p : E → B is a pointed fibration between well-pointed spaces E,B.
With Proposition 3.3 in mind we ask how (4.23) changes if f is replaced by p. The canonical
map F = p−1(∗) → Fp from the strict fibre of p to its homotopy fibre is a homotopy
equivalence. We define

δ : ΩB → Fp (4.28)

to make the following diagram commute up to homotopy

F

'
��

i // E
p // B

. . .ΩE //−Ωp∗ // ΩB //

δ
=={

{
{

{
Fp // E // B.

(4.29)
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The sequence we get in this case now looks like

. . .→ ΩnF
(−1)nΩni−−−−−→ ΩnE

(−1)nΩnp−−−−−→ ΩnB → . . .→ ΩF
−Ωi−−→ ΩE

−Ωp−−→ ΩB
δ−→ F

i−→ E
p−→ B
(4.30)

in which each pair of composable arrows forms either a homotopy fibration sequence or a
strict fibration sequence.

Corollary 4.6 Let p : E → B be a pointed fibration with fibre F and let K be a pointed
space. Assume that either E,B are well-pointed or that K is. Then the sequence

. . . // [K,ΩE]
Ωp∗ // [K,ΩB]

δ∗ // [K,F ]
i∗ // [K,E]

p∗ // [K,B]

. . . // [K,Ωn+1B]
Ωnδ∗ // [K,ΩnF ]

Ωni∗ // [K,ΩnE]
Ωnp∗ // [K,ΩnB] // . . .

(4.31)
is exact in the same sense of Theorem 4.5.

Proof In the case that E,B are well-pointed the statement follows from 4.5 and the con-
struction of (4.30). If E,F are not well-pointed, then the comparison map F → Ff may fail
to be a pointed homotopy equivalence. However, it is at least a free homotopy equivalence,

so in the case that K is well-pointed it still induces a bijection [K,F ]
∼=−→ [K,Ff ]. With this

observation we can follow the proof of 4.5 with only minor changes.

As a special case of the corollary we take K = S0 and get what we call the long exact
homotopy sequence of a fibration.

Corollary 4.7 Let p : E → B be a pointed fibration with fibre F . Then there is a long exact
sequence of homotopy groups

. . .→ πn+1B → πnF
i∗−→ πnE

p∗−→ πnB
∆−→ πn−1F → . . . (4.32)

which ends as the sequence of pointed sets

. . .→ π1B → π0F → π0E → π0B. (4.33)

Proof We make use of the suspension-loop adjunction

[S0,ΩnX] ∼= [ΣnS0, X] ∼= πnX. (4.34)

By the work in §3 of H-Spaces I we know that the group structure on the homotopy set
is the same whether defined using the loop or suspension coordinates. In particular the
exactness of (4.24) is the same as the exactness stated in Theorem 4.5. The boundary map
∆ is obtained as the composite

πnB ∼= πn−1ΩB
δ∗−→ πn−1F (4.35)

where δ is as in (4.28). The first map here is the adjunction homomorphism, so ∆ is a
homomorphism.
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Of course there is a statement lying between 4.5 and 4.7. Namely that for any pointed map
f : X → Y there is a long exact sequence of homotopy groups

. . .→ πn+1Y → πnFf
if∗−→ πnX

f∗−→ πnY
∆−→ πn−1Ff → . . . (4.36)

This makes the homotopy fibre Ff amenable to study by homotopical means. Compare this
to the homotopy cofiber Cf , which is more understandable using cohomological methods.

5 Examples

5.1 The Circle

In Fibrations III we saw that covering projections are fibrations. Thus we take the universal
covering space of the circle and get a fibration sequence

Z→ R p−→ S1 (5.1)

where
p(t) = exp(2πi · t). (5.2)

Now in the long exact sequence homotopy sequence

. . .→ πkR
p∗−→ πkS

1 → πk−1Z→ . . . (5.3)

all homotopy groups of the contractible space R disappear, as do all homotopy groups of the
discrete space Z. Thus exactness gives us

πkS
1 = 0, ∀k ≥ 2. (5.4)

All that remains of the sequence (5.3) is its tail end

1→ π1S
1 → π0Z = Z→ ∗. (5.5)

which retains exactness as pointed sets. Of course we calculated last lecture that

π1S
1 ∼= Z (5.6)

but it’s not difficult to solve the extension problem (5.5) directly. In any case, the fact
that S1 has exactly one non-vanishing homotopy group makes it a fairly special space. For
example it’s known that for each n ≥ 2, π∗S

n is non-zero is arbitrarily high degrees. We will
explore some consequences of the calculation (5.4) in the examples below.

Here is another take on the above results. One upshot of our approach to fibration
sequences is that we are often able to make much more precise statements that just perform
algebraic computations. For example consider the pullback diagram defining the homotopy
fibre of p

ΩS1

'
��

Z

''

' // Fp

��

// PS1

��
R // S1.

p

(5.7)
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Here the induced map Z '−→ Fp is a homotopy equivalence, as is the fibre inclusion ΩS1 → Fp.
This gives us an actual homotopy equivalence

ΩS1 ' Z (5.8)

and in particular a much stronger statement than the isomorphisms (5.4), (5.6).
To complete the picture let us make (5.8) a little more concrete. For each s ∈ R let

αs : I → S1 be the path αs(t) = exp(2πi · st). Then we check that the map

Wp → ΩS1, (s, l) 7→ αs + l (5.9)

is the homotopy inverse to the vertical map in (5.7). Composing this with the horizontal
map in the same diagram we get a map

Z→ ΩS1, n 7→ αn. (5.10)

which induces (5.8). It is amusing to think that when we first learned to classify self maps
of S1 by their degrees, really we were really constructing a homotopy equivalence between
ΩS1 and the discrete integers. �

5.2 Projective Spaces

Let K ∈ {R,C,H} and write d = dK for the dimension of K as a real vector space. Note
that dR = 1, dC = 2 and dH = 4. To fix conventions for the noncommuative quaternions we
consider Kn as a right K-vector space. We write |λ| for the modulus of λ ∈ K and ‖u‖ for
the norm of u = (u0, . . . , un) ∈ Kn+1. We write S(K) = {z ∈ K | |z| = 1} for the unit sphere
in K. In particular

S(R) = S0, S(C) = S1, S(H) = S3 (5.11)

and each has the structure of a compact Lie group. We identify the unit sphere in Kn+1

with Sd(n+1)−1. Then S(K) acts on Sd(n+1)−1 from the right and we define the K-projective
n-space KP n to be the set of cosets of this action

KP n = Sd(n+1)−1/S(K). (5.12)

We denote the elements of KP n with square brackets and write

γn = γKn : Sd(n+1)−1 → KP n (5.13)

for the quotient projection. The inclusion Kn ↪→ Kn+1 as the first n non-zero coordinates
induces inclusions Sdn−1 ↪→ Sd(n+1)−1 and KP n−1 ↪→ KP n.

Proposition 5.1 For each n ≥ 1 the space KP n may be obtained from KP n−1 by attaching
a d-cell along γn−1. In particular KP n is dn-dimensional CW complex with one cell in each
dimension ≤ dn congruent to d.

Proof We view Sdn−1 ⊆ Ddn ⊆ Kn and define Γ : Ddn → KP n by

Γ(u) =
[
u,
√

1− ‖u‖
]
, u ∈ Ddn ⊆ Kn. (5.14)

Then Γ|Sdn−1 = γn−1 and it is easily checked that Γ gives a relative homeomorphism (Ddn, Sdn−1) ∼=
(KP n,KP n−1). The last statements of the proposition follow by induction.
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Note that KP 0 is a single point.

Corollary 5.2 There is a homeomorphism KP 1 ∼= Sd.

The homeomorphism follows from the cell structure described in 5.1. We get an explicit map
by viewing Sd as the one-point compactification of K and sending

[u0, u1] 7→

{
u0 · u−1

1 u1 6= 0

∞ u1 = 0.
(5.15)

Proposition 5.3 For each n ≥ 0 the projection γn : Sd(n+1)−1 → KP n is a locally trivial
fibration with fibre S(K).

Proof Since KP n is a CW complex it will suffice to show that γn is locally trivial. For each
i = 0, . . . , n write

Ui = {[u0, . . . , un] ∈ KP n | ui 6= 0}. (5.16)

Then U0, . . . , Un is an open cover of KP n and we claim γn is trivial over each Ui. Indeed,
define ρi : Ui × S(K)→ γ−1

n (Ui) by

ρi([u0, . . . , un], λ) = λ
|ui|
ui

(u0, . . . , un) (5.17)

and θi : γ−1
n (Ui)→ Ui × S(K) by

θi(u0, . . . , un) =

(
[u0, . . . , un],

ui
|ui|

)
. (5.18)

Then we check easily that ρi and θi are inverse homeomorphisms over Ui.

We study the three cases individually.

The Real Case: When K = R we have fibre sequences

S0 → Sn
γRn−→ RP n. (5.19)

Thus γRn is a two-sheeted covering projection for each n. When n = 1 it is the degree 2

map S1 2−→ S1. In other cases it is the universal covering space. The long exact sequence of
homotopy groups 4.7 gives us for each n ≥ 2 that

π1RP n ∼= Z2 (5.20)

and says that the projection γRn induces isomorphisms

πkRP n ∼= πkS
n, ∀k ≥ 2. (5.21)
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We make use of the diversion on functorality. Each square

Sn //

��

Sn+1

��
RP n in // RP n+1

p
(5.22)

is by inspection a pullback. In particular the induced map of vertical fibres is a homeomor-
phism. The homotopy sequences are natural with respect to maps of fibrations (see §2.2 for
the most general setup), so for n ≥ 1 (5.22) gives us a diagram

π1S
n

��

γRn∗ // π1RP n

in∗
��

// π0S
0 ∼= Z2

// 0

0 // π1RP n+1 // π0S
0 // 0

(5.23)

with exact rows. We conclude from exactness that the inclusion RP n ↪→ RP n+1 induces
an isomorphism on π1 whenever n ≥ 2, and when n = 1 a surjection π1RP 1 → π2RP 2. In
particular we get a canonical generator for π1RP n ∼= Z2 as the inclusion

S1 ∼= RP 1 ↪→ RP n. (5.24)

The Complex Case: When K = C we have fibre sequences

S1 → S2n+1 γCn−→ CP n. (5.25)

Making use of Example 5.1 we find

π2CP n ∼= π1S
1 ∼= Z (5.26)

and that
πkCP n ∼= πkS

2n+1, ∀k ≥ 3. (5.27)

Again these isomorphisms are induced by the quotient projection γCn .
The special case n = 1 gives us the complex Hopf fibration

S1 ↪→ S3 η−→ S2. (5.28)

where we write η = γC1 . We saw in the exercise sheets that η generates a free Z summand in
π3S

2. Equation (5.27) tells us that there is nothing else in this group. It also tells us that η
induces isomorphisms

η∗ : πkS
3 ∼=−→ πkS

2, ∀k ≥ 3. (5.29)

We will state a much stronger result than this shortly.
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The Quaternionic Case: In the quaternionic case we have fibre sequences

S3 → S4n+3 γHn−→ HP n. (5.30)

The results differ from (5.20), (5.26) since the higher homotopy groups of S3 are nontrivial.
We compute

πkHP n ∼= πk−1S
3, ∀ 0 ≤ k ≤ 4n− 3 (5.31)

and find in particular that
π4HP n ∼= Z. (5.32)

We compute in the next example that in general we have

πkHP n ∼= πkS
4n+3 ⊕ πk−1S

3 (5.33)

(compare (5.27), (5.21)).
The special case n = 1 gives us the quaternionic Hopf fibration

S3 ↪→ S7 ν−→ S4 (5.34)

where we write ν = γH1 . By (5.33) the element ν generates a free Z summand in π7S
4, but

in contrast to the real and complex cases this group also contains a copy of the non-trivial
π6S

3 ∼= Z12.

5.3 Loop Spaces of Projetive Spaces

Return to the general case and consider the long fibration sequence

. . .→ ΩSdn−1 → ΩKP n → Sd−1 i−→ Sdn−1 γn−→ KP n. (5.35)

Since πd−1S
dn−1 = 0 the fibre inclusion i is null-homotopic. In particular ΩKP n is homotopy

equivalent to the fibre of the constant map Sd−1 → Sdn−1. Thus following Example 3.2 we
can find a homotopy equivalence

ΩKP n ' Sd−1 × ΩSdn−1. (5.36)

Of course this returns all the results of the previous example since

πkKP n ∼= πk−1(ΩKP n) ∼= πk−1(Sd−1 × ΩSdn−1) ∼= πk−1S
d−1 ⊕ πkSdn−1. (5.37)

We would like to stress that (5.36) is a much stronger result than its corollary (5.37).
From our point of view having topological information is always preferable to having weaker
algebraic information. You will notice that (5.36) required minimal work to obtain. Our
methods have been tailored to obtaining these stronger results.
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5.4 Delooping the Unit Sphere S(K)

Start with the fibration sequence

Sd−1 i−→ Sdn−1 γn−→ KP n (5.38)

and consider the limit as n → ∞. The infinite K-projective space KP∞ is formed as the
union

⋃
n≥0 KP n and given the weak topology with respect to the KP n. It is an infinite-

dimensional CW complex with a single cell in each dimension congruent to d. Similarly we
let S∞ =

⋃
n≥0 S

dn−1 be the infinite dimensional sphere given the weak topology with respect
to the finite dimensional spheres. Then S∞ is a CW complex and the maps γn induce a map

γ∞ : S∞ → KP∞. (5.39)

We check γ∞ is trivial over each of the sets Ui = {[u] ∈ KP∞ | ui 6= 0} and conclude from
the fact that KP∞ is paracompact that γ∞ is a fibration.

Lemma 5.4 S∞ ' ∗

Proof Since S∞ is a CW complex it is well-pointed. Thus to conclude that S∞ is pointed
contractible it will suffice to show that it is freely contractible. To this end we use the family
of continuous maps

Shn : Sdn−1 → Sd(n+1)−1 (5.40)

(u1, . . . , un) 7→ (0, u1, . . . , un)

to induce a continuous shift map
Sh : S∞ → S∞. (5.41)

The point e1 = (1, 0, . . . , 0, . . . ) does not lie in the image of Sh, so by corestriction we can
view Sh as a map S∞ → S∞ \ {e1}.

Now, if u ∈ S∞, then u is contained in Sdn−1 for some n and we can check that the
straight line in Kn+1 between u and Shn(u) does not pass through the origin. We conclude
from this that the map

S∞ × I → S∞ (5.42)

(x, t) 7→ (1− t)x+ tSh(x)

‖(1− t)x+ tSh(x)‖

is well-defined and continuous. It is a homotopy idS∞ ' Sh, where the codomain of Sh
is S∞ \ {e1}. This latter space is homeomorphic to R∞ in the weak topology and so is
contractible. In this way we get a free contraction of S∞.

The first application of the lemma comes from the obvious extension of (5.36). Namely
we have a fibration sequence

. . .→ ΩS∞ → ΩKP∞ δ−→ Sd−1 i−→ S∞
γK∞−−→ KP∞ (5.43)
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in which S∞ ' ∗. The connecting map δ is pointwise equivalent to the inclusion of a fibration
with contractible base. In particular it induces a homotopy equivalence

Sd−1 ' ΩKP∞. (5.44)

This is quite fascinating. It seems counter intuitive that the loop space of the infinite complex
KP∞ should be homotopy equivalent to a complex with just one cell! The function space
ΩKP∞ itself is huge. For contrast, the loop space ΩSn has infinitely many cells if n ≥ 1 and
is infinite dimensional if n ≥ 2.

Of course read in the other direction the equation shows that the spheres S0, S1 and
S3 have the homotopy types of loop spaces. We know that out of all the spheres, it is
only S0, S1, S3 and S7 which admit H-space structures, and only S0, S1, S3 which admit
associative H-structures. It is actually no coincidence that these spheres are loop spaces,
although this is not a connection we will not explore in these notes.

Now, (5.44) has another interesting consequence when K = R or C. Namely we can
compute that these infinite projective spaces have exactly one non-vanishing homotopy group

πkRP∞ ∼=

{
Z2 k = 1

0 otherwise
πkCP∞ ∼=

{
Z k = 2

0 otherwise.
(5.45)

Thus these spaces are examples of Eilenberg-Mac Lane Spaces. i.e. CW complexes having
exactly one non-vanishing homotopy group. We can always construct such spaces by simply
attaching cells to a suitable Moore space so as to kill all the relevant homotopy groups, but
generally the spaces so constructed are not easy to understand. The infinite projective spaces
RP∞,CP∞ are rare examples of Eilenberg-Mac Lane Spaces which carry some geometric
significance.
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