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1 H-Spaces

The concept of an H-space is what results when that of a topological magma is generalised to a
homotopy-invariant notion. Essentially the H-spaces are the unital magmas in the homotopy
category of based spaces. The term H-space was coined by J.P. Serre in his 1951 paper [11],
with the ‘H’ being a tribute to the German Mathematician H. Hopf for his influential work
[4]. A consequence of the main result of [4] is essentially that the cohomology ring of a
compact, connected Lie group G is an exterior algebra1 on a collection of odd-dimensional
classes

H∗(G;Q) ∼= Λ(x2n1+1, . . . , x2nk+1). (1.1)

As it turned out, the only two necessary features of G used to prove this isomorphism were
the basic finiteness assumptions and the presence of the multiplication. Thus were born
H-spaces.

1The exterior algebra over a field K generated by odd-dimensional elements u1, . . . , un is the free K-
vector space with basis consisting of all products ui1 . . . uik , i1 < · · · < ik, equipped with an associative,
distributive multiplication subject to the relations ui ·uj = −uj ·ui for i 6= j and u2

i = 0. The empty product
is understood to correspond to an algebra identity in degree 0.
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Definition 1 An H-space is a pair (X,µ) consisting of a pointed space X and a map
µ : X ×X → X which makes the next diagram commute up to homotopy

X ∨X
∇

$$H
HHH

HHH
HHH

� _

��
X ×X µ

// X.

(1.2)

�

Thus we are asking for the existence of homotopies µ(−, ∗) ' idX ' µ(∗,−), although we
do not fix these as part of the structure. The map µ is called a multiplication on X, and
although we will normally leave it implicit from notation, you should understand that it
is an integral part of the structure: the same underlying space may admit many different
multiplications. Another thing to bear in mind is that although the homotopy commutativity
of (1.2) is a requirement only on the homotopy class of µ, we have asked that a particular
representative be fixed.

Lemma 1.1 Let (X,µ) be an H-space. If X is well-pointed, then µ is homotopic to a map
µ′ satisfying µ′(x, ∗) = µ′(∗, x) = x for all x ∈ X.

Proof Since X is well-pointed the inclusion

j : X ∨X ∼= (X × ∗) ∪ (∗ ×X) ⊆ X ×X (1.3)

is a closed cofibration. Choosing a homotopy F : µj ' ∇ and applying the HEP we get a
homotopy F̃ : X × F → X starting at µ and ending at the required map µ′.

Generally we shall be working with well-pointed spaces like CW complexes, and in this
case the lemma shows that there is little loss of generality in assuming that any H-space
multiplication is strict.

Example 1.1

1. A topological group G is an H-space. The group multiplication makes (1.2) commute
strictly. Of course the multiplication on G is associative, and strictly so, and G has
inverses. None of this additional structure is assumed in Definition 1.

2. More generally any topological magma with unit is an H-space for which (1.2) com-
mutes strictly. Lemma 1.1 shows that Definition 1 isn’t really that far away from this.
Contrast this to the situation for co-H-spaces, where you showed that the only ‘strict’
co-H-space is the one-point space! �

Given the first example here it is natural to ask when the multiplication on an H-space
satisfies extra properties.
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Definition 2 An H-space (X,µ) is said to be homotopy associative if the diagram

X ×X ×X 1×µ //

µ×1

��

X ×X
µ

��
X ×X µ // X

(1.4)

commutes up to homotopy. �

Definition 3 An H-space (X,µ) is said to be homotopy commutative if the diagram

X ×X T //

µ
##H

HH
HH

HH
HH

X ×X

µ
{{vv
vv
vv
vv
v

X

(1.5)

commutes up to homotopy, where T : X ×X → X ×X, (x, y) 7→ (y, x), is the twist map. �

Definition 4 A homotopy inverse for a multiplication µ : X × X → X is a map κ :
X → X which makes both the following diagrams commute up to homotopy

X

∗
��

∆ // X ×X
1×κ
��

X X ×Xµoo

X

∗
��

∆ // X ×X
κ×1
��

X X ×Xµoo

(1.6)

�

A homotopy associative H-space with homotopy inverse is said to be an H-group. Loop
spaces are particularly important examples of H-spaces which are homotopy associative but
not strictly associative. Similarly there areplentiful examples of non-commutative topological
monoids which are homotopy commutative. It is interesting in such cases to form to form
homotopy-theoretic measures of their failure to be commutative.

Example 1.2 If K is a real normed division algebra, then its unit sphere S(K) = {x ∈
K | ‖x‖2 = 1} inherits a multiplication which turns it into an H-space. It is a classical
result of Hurewitz [6] that the there are exactly four normed division algebras and that these
are exactly the reals R, the complex numbers C, the quaternions H, and the octonions O.
These algebras may be obtained successively by Cayley-Dickson doubling [6]. Repeating the
process yield the sedenions, which fail to be a division algebra and have zero-divisors, the
presence of which obstruct its unit sphere S15 from inheriting a product in this manner.

1. The unit sphere in R is Z2 as a discrete topological group.

2. The unit sphere in C is S1, which is both associative and commutative.
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3. The quaternions H form a 4-dimensional real associative division algebra. The unit
sphere in H ∼= R4 is S3 and the multiplication induced on it is associative with inverses.
The multiplication is smooth and with it S3 becomes a Lie group. Other multiplications
on S3 are discussed in §4 below. The Lie multiplication is neither commutative, nor
commutative up to homotopy. We discuss a homotopy-theoretic measure of the failure
of the commutivity in future.

4. The octonions O form a 8-dimensional nonassociative real algebra. The unit sphere in
the algebra is S7 and it inherits a non-associative multiplication. Thus unlike the pre-
vious examples S7 is not a topological group. In fact it is known that the multiplication
is not even associative up to homotopy [3].

It is a celebrated result of Adams [1] that no other sphere outside of the list above admits
an H-space multiplication.

Example 1.3 By mapping

(a0, . . . , an) 7→ a0 + a1z + a2z
2 + · · ·+ anz

n (1.7)

we can view Cn+1
∗ = Cn+1 \ 0 as the space of non-zero complex polynomials of degree ≤ n.

Consider then the map defined by multiplication of polynomials

Cm+1
∗ × Cn+1

∗ → Cm+n+1
∗ (1.8)

(
m∑
i=0

aiz
i,

n∑
j=0

bjz
j) 7→

∑
i,j≥0

aibjz
i+j =

m+n∑
k=0

(∑
i+j=k

aibj

)
zk

Projecting this to CP n+m there is an induced map

CPm × CP n → CPm+n. (1.9)

We check easily that if m ≤ m′ and n ≤ n′, then the following diagram commutes

CPm × CP n

��

// CPm+n

��
CPm′ × CP n′ // CPm′+n′

(1.10)

where the vertical arrows are the inclusions. This implies that the collection of all such maps
is coherent enough to induce a multiplication

µ : CP∞ × CP∞ → CP∞ (1.11)

which is associative, commutative, and with unit [1, 0, . . . , 0, . . . ]. The fact that this product
has inverses up to homotopy will follow from later results.

On the other hand, CP n admits no H-space structure for any finite n. The reasons for
this is essentially because its rational cohomology is not an exterior algebra. �
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Example 1.4 If X is an H-group, then all path components of X are of the same homotopy
type. For let Xx denote the path component of a point x ∈ X and let X0 denote the path
component of X containing the basepoint. Then the maps

µ(κ(x),−) : Xx → X0, µ(x,−) : X0 → Xx (1.12)

are inverse homotopy equivalences. �

Let (X,µ) be an H-space and Y a space. Given maps f, g : Y → X we define
f + g : Y → X to be the composite

f + g : Y
∆−→ Y × Y f×g−−→ X ×X µ−→ X. (1.13)

Homotopies f ' f ′ and g ' g′ induce a homotopy

f + g ' f ′ + g′ (1.14)

so we see that the operation (f, g) 7→ f + g descends to the homotopy category and defines
a product on the homotopy set [Y,X]. The homotopy commutativity of the diagrams

Y

∆
��

f // X

in1

�� HH
HH

HH
HH

HH

HH
HH

HH
HH

HH

Y × Y f×∗ // X ×X µ // X

Y

∆
��

f // X

in2

�� HH
HH

HH
HH

HH

HH
HH

HH
HH

HH

Y × Y ∗×f // X ×X µ // X

(1.15)

encodes the equations
∗+f ' f ' f + ∗ (1.16)

and shows that the constant map is a two-sided unit for the product on [Y,X]. In particular
[Y,X] is a unital magma. It need not be associative, and despite our additive notation is
not commutative in general.

If α : Y ′ → Y is a map, then for f, g : Y → X we have a commutative diagram

Y ′

α

��

∆ // Y ′ × Y ′

α×α
��

fα×fα // X ×X
µ

##G
GG

GG
GG

GG

Y
∆ // Y × Y f×g // X ×X µ // X

(1.17)

which gives us
α∗(f + g) = α∗f + α∗g. (1.18)

Since α∗(∗) = ∗, the function
α∗ : [Y,X]→ [Y ′, X] (1.19)

is a homomorphism of unital magmas depending only on the homotopy class of α.
Now assume that (X,µ) is homotopy associative. Then for maps f, g, h : Y → X we

have a homotopy commutative diagram

Y
∆ // Y × Y × Y f×g×h // X ×X ×X

µ×1

��

1×µ // X ×X
µ

��
X ×X µ // X

(1.20)
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which displays a homotopy
f + (g + h) ' (f + g) + h. (1.21)

The conclusion is that in this case the product on [Y,X] is associative.
On the other hand, if (X,µ) is homotopy commutative, then

Y
∆ //

∆ ##G
GG

GG
GG

GG
Y × Y f×g //

T
��

X ×X
T
��

µ

##H
HH

HH
HH

HH

Y × Y
g×f
// X ×X µ

// X

(1.22)

homotopy commutes and gives a homotopy f + g ' g+ f . Thus in this case the product on
[Y,X] is abelian. Note that commutativity does not imply associativity.

Finally let us consider the presence of an inverse κ : X → X for (X,µ). Given f : Y → X
we write

− f = κf : Y
f−→ X

κ−→ X. (1.23)

Then the following diagram commutes up to homotopy

Y × Y f×f // X ×X 1×κ // X ×X
µ

��
Y

∆

OO

f // X

∆

OO

∗ // X.

(1.24)

Note that the clockwise composite around this diagram is f + (−f), while the anticlockwise
composite is ∗. Thus in [Y,X] we have

f + (−f) = ∗. (1.25)

Similarly we show that (−f) + f = ∗ in [Y,X]. Thus if (X,µ) has a homotopy inverse, then
the elements in [Y,X] are invertible.

Summarising the previous paragraphs we have the following.

Proposition 1.2 If (X,µ) is an H-space, then for each space Y , the homotopy sets [Y,X]
is a unital monoid. If X is an H-group, then [Y,X] is a group which is abelian if in addition
(X,µ) is homotopy commutative. Moreover all this structure is natural with respect to maps
Y → Y ′.

The proposition has a sort of converse. To formalise it we will introduce a further definition.

Definition 5 Let X be a space. A contravariant binary operation on the functor

Topop∗
[−,X]−−−→ Set∗ is a lifting of it into the category Mag∗ of unital magmas as indicated in

the left-hand diagram below

Mag∗

U
��

hTopop∗ [−,X]
//

99t
t

t
t

t
Set∗

Gr

U

��
hTopop∗ [−,X]

//

::u
u

u
u

u
Set∗

Ab

U

��
hTopop∗ [−,X]

//

::u
u

u
u

u
Set∗

(1.26)
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Similarly we define a contravariant group operation on [−, X] to be a lifting into the
category Gr of groups as indicated in the middle diagram, and a contravariant abelian
operation to be a lifting into the category Ab of abelian groups as indicated in the right-hand
diagram. In each diagram U denotes the obvious forgetful functor. �

Thus [−, X] has a contravariant binary operation if for each space Y , there is a unital binary
operation on the homotopy set [Y,X], and a (homotopy class of) map α : Y ′ → Y induces a
unit-preserving homomorphism α∗ : [Y,X]→ [Y ′, X]. We have seen above how the presence
of an H-space multiplication on X gives rise to exactly such a structure.

Proposition 1.3 Let X be a space. Then the homotopy classes of multiplications on X are
in one-to-one correspondence with contravariant binary operations on [−, X]. Moreover, ho-
motopy classes of homotopy associative multiplications with inverses on X are in correspon-
denec with contravariant group operations, and amongst these, the homotopy commutative
multiplications correspond to contravariant abelian operations.

Proof We have already seen that every homotopy class of multiplication gives rise to a
contravariant binary operation, so we only show here the converse. Thus assume that [−, X]
has been equipped with the structure of a contravariant binary operation. The trick to
producing a multiplication on X is to study [X × X,X] and use its abstract product to
define one. We’ll first need to notice that for each space Y the constant map is the unit in
[Y,X]. Indeed, [∗, X] has a single point so must be the trivial magma with only an identity
element. Then the unique map Y → ∗ gives rise to a homomorphism [∗, X]→ [Y,X] whose
image must be the unit in its codomain.

Returning now to the problem let pr1, pr2 : X ×X → X be the projections onto the first
and second factors and define

µ = pr1 + pr2 ∈ [X ×X,X] (1.27)

where + denotes the abstract product granted by the binary operation. We have to check
that µ satisfies the requirements for it to be a multiplication. This is equivalent to showing
that µ ◦ j1 = idX = µ ◦ j2 ∈ [X,X], where ja : X ↪→ X × X is the inclusion into the ath

factor. To get this we can use the contravariant functorality. For instance

j∗1µ = j∗1(pr1 + pr2) = j∗1pr1 + j∗1pr2 = (pr1 ◦ j1) + (pr2 ◦ j1) = idX + ∗ = idX (1.28)

and similarly j∗2µ = ∗+ idX = idX . This proves the first statement.
Now assume that [−, X] is a group operation. Then in [X ×X ×X,X] we have

µ(µ× 1) = (µ× 1)∗(pr1 + pr2) = pr1(µ× 1) + pr2(µ× 1) = (pr1 + pr2) + pr3. (1.29)

and similarly µ(1 × µ) = pr1 + (pr2 + pr3). Since these two classes are equal we conclude
that the product (1.27) is homotopy associative. Next we get a homotopy inverse for µ by
setting

κ = −idX ∈ [X,X] (1.30)

and checking that

µ(1× κ)∆ = ∆∗(1× κ)∗pr1 + ∆∗(1× κ)∗pr2 = ∆∗(pr1 − pr2) = idX − idX = 0 (1.31)
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and that µ(κ× 1)∆ = 0. Thus we have the second part of the statement.
In the case that [−, X] is contravariantly commutative we have

µT = T ∗pr1 + T ∗pr2 = pr2 + pr1 = pr1 + pr2 = µ (1.32)

and so can complete the proof.

Example 1.5 Let X, Y be H-spaces. Then X × Y is an H-space. Simply observe that
[−, X × Y ] ∼= [−, X]× [−, Y ] naturally. �

Example 1.6 If X is an H-space then there is an induced operation on its set of path
components π0X. If X is homotopy-associative with inverse, then π0X is a group.

Example 1.7 If X is an H-space and K is any locally compact space, then C∗(K,X) is an
H-space. The bijections

[Y,C∗(K,X)] ∼= [Y ∧K,X] (1.33)

are natural in Y and so it is possible to apply 1.3. If µ is the multiplication on X, then

µ̂ : C∗(K,X)× C∗(K,X) ∼= C∗(K,X ×X)
µ∗−→ C∗(K,X) (1.34)

is the multiplication on C∗(K,X). If X admits an H-inverse, then C∗(K,X) admits an H-
inverse. If X is homotopy associative, then C∗(K,X) is homotopy associative. In particular
if X is homotopy associative and has an inverse, then all components of C∗(K,X) are of
the same homotopy type and π0(XK) = [K,X] is a group. Notice that these conditions are
fulfilled when X = ΩY is a loop space (see §2). �

To complete the analogue with topological picture we need a notion of a homomorphism up
to homotopy.

Definition 6 Let (X,m), (Y, n) be H-spaces. A map f : X → Y is said to be an H-map if
the following diagram commutes up to homotopy

X ×X f×f //

m

��

Y × Y
n

��
X

f // Y.

(1.35)

We say that f is a H-equivalence if it is both an H-map and a homotopy equivalence. �

Clearly the property of a map being an H-map (H-equivalence) depends only on the homotopy
class of that map. It is also easy to see that a composite of H-maps (H-equivalences) is an
H-map (H-equivalence).

Lemma 1.4 If f : (X,m)
'−→ (Y, n) is an H-equivalence, then so is any homotopy inverse

g : Y → X.

Proof We have gn ' gn(fg × fg) ' gfm(g × g) ' m(g × g).

8



Corollary 1.5 If two H-spaces are H-equivalent and one is homotopy associative (commu-
tative), then so is the other. If one admits a homotopy inverse, then so does the other.

Proof Using Lemma 1.4 reduces the proof to studying a few simple diagrams, a task we
leave to the reader.

Proposition 1.6 Let f : (X,m)→ (Y, n) be an H-map. Then for any space K, the induced
map f∗ : [K,X] → [K,Y ] is a homomorphism. If f is a H-equivalence, then f∗ is an
isomorphism.

Proof The first statement is clear from the definition of the binary operations in [K,X], [K,Y ].
The second statement follows with the help of 1.5.

Example 1.8 Let f : X → Y be a map where (X,µX) is a well-pointed H-space and (Y, µY )
is an H-group. When is f an H-map? Consider the difference

Õ(f) = fµX − µY (f × f) ∈ [X ×X, Y ]. (1.36)

The cofiber sequence

X ∨X j−→ X × Y q−→ X ∧X δ−→ ΣX ∨ ΣX . . . (1.37)

gives an exact sequence of groups

0← [X ∨X, Y ]← [X ×X, Y ]← [X ∧X, Y ]← 0. (1.38)

The left-hand arrow is surjective, since the multiplication µY can be used to cosntruct a (non-
multiplicative) splitting, and the right hand arrow is injective, since the connecting map δ

is null homotopic (this was shown in the examples of Cofiber Sequences). The element Õ(f)
restricts to 0 in [X ∨X, Y ] and so by exactness defines a unique obstruction class

O(f) ∈ [X ∧X, Y ] (1.39)

which we call the H-deviation of f . The map f is an H-map if and only if O(f) = 0. �

Example 1.9 If f : X → Y is an H-map between H-spaces X, Y , then a choice of homotopy
ψ : fµX ' µY (f × f) give rise to a multiplication µf,ψ on the homotopy fibre Ff = {(x, l) ∈
X × Y I | f(x) = l(0), l(1) = ∗}. For simplicity let us assume that the multiplications µX
and µY are strict. Then µf,ψ is given by

µf,ψ ((x, l), (y,m)) = (µX(x, y), ψ(x, y) + µY (l(−),m(−))). (1.40)

Different choices for the homotopy ψ will generally give rise to different multiplication. �

Finally we address the problem of transferring H-structures across a homotopy equivalence.
Ideally the condition for a space to admit a multiplication would depend only on its homotopy
type, and indeed this is true.
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Proposition 1.7 Let (X,m) be an H-space and Y a space. Assume that f : Y → X has a
left homotopy inverse g : X → Y . Then the map

µ : Y × Y f×f−−→ X ×X m−→ X
g−→ Y (1.41)

is an H-space multiplication on Y .
If f is a homotopy equivalence then the maps f, g are H-equivalences between (X,m) and

(Y, µ). It follows in this case if (X,m) is homotopy associative (commutative), then so is
(Y, µ), and if X admits a homotopy inverse, then so does Y .

Proof The first statement follows by inspecting the homotopy commutative diagram

Y ∨ Y
f∨f

//

��

X ∨X

�� ∇ %%LL
LLL

LLL
LLL g∨g

// Y ∨ Y
∇

##G
GG

GG
GG

GG

Y × Y
f×f

// X ×X m
// X g

// Y.

(1.42)

If f is a homotopy equivalence, then g is its unique inverse and we have

fµ = gfm(f × f) ' m(f × f), gm ' gm(fg × fg) = µ(g × g) (1.43)

which show that f, g are H-maps. The remaining statements follow from Corollary (1.5).

There is another proof of the proposition which uses Proposition 1.3. Note that if f is not
a homotopy equivalence, then no structure need be transferred along the retraction g. For
instance, it does not follow that Y is homomotopy associative or commutative when X is,
nor that Y has an inverse when X does. Another subtle point is that even when f, g are
inverse homotopy equivalences, if one of X, Y is strictly associative (commutative), then the
other is only guaranteed to be associative (commutative) up to homotopy.

2 Spaces of Loops

The loop space ΩX = C∗(S
1, X) of any pointed space X becomes an H-space when given

the loop multiplication

µ(α, β) = α + β : t 7→

{
α(2t) 0 ≤ t ≤ 1

2

β(2t− 1) 1
2
≤ t ≤ 1.

(2.1)

The unit is the loop which is constant at the basepoint of X, and the required homotopies
for (1.2) are

Rs(α)(t) =

{
α
(

2
1+s

t
)

0 ≤ t ≤ 1+s
2

∗ 1+s
2
≤ t ≤ 1,

Ls(α)(t) =

{
∗ 0 ≤ t ≤ 1−s

2

α
(

2
1+s

t+ s−1
s+1

)
1−s

2
≤ t ≤ 1.

(2.2)
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In particular ΩX is not strictly unital. If we wished to apply Lemma 1.1, then a sufficient
condition for ΩX to be well-pointed is that X is. Below we will focus on developing the loop
multiplication.

Note that despite our additive notation the loop multiplication is not commutative nor
even homotopy commutative in general. We check also that neither is it strictly associative

((α + β) + γ)(t) =


α(4t) 0 ≤ t ≤ 1

4

β(4t− 1) 1
4
≤ t ≤ 1

2

γ(2t− 1) 1
2
≤ t ≤ 1,

(α + (β + γ))(t) =


α(2t) 0 ≤ t ≤ 1

2

β(4t− 2) 1
2
≤ t ≤ 3

4

γ(4t− 3) 3
4
≤ t ≤ 1.

However it’s easy to see that both of these sums are homotopic to

(α + β + γ)(t) =


α(3t) 0 ≤ t ≤ 1

3

β(3t− 1) 1
3
≤ t ≤ 2

3

γ(3t− 2) 2
3
≤ t ≤ 1

(2.3)

by homotopies which are linear on each subinterval (and in particular independent of the
particular loops α, β, γ). See Elementary Homotopy Theory IV pg. 5 for a similar homotopy.
The conclusion is that the loop multiplication is homotopy associative.

Now consider the map κ : ΩX → ΩX, α 7→ −α, given by

(−α)(t) = α(1− t). (2.4)

This provides a homotopy inverse for the loop multiplication. Indeed, we get a homotopy
J : ΩX × I → ΩX for the left-hand diagram in (1.6) by setting

Js(α)(t) =


α(2t) 0 ≤ t ≤ 1−s

2

α(1− s) 1−s
2
≤ t ≤ 1+s

2

α(2− 2t) 1+2
2
≤ t ≤ 1.

(2.5)

Similarly we find a homotopy for the right-hand diagram.
In summary we have:

Proposition 2.1 For any space X, the loop space ΩX is an H-group. A pointed map f :
X → Y induces an H-map Ωf : ΩX → ΩY .

Proof Only the last statement needs proof and in fact it is easy to see that Ωf is a strict
H-map.

The presence of all this is understandable in another way. Recall the co-H-structure on
S1. We check that the map

c∗ : ΩX × ΩX ∼= C∗(S
1 ∨ S1, X)→ C∗(S

1, X) = ΩX (2.6)

induced by the suspension comultiplication c : S1 → S1∨S1 is exactly the loop multiplication
(2.1). The same goes for the loop inverse (2.4), which is exactly the map induced by the
suspension coinverse ι : S1 → S1. If you wondered why I did not define π1 in terms of loops,
it is because the approach through co-H-structure is more fundamental. Generalising all of
the above we have the following.
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Proposition 2.2 Let (X, c) be a co-H-space and Y a space. Then C∗(X, Y ) is an H-space
with multiplication

c∗ : C∗(X, Y )× C∗(X, Y ) ∼= C∗(X ∨X, Y )
c∗−→ C∗(X, Y ). (2.7)

If X is coassociative (cocommutative), then C∗(X, Y ) is homotopy associative (commutative).
If X has a coinverse, then C∗(X, Y ) has an inverse. In particular C∗(X, Y ) is an H-group
when X is a cogroup.

Proof We need to prove that the multiplication satisfies condition (1.2). We get this by
studying the diagram

C∗(X, Y ) ∨ C∗(X, Y )

��

(pr∗1 ,pr
∗
2)
// C∗(X ×X, Y )

��

∆∗

((PP
PPP

PPP
PPP

P

C∗(X, Y )× C∗(X, Y )
∼= // C∗(X ∨X, Y ) c∗ // C∗(X, Y )

(2.8)

The right-hand vertical arrow is induced by the inclusion X∨X ↪→ X×X and so the triangle
homotopy commutes by virtue of c being a comultiplication. We get by inspection that the
square in the diagram commutes strictly. Since ∆∗(pr∗1, pr

∗
2) = (∆∗pr1,∆

∗pr∗2) = (id∗X , id
∗
X)

we see that (1.2) is satisfied. This shows that C∗(X, Y ) is an H-space. The other statements
follow similarly.

2.1 The Moore Loop Space

Let X be a based space. We show in this section we give an alternative construction of a
space of loops on X which is a strictly associative topological monoid. This construction is
called the Moore Loop Space. In the case that X is well-pointed, the Moore loop space and
ordinary loop space of X are H-equivalent.

Define the Moore loop space of X by putting

ΩMX = {(α, v) ∈ C([0,∞), X)× [0,∞) | α(0) = ∗ and α(t) = ∗ for t ≥ v} (2.9)

and topologising it as a subspace of C([0,∞), X) × [0,∞). We define a product ΩMX ×
ΩMX → ΩMX by letting

(α1, v1) + (α2, v2) = (α1 ? α2, v1 + v2) (2.10)

where

(α1 ? α2)(t) =


α1(t) 0 ≤ t ≤ v1

α2(t− v1) v1 ≤ t ≤ v1 + v2

∗ v1 + v2 ≤ t.

(2.11)

The constant loop of 0 length (∗, 0) furnishes the product with a strict unit. Notice that the
associativity relation(

(α1, v1) + (α2, v2)
)

+ (α3, v3) = (α1, v1) +
(
(α2, v2) + (α3, v3)

)
(2.12)

12



holds strictly. That is, ΩMX is a topological monoid. On the other hand, ΩMX has inverses
only up to homotopy, in this case provided by the map

κ : ΩMX → ΩMX, (α, v) 7→ (−α, v) (2.13)

where

(−α)(t) =

{
α(v − t) 0 ≤ t ≤ v

∗ v ≤ t
t ∈ [0,∞). (2.14)

Proposition 2.3 If X is a based space, then ΩMX is a topological monoid and a H-group.

A basepoint preserving map f : X → Y induces a continuous monoid homomorphism

ΩMf : ΩMX → ΩMY, (α, v) 7→ (fα, v). (2.15)

Thus we can view ΩM(−) as a functor from Top∗ into the category of topological monoids.
In particular, if f is a homeomorphism, then ΩMf is a monoid isomorphism. On the other
hand, as an H-map, clearly ΩMf depends only on the homotopy class of f , and in particular
is an H-equivalence whenever f is a homotopy equivalence.

In the next paragraph we will compare the Moore loop space with the standard loop
space. Unfortunately this will take us outside of the pointed category. There is an unpointed
inclusion

j : ΩX → ΩMX, l 7→ (l, 1) (2.16)

where on the right-hand side we extend the domain of l to [0,∞) by letting it be constant
at the basepoint on [1,∞). There is also a pointed retraction

r : ΩMX → ΩX, (α, v) 7→ [αv : t 7→ α(tv)] (2.17)

where on the right-hand side we understand αv to have its domain restricted to [0, 1].

Lemma 2.4 ΩX is an unpointed deformation retract of ΩMX.

Proof Clearly rj = idΩX . A homotopy H : idΩMX ' jr is defined at (α, v) ∈ ΩMX with
v > 0 by

Hs(α, t0) = (hs(α, v), (1− s)v + s), s ∈ I, (2.18)

where

hs(α, v)(t) = α

(
tv

(1− s)v + s

)
, t ∈ [0,∞). (2.19)

For the constant loop we set Hs(∗, 0) = (∗, 0) for all s ∈ I.

Notice that while the inclusion j : ΩX
⊆−→ ΩMX does not respect basepoints, the retraction

r : ΩMX → ΩX is a pointed map, and the homotopy H defined in the lemma is one of
pointed maps.

Lemma 2.5 For any pointed space X the map r : ΩMX → ΩX is an H-map and an
unpointed homotopy equivalence. If X is well-pointed, then r is an H-equivalence.
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Proof That r is a free homotopy equivalence was shown in 2.4. To show that it is an H-map
consider the homotopy G : ΩMX × ΩMX × I → ΩX given by

Gs((α, u), (β, v))(t) =

{
α (t((1 + s)u+ (1− s)v)) 0 ≤ t ≤ u

(1+s)u+(1−s)v

β
(

(1+s)uv+(1−s)v2
su+(1−s)v t− uv

su+(1−s)v )
)

u
(1+s)u+(1−s)v ≤ t ≤ 1.

(2.20)

This has G0((α, u), (β, v)) = r((α, u) + (β, v)) and G1((α, u), (β, v)) = r(α, u) + r(β, v), and
moreover is a based map. Thus we have the first part of the claim.

To see the final part notice that if X is well-pointed, then so are ΩX and ΩMX. We can
use a Strøm structure of ∗ ↪→ X to define ones for the loop spaces. In any case the claim
follows because the well-pointedness of the loop spaces implies that r is a pointed homotopy
equivalence. To see now that it is an H-equivalence we simply apply Lemma 1.4.

Remark The inclusion j : ΩX → ΩMX is an unbased H-map. A free homotopy H :
ΩX × ΩX × I → ΩMX intertwining the two multiplications is given by

Fs(α, β)(t) = (fs(α, β), 1 + s), α, β ∈ ΩX, s ∈ I, (2.21)

where

fs(α, β)(t) =


α((2− s)t) 0 ≤ t ≤ 1

2−s

β
(

(2−s)t−1
1+s−s2

)
1

2−s ≤ t ≤ 1 + s

∗ t ≥ 1 + s

t ∈ [0,∞). (2.22)

�

Corollary 2.6 Let X be a space. Then for any space K, the map

r∗ : [K,ΩMX]→ [K,ΩX] (2.23)

is a homomorphism. If X is well-pointed, then it is an isomorphism of groups.

3 H-Structure vs. Co-H-Structure

Consider the following scenario: (X, c) is a co-H-space and (Y,m) is an H-space and we are
presented with the homotopy set [X, Y ]. The set has two different multiplicative structures.
Which will be the more fruitful one to try to understand? As it turns out, the question is
unnecessary: they are the same. One proof of this hinges upon the following more general
statement.

Theorem 3.1 (The Eckmann-Hilton Argument) Let M be a set and ∗ : M×M →M ,
(x, y) 7→ x∗y, and · : M×M →M , (x, y) 7→ x·y, a pair of unital binary operations. Assume
they satisfy the interchange law

(w ∗ x) · (y ∗ z) = (w · y) ∗ (x · z), ∀w, x, y, z ∈M. (3.1)

Then the operations ∗ and · coincide, and moreover are both commutative and associative.
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Proof Included among the assumptions is the existence of units 1∗, 1• ∈M satisfying

x ∗ 1∗ = 1∗ ∗ x = x (3.2)

x · 1• = 1• · x = x (3.3)

for each x ∈M . Applying the interchange law we see that the two units are actually equal

1• = 1• · 1• = (1∗ ∗ 1•) · (1• ∗ 1∗) = (1∗ · 1•) ∗ (1• · 1∗) = 1∗ ∗ 1∗ = 1∗. (3.4)

Now with this in hand write 1 = 1∗ = 1• and take x, y ∈M to get

x ∗ y = (1 · x) ∗ (y · 1) = (1 ∗ y) · (x ∗ 1) = y · x (3.5)

as well as
y · x = (y ∗ 1) · (1 ∗ x) = (y · 1) ∗ (1 · x) = y ∗ x. (3.6)

Switching x and y gives y ∗ x = x · y, and putting everything together gives

x ∗ y = y · x = y ∗ x = x · y (3.7)

which prove that the two operations coincide and are commutative. To show that they are
associative we take x, y, z ∈M and get

(x ∗ y) ∗ z = (x · y) ∗ (1 · z) = (x ∗ 1) · (y ∗ z) = x · (y ∗ z) = x ∗ (y ∗ z). (3.8)

Since the operations coincide this proves their associativity.

To relate this theorem to [X, Y ] we have to show that the interchange law is satisfied.
Write +c for the product formed using the comultiplication on X and +m for the product
formed using the multiplication on Y . Then if f, g, h, k : X → Y are given, the commutative
diagram

X
∆

##F
FF

FF
FF

FF
c // X ∨X

∆

&&MM
MMM

MMM
MMM

∆∨∆ // X2 ∨X2 (f×g)∨(h×k) // Y 2 ∨ Y 2

∇

&&LL
LLL

LLL
LLL
m∨m // Y ∨ Y

∇

""F
FF

FF
FF

FF
F

X ×X c∨c // (X ∨X)2 (f∨h)×(g∨k) // (Y ∨ Y )2 ∇ // Y × Y m // Y

(3.9)

encodes the equation

(f +m g) +c (h+m k) = (f +c h) +m (g +c k). (3.10)

In the diagram we write a superscript 2 to denote a two-fold cartesian product. Note the
switching of g, h on the bottom line that arises at the interchange of the diagonals on X and
on X ∨X. In any case we are free to apply 3.1.

Corollary 3.2 If (X, c) is a co-H-space and (Y,m) is an H-space, then binary operations
on [X, Y ] which are induced respectively by the co-H-structure on X and the H-structure on
Y coincide, and moreover are associative and commutative.
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This observation is useful for several reasons. Firstly because it aids greatly with the com-
putability of [X, Y ]. More subtly is to do with functorality. For instance if Y is an H-
space, then any map α : X → X between co-H-spaces X,X ′ will induce a homomorphism
α∗ : [X, Y ] → [X ′, Y ], whereas normally we would need to assume that α were a co-H-map
to guarantee this. This observation has some application when studying compositions in
π∗X.

Example 3.1 Let (X,µ) be an H-space. Then then the algebraic structure on the homotopy
groups of X is induced by its multiplication. We see this explicitly in the following diagram
in which the vertical isomorphism is the map (α, β) 7→ (α× β)∆

πnX × πnX
∼=
��

+

&&MM
MMM

MMM
MMM

πn(X ×X) µ∗
// πnX.

(3.11)

Moreover, if α, β ∈ πkX and f ∈ πnSk, then

f ∗(α + β) = f ∗α + f ∗β ∈ πnX (3.12)

�

There are also other consequences of 3.2.

Corollary 3.3 Let X be a space. Assume that X admits an H-space multiplication. Then
π1X is abelian.

Thus we have immediate criteria to discount such spaces as S1 ∨ S1 from being H-spaces.
There are also other applications of this corollary.

Proposition 3.4 Let (X,m) be a connected H-space and Y any a well-pointed space. Then
there is a bijection [Y,X]0 ∼= [Y,X] between the free and pointed homotopy classes of maps
Y → X.

Proof The special case thatX was a connected topological group was Exercise 1.5 in Pointed
and Unpointed Homotopy Sets. The general proof goes through almost unchanged.

Example 3.2 Assume that Sn admits a multiplication µ : Sn× Sn → Sn. Then the degree
−1 map is a unique homotopy inverse for µ. This is true because any inverse κ : Sn → Sn

must solve the equations
0 = 1 +µ κ = 1 +c κ (3.13)

in πnS
n, where c is the suspension comultiplication. Clearly this equation has a unique

solution.
More generally, if X is a space which possesses both a comultiplication c : X → X ∨X

and a multiplication µ : X ×X → X, then a map κ : X → X is a coinverse for c if and only
if it is an inverse for m. �
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One upshot of the work above is a calculation of the fundamental group of the circle by
purely abstract reasoning.

Proposition 3.5 There is an isomorphism

π1S
1 ∼= Z (3.14)

induced by sending n ∈ N to the map which is n times the identity.

Proof We have shown in Corollary 3.3 above the fundamental group of an H-space is abelian.
On the other hand it was an exercise to show that the fundamental group of a co-H-space
is free. Thus if a space is both a co-H-space and an H-space, then its fundamental group is
either trivial or Z, since these are the only free groups which are abelian. In particular this
applies to S1. In Elementary Homotopy Theory I we showed that S1 is not contractible, so in
particular idS1 is not null homotopic and represents a non-trivial element in π1S

1 = [S1, S1].
Clearly idS1 cannot be divisible in this group, and so represents a generator.

Example 3.3 Let (X,µ) be an H-group. For an integer k ∈ Z the kth power map on X is
the map k : X → X which is k times the identity in [X,X]. In particular 0 is the constant
map, and k is defined iteratively for k > 0 by

k : X
∆−→ X ×X idX×k−1−−−−−→ X ×X µ−→ X. (3.15)

If k < 0, then k is iteratively defined by

k : X
∆−→ X ×X κ×k+1−−−−→ X ×X µ−→ X (3.16)

where κ is the homotopy inverse of X. The map k induces multiplication by k on π∗X.
In the case that X is also a cogroup, the kth power map k coincides with the degree

k map k : X → X, which is formed using the co-H-structure as k times the identity in
[X,X]. Recall that the the map k induces multiplication by k on H∗X. In particular these
observations apply to any sphere with a multiplication. �

4 Counting Multiplications

Here we consider problem of the uniqueness of a given H-space structure. Examples are
given at the end of the section.

Proposition 4.1 Let X be a space. Assume that X is well-pointed that that it admits a
homotopy associative H-space multiplication µ : X ×X → X with inverse. Then the set of
all homotopy classes of multiplications on X is in in one-to-one correspondence with the set
[X ∧X,X].

Proof Because X is well-pointed there is a cofiber sequence

X ∨X j∗−→ X ×X q∗−→ X ∧X δ−→ ΣX ∨ ΣX → . . . (4.1)
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and applying [−, X] to this leads to an exact sequence

[X ∨X,X]← [X ×X,X]← [X ∧X,X]
δ∗←− [ΣX ∨ ΣX,X]← . . . (4.2)

Now the multiplication on X endows each of these sets with a natural group structure, so
this is an exact sequence of groups. It was shown in the examples of the Cofiber Sequences
exercise sheet that the connecting map δ is null homotopic, so δ∗ is the zero homomorphism
and q∗ is an injection of groups. At the other end, the j∗ is surjective, since we can use the
multiplication µ to construct a (non-multiplicative) section. Hence we have a short exact
sequence of groups

0← [X,X]× [X,X]
j∗←− [X ×X,X]

q∗←− [X ∧X,X]← 0 (4.3)

Now, if µ′ is any H-space multiplication on X, then it must satisfy j∗µ′ = µ′j =
(idX , idX) ∈ [X,X] × [X,X]. In particular the set of all homotopy classes of multiplica-
tions on X is exactly the inverse image of (idX , idX) under j∗. But by exactness we have

(j∗)−1(idX , idX) = q∗([X ∧X,X]) (4.4)

and since q∗ is injective we get the proposition.

Note that it is essential for the proposition that X have a good multiplication to begin
with, and the multiplications it generates will not in general be homotopy associative or
have inverses. It is not the most general statement possible, but will suffice for our exam-
ples. It yields the slightly surprising fact that although H-structures are fairly rare amongst
topological spaces, when a space has one, it will generally have a large number of others.
The proposition also tells us how to find these other multiplications. With its notation, if
ξ : X ∧X → X is a map, then

µξ = µ+ ξq (4.5)

is a multiplication, where µ is the fixed multiplication on X and the sum is formed using
the group structure on [X ×X,X] which is again induced by µ.

Example 4.1 Any contractible H-space has a unique multiplication which ithomotopy as-
sociative, commutative and admits an inverse. �

Example 4.2 Among the spheres which are H-spaces we have [Sn ∧ Sn, Sn] = π2nS
n, and

these sets are known for n = 1, 3, 7.

1. S1 has a unique H-space structure, since π2S
1 = 0.

2. There are twelve different multiplications on S3, since π6S
3 ∼= Z12 and it is known

that exactly 8 of them are homotopy associative [3]. Let µ : S3 × S3 → S3 be its Lie
multiplication and fix a generator ν ′ ∈ π6S

3. Then, for each mod 12 integer n we get
a (homotopy class of) multiplication µn : S3 × S3 → S3 by setting

µn = µ+ n · ν ′q (4.6)

where q : S3 × S3 → S3 ∧ S3 is the quotient map. These 12 maps realise all the
multiplications on S3, and µ0 = µ is the Lie multiplication.
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Proposition 4.2 (James, Slifker) The multiplication µn : S3 × S3 → S3 is homo-
topy associative if and only if n ≡ 0, 1 mod 3. For each homotopy associative multipli-
cation there is a topological group Xn and an H-homotopy equivalence (S3, µn)

'−→ Xn.

The first statement is James’s and the second Slifker’s.

Now, the standard Lie multiplication and its opposite are the only associative multipli-
cations which come from any Lie group structure on a manifold homotopy equivalent
to S3. This follows from the classification theorem for compact Lie groups. Thus of
the eight homotopy associative multiplications on S3, six represent multiplications on
non-smooth topological groups of the homotopy type of S3.

It is a subtle point that none of these non-Lie homotopy associative multiplications is
homotopic to a strictly associative multiplication on S3 itself, which is the reason for
needing to introduce the topological goups Xn in the above statement.

3. On S7 there are π14S
7 ∼= Z120 distinct multiplications. None of them are homotopy as-

sociative. Note that S7 does not satisfy the conditions of Proposition 4.1. Neverthless,
we have seen in the previous section that the degree −1 map on S7 is an H-inverse, and
that fact that the standard multiplication on S7 is Moufang gives us enough structure
to be able to extend the statement to cover this case. �

Example 4.3 H-space structures on products of spheres has been an interesting question
and can be a difficult problem. For instance Loibel [5] and Norman [10] have calculated that
on S3 × S3 there are 220 · 316 distinct homotopy classes of multiplication, with 216 × 316 of
them being homotopy associative. �

Example 4.4 Nonstandard multiplications on compact Lie groups have been studied and
considered.

1. SO3 has 768 different multiplications [9].

2. SU3 has 215 · 39 · 5 · 7 multiplications and Sp2 has 220 · 3 · 55 · 7 multiplications. [7]

3. As far as I am aware, the number of multiplications on SU4 and SU5 is an open
question, although it is known that these numbers are finite, and partial results for
SU4 are obtained by Murley in his thesis [8].

4. For n ≥ 6, the number of multiplications on SUn is known to be infinite [2]. �
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