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1 Instructions

This week we will prove the Bott-Samelson Theorem and compute the cohomology of ΩSn+1.
All the exercises appear in sections 6 and 7. Please complete all of them.

2 The Coalgebra Structure on Homology

Let X be a space and assume that either H∗X is torsion free or that coefficients are taken
in a field. In this case the homology cross product is an isomorphism

−×− : H∗X ⊗H∗X
∼=−→ H∗(X ×X). (2.1)

This is the content of the Künneth Theorem. We denote by ∆ = ∆X : X → X × X the
diagonal map of X and consider the composite

∆∗ : H∗X → H∗(X ×X) ∼= H∗X ⊗H∗X. (2.2)
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This map endows H∗X with the structure of a coalgebra, so called because the projections
onto the two factors give rise to a commutative diagram

H∗X
∼=

xxppp
ppp

ppp
pp

∆∗
��

∼=

''NN
NNN

NNN
NNN

H∗X H∗X ⊗H∗Xpr1∗
oo

pr2∗
// H∗X.

(2.3)

If you want to understand where the name comes from simply turn the arrows of this diagram
around to find something familiar. The diagram shows that if u ∈ H∗X, then

∆∗u = u⊗ 1 +
∑

i u
′
i ⊗ u′′i + 1⊗ u (2.4)

where the u′i, u
′′
i ∈ H∗X are classes with degrees satisfying |u′i| + |u′′i | = |u|. Of course the

u′i, u
′′
i may be zero.

If the idea of the coproduct seems abstract recall that the cup product in cohomology is
induced by the diagonal map. That is, if x, y ∈ H∗X, then

x ∪ y = ∆∗(x⊗ y) (2.5)

The point is that (2.4) contains exactly the same information as the cup product. In fact
the coproduct has more obvious geometric significance.

To relate the coproduct on H∗X with the cup product on H∗X we have the Kronecker
duality pairing

〈−,−〉 : H∗X ⊗H∗X → R. (2.6)

This gives us
〈x ∪ y, u〉 = 〈∆∗(x⊗ y), u〉 = 〈x⊗ y,∆∗u〉 (2.7)

and if ∆∗u is as in (2.4), then this expands out as

〈x⊗ y,∆∗u〉 = 〈x⊗ y, u⊗ 1〉+
∑

i〈x⊗ y, u′i ⊗ u′′i 〉+ 〈x⊗ y, 1⊗ u〉 (2.8)

= 〈x, u〉 · 〈y, 1〉+
∑

i〈x, u′i〉 · 〈y, u′′i 〉+ 〈x, 1〉 · 〈y, u〉.

Thus u is dual to x ∪ y if and only if x, y are dual to terms appearing in (2.4).

Example 2.1 Suppose X is a space with HkX = 0 for k < n. Then if u ∈ HnX we have

∆(u) = u⊗ 1 + 1⊗ u (2.9)

for dimensional reasons. In fact, the same equation must hold whenever u ∈ HkX for
n ≤ k < 2n. This simple observation characterises the coproduct in H∗S

n completely. �

Example 2.2 We compute the coproduct in H∗CP n. Let x ∈ H2CP 2 be a generator. Then
we define u1 ∈ H2CP 2 and u2 ∈ H4CP 2 to be the unique classes satisfying

〈x, u1〉 = 1, 〈x2, u2〉 = 1 (2.10)

As in the previous example we have

∆∗u1 = u1 ⊗ 1 + 1⊗ u1. (2.11)
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To compute ∆∗u2 we check that

〈x⊗ x,∆∗u2〉 = 〈∆∗(x⊗ x), u2〉 = 〈x2, u2〉 = 1 (2.12)

and similarly 〈x2 ⊗ 1,∆∗u2〉 = 1 = 〈1⊗ x2,∆∗u2〉, and so conclude that

∆∗u2 = u2 ⊗ 1 + u1 ⊗ u1 + 1⊗ u2. (2.13)

With a little more work we can figure out the diagonal in CP n. Let ui ∈ H2iCP n be dual
to xi ∈ H2iCP n. Then arguing as above we find

∆ui = ui ⊗ 1 +
∑

j=1,...i−1

ui−j ⊗ uj + 1⊗ ui. (2.14)

�

3 Pontryagin Algebras

Assume that (X,µ) is an H-space. Then the composition

H∗X ⊗H∗X
×−→ H∗(X ×X)

µ∗−→ H∗X (3.1)

turns H∗X into a graded algebra. The first map here is the homology cross product, which is
always injective. We call (3.1) the Pontryagin product, and refer to H∗X with this algebra
structure as the Pontryagin Algebra of (X,µ). The Pontryagin product has a unit. It is
associative (commutative) whenever (X,µ) is a homotopy associative (commutative), and it
has inverses whenever (X,µ) has an H-inverse.

The coproduct on H∗X pairs well with the Pontryagin product in the following sense.
The space X ×X is an H-space with multiplication

(X ×X)× (X ×X)
1×T×1−−−−→ X ×X ×X ×X µ×µ−−→ X ×X (3.2)

where T is the twist map. This means that H∗(X × X) has its own Pontryagin product.
Still working under the assumption that H∗X is torsion free, or that we have coefficients in
a field, we check that the following diagram commutes

H∗X ⊗H∗X
∆∗⊗∆∗

��

µ∗ // H∗X

∆∗
��

H∗X ⊗H∗X ⊗H∗X ⊗H∗X
1⊗T⊗1// H∗X ⊗H∗X ⊗H∗X ⊗H∗X

µ∗⊗µ∗// H∗X ⊗H∗X.

(3.3)

This diagram expresses the fact that ∆∗ is an algebra homomorphism.

Proposition 3.1 Under the stated assumptions, the diagonal on X induces an algebra ho-
momorphism

H∗X → H∗(X ×X) ∼= H∗X ⊗H∗X. (3.4)

where the domain and codomain carry their Pontryagin structures.
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For an example of the utility of the proposition

Example 3.1 Give S3 its standard Lie structure inherited from the quaternions. Then
RP 3 = S3/Z2, where the Z2 subgroup is generated by ±1. Since this subgroup is central
there is an induced multiplication on the quotient RP 3. In fact with a little work we can
show that RP 3 with this multiplication is isomorphic to the Lie group SO3 of rotations of
3-dimensional space. Thus we can calculate the Pontryagin algebra of RP 3 ∼= SO3, at least
with Z2 coefficients.

We take all homology with coefficients in Z2. Then for i = 1, . . . , 3 we have HiRP 3 ∼= Z2,
say generated by ui. We would like to determine the Pontryagin products u1 · u1 and u1 · u2.
Now a calculation similar to that of Example (2.1) shows that

∆∗ui = ui ⊗ 1 +
∑

j=1,...i−1

ui−j ⊗ uj + 1⊗ ui (3.5)

for each i = 1, 2, 3. With Z2-coefficients we find

∆∗(u1 · u1) = ∆∗(u1) ·∆∗(u1) = (u1 ⊗ 1 + 1⊗ u1)2 = u2
1 ⊗ 1 + 1⊗ u2

1 (3.6)

and since this is not equal to ∆∗u2 it must be that u1 · u1 = 0. On the other hand we have

∆∗(u1 · u2) = ∆∗(u1) ·∆∗(u2) = (u1 · u2)⊗ 1 + u1 ⊗ u2 + u2 ⊗ u1 + 1⊗ (u1 · u2). (3.7)

Now this implies that u1 · u2 6= 0, since if it were, then both sides of this equation would
vanish. The middle two terms on the right-hand side show that this cannot happen.

Above we have shown that u1 · u1 = 0 and u1 · u2 = u2 · u1 = u3. It follows that the
Pontryagin algebra

H∗RP 3 ∼= Λ(u1, u2) (3.8)

is an exterior algebra.
Similarly RP 7 inherits a (non-associative) multiplication from S7. Running similar com-

putations to the above we can show that

H∗RP 7 ∼= Λ(u1, u2, u4). (3.9)

�

3.1 An Example

The Lie group SUn can be described as the set of all complex n×n matrices A which satisfy

1. A†A = I, where the dagger denotes Hermitian transpose.

2. det(A) = 1.

Then SUn acts on Cn in a way which fixes the unit sphere S2n−1 and we can define an
evaluation map

p : SUn → S2n+1, A 7→ A · e1. (3.10)
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It can be shown that p is a locally trivial fibration and we check that p−1(e1) = SUn−1. Thus
there is a fibration sequence

SUn−1 → SUn → S2n−1 (3.11)

which by an inductive process gives us access to the low-dimensional homotopy groups of
SUn.

The group SU1 is a single point. Checking directly we see that SU2 consists of complex
matices of the form

A =

(
z1 −z2

z2 z1

)
(3.12)

where z1, z2 ∈ C satisfy |z1|2 + |z2|2 = 1. In this case the evaluation map p : SU2 → S3 is the
diffeomorphism A 7→ (z1, z2). Better yet, when we identify S3 with the unit sphere in H using
the map (z1, z2) 7→ z1 + jz2 we see that p is in fact an isomorphism of Lie groups (recall that
the Lie product on S3 was defined as that inherited from the quaternionic multiplication).

Now when n = 3 the isomorphism SU2
∼= S3 gives us a fibration sequence

S3 → SU3 → S5. (3.13)

Following the clutching construction which was described in Fibrations III we see that SU3

may be obtained up to homeomorphism as a pushout

S4 × S3

y

� � //

ϕ

��

D5 × S3

��
D5 × S3 // SU3

(3.14)

for some map ϕ. The pushout is also a homotopy pushout and studying its Mayer-Vietoris
sequence we get

HkSU3
∼=

{
Z k = 0, 3, 5, 8

0 otherwise.
(3.15)

Since the homology is torsion free we have H∗SU3
∼= Hom(H∗SU3,Z), so (3.15) also describes

the cohomology groups of SU3. For i = 3, 5, 8 let ui ∈ HiSU3 be generators and xi ∈ H iSU3

their duals, so that 〈xi, uj〉 = δij.
Now, with the Pontryagin product u3 · u5 ∈ H8SU3, so this element is some (possibly

zero) multiple of u8. To find out more we use Proposition 3.1 to get

∆∗(u3 · u5) = ∆∗(u3) ·∆∗(u5). (3.16)

Of course ∆∗(u3) = u3 ⊗ 1 + 1 ⊗ u3 and ∆∗(u5) = u5 ⊗ 1 + 1 ⊗ u5 for dimensional reasons,
so (3.16) expands as

∆∗(u3 · u5) = (u3 ⊗ 1 + 1⊗ u3) · (u5 ⊗ 1 + 1⊗ u5) (3.17)

= (u3 · u5)⊗ 1 + u3 ⊗ u5 − u5 ⊗ u3 + 1⊗ (u3 · u5).

Note the −1 sign that appears from the graded commutation rule (1 ⊗ u5) · (u3 ⊗ 1) =
(−1)|u3||u5|u3 ⊗ u5.
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On the other hand, in cohomology we have that x3 ∪ x5 is some (possibly zero) multiple
of x8. To see that this cup product is non-trivial we compute

〈x3 ∪ x5, u3 · u5〉 = 〈∆∗(x3 ⊗ x5), u3 · u5〉 = 〈x3 ⊗ x5,∆∗(u3 · u5)〉
= 〈x3 ⊗ x5, (u3 · u5)⊗ 1〉+ 〈x3 ⊗ x5, u3 ⊗ u5〉+ . . . (3.18)

= 0 + 〈x3, u3〉〈x5, u5〉+ 0 + . . .

= 1

with all other terms on the second line evaluating to 0. The only way that (3.18) can be
non-trivial is if both x3 ∪ x5 6= 0 and u3 · u5 6= 0. The fact that it evaluates to 1 implies that
actually x3 ∪ x5 = x8 and u3 · u5 = u8. It follows that

H∗SU3
∼= Λ(x3, x5) (3.19)

(under the cup product) is an exterior algebra, as is

H∗SU3
∼= Λ(u3, u5) (3.20)

(under the Pontryagin product).
The results of this calculation generalise, although the ad hoc methods do not. In general

H∗SUn ∼= Λ(x3, x5, . . . , x2n−1) (3.21)

and
H∗SUn ∼= Λ(u3, u5, . . . , u2n−1) (3.22)

where x2i−1 is dual to u2i−1. A calculation can be found in Steenrod-Epstein [1] Chptr IV,
where (3.21) is obtained as a Corollary of the more fundamental computation (3.22).

4 The Suspension Map

Fix a space X. By taking the adjoint of the identity idΣX : ΣX
=−→ ΣX we obtain a map

σ = σX : X → ΩΣX. (4.1)

By definition
σ(x)(t) = x ∧ t, x ∈ X, t ∈ I. (4.2)

We call σ the suspension map of X. Its appearance is related to the work of the previous
sections because we will be interested in the homology of the loop space ΩΣX. The name
comes from the fact that if Σ : [A,X]→ [ΣA,ΣX] denotes the assignment f 7→ Σf , then

[A,X] Σ // [ΣA,ΣX]

∼=
��

[A,X]
σ∗ // [A,ΩΣX]

(4.3)
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commutes, where the right-hand bijection is the adjunction. Thus σ is the topological
counterpart to the abstract operation Σ.

There are deep things that can be said about the suspension map. For instance the
Freudenthal Suspension Theorem gives conditions under which σ∗ is bijective, although this
is not something we’ll explore today

The suspension is natural. If f : X → Y is given, then

X
σX //

f
��

ΩΣX

ΩΣf
��

Y
σY // ΩΣY

(4.4)

is commutative. Moreover, if a map f : X → ΩY into a loop space is given, then f factors
through the suspension as

f : X
σX−→ ΩΣX

Ωf[−−→ ΩY (4.5)

where f [ : X → Y is the adjoint of f .

5 A Lemma

It is not immediately clear how this lemma fits into the ideas of previous sections. Never-
theless it will be a crucial part of our proof of the Bott-Samelson Theorem.

Proposition 5.1 Let p : E → B be a fibration and j : A ↪→ B a closed cofibration. Then
the inclusion EA = p−1(A) ↪→ E is a closed cofibration.

Proof Equip the inclusion j : A ↪→ B with a Strøm structure

ϕ : B → I, G : B × I → B (5.1)

and let H be a filler in the diagram

E
id //

in0

��

E

p

��
E × I

p×1
//

Hjjjj

55jjjjj

B × 1
G
// B.

(5.2)

Then

pϕ : E → I, H̃ : E × I → E (5.3)

(e, t) 7→ H(e,min{t, p(ϕ(e))})

defines a Strøm structure on EA ↪→ E.

Note that ‘cofibration’ is meant here in the sense of unpointed cofibration. In the sequel we
will work with pointed spaces. It is the task of the reader to understand how to use the
above result in the pointed context.

Before moving on we really must comment on how quirky this theorem is. It has no dual.
The pushout of a fibration will almost never be a fibration. The reader should take some
time to think about this.

7



6 The Bott-Samelson Theorem

Throughout this section X will be a well-pointed, path-connected space. The reduced sus-
pension of X is defined by the pushout square

X

��

//

y

C+X

��
C−X // ΣX

(6.1)

where C±X are copies of the reduced cone. Since X is well-pointed the inclusions X ↪→ C±X
are both pointed and unpointed cofibrations, so (6.1) is a pushout and a homotopy pushout
in both Top and Top∗. We will be working in Top∗ throughout, but have been careful about
our assumptions for a reason.

We begin by taking the path space fibration e0 : PΣX → ΣX and forming pullbacks
over the spaces in (6.1) to obtain a strictly commutative cube

E0

��

""E
EE

EE
EE

E
// E+

��

$$H
HH

HH
HH

HH

E− //

��

PΣX

e0

��

X

""E
EE

EE
EE

EE
// C+X

$$H
HH

HH
HH

HH

C−X // ΣX.

(6.2)

Exercise 6.1 Show that the top face of (6.2) is both a pushout and a homotopy pushout.�

Now it is easy to identity the (fibre) homotopy types of the three space E+, E−, E0. We
will want to be a bit picky with exactly how we do so, however. Recall the suspension map
σ = σX : X → ΣΩX, which was defined in the previous section. We define ν : X ×ΩΣX →
ΩΣX to be the composite

X × ΩΣX
σ×1−−→ ΩΣX × ΩΣX

µ−→ ΩΣX (6.3)

where µ is the loop multiplication.

Exercise 6.2 Show that there is a homotopy commutative diagram

ΩΣX

α− '
��

X × ΩΣXνoo

α0 '
��

pr2 // ΩΣX

α+ '
��

E− E0
oo // E+

(6.4)

in which each vertical arrow is a homotopy equivalence. (Hint: Work right to left.) �
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Exercise 6.3 Use Exercise 6.2 to show that

ν∗ ⊕ pr2 : H∗(X × ΩΣX)→ H∗ΩΣX ⊕H∗ΩΣX (6.5)

is an isomorphism. Conclude that if H∗X is torsion free or if field coefficients are used, then

ν∗ : H̃∗X ⊗H∗ΩΣX → H̃∗ΩΣX (6.6)

is an isomorphism, where the tilde denotes reduced homology. �

Next we’ll want to explore the algebraic implications of (6.6). Our conventions on grading
are discussed in the appendix.

Lemma 6.1 Fix a principal ideal domain1 R. Let A be a connected associative graded
algebra and M a graded module which is R-free in each degree and has M0 = 0. Suppose
there is a graded homomorphism f : M → A. Then the extension f : T (M) → A is an
algebra isomorphism if and only if the composition

M ⊗ A f⊗1−−→ A⊗ A µ−→ A (6.7)

is an isomorphism, where µ denotes the algebra multiplication on A.

The tensor algebra T (M) is discussed in the appendix. We recall graded means graded by
the non-negative integers, that A is connected if A0

∼= R, and that A =
⊕

n≥0An.

Exercise 6.4 Prove Lemma 6. (Hint: One direction is easy. For the other use induction to
show that (6.7) is an isomorphism in each degree). �

We now have all the pieces we need to assemble the important result which we would like to
state this week.

Theorem 6.2 (Bott-Samelson) Fix a principal ideal domain R. Assume that X is a
(path-)connected well-pointed topological space such that H∗X is R-free. Then the map

σ∗ : H̃∗X → H∗ΩΣX (6.8)

induces an algebra isomorphism

T (H̃∗X)
∼=−→ H∗ΩΣX. (6.9)

Exercise 6.5 Prove the Bott-Samelson Theorem 6.2. �
1In our applications R will be either Z or one of the field Zp, p prime, Q. You may assume that R is one

of these if you prefer.
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7 Loop Spaces of Spheres

A good application for the Bott-Samelson Theorem is to compute the homologies of loop
spaces of spheres. Homology and cohomology in this section will be taken over the integers.

Exercise 7.1 Compute the Pontryagin algebra H∗ΩS
n+1 with integral coefficients. �

On the other hand, to compute the cohomology rings of loop spaces of spheres we need to
work a little bit more.

Exercise 7.2 Compute the cohomology ring H∗ΩSn+1. (Hint: First use Proposition 3.1 to
compute the coproduct ∆∗. The structure of H∗ΩSn+1 depends on the parity of n. I will
accept a computation with rational coefficients if you find the algebra difficult.) �

A Appendix: The Tensor Algebra

Let R be a commutative ring with unit. We will work with graded modules over R. Here
graded will mean graded over the non-negative integers, so such an object M has a decom-
position

M =
⊕
n≥0

Mn (A.1)

where each Mn is a R-module. In formulas we will understand M−n = 0 whenever n > 0.
If x ∈ Mn is a homogeneous element, then we write |x| = n to denote its degree. We
will consider R to be a graded module concentrated in degree 0. We restrict to modules of
finite type, which means that each Mn will be a finitely generated R-module. Moreover
our modules will be connected, which means that an isomorphism R ∼= M0 is fixed. We
write

M =
⊕
n≥0

Mn (A.2)

for the positive part of M .
A homorphism f : M → N between graded modules M,N consists of a family of R-

module homomorphisms fn : Mn → Nn. The kernel of a graded homomorphism f : M → N
is the graded module ker(f) with ker(f)n = ker(fn) ⊆Mn. The cokernel of f is the graded
module coker(f) with coker(f)n = coker(fn).

If M,N are graded modules, then their graded tensor product is the graded module
M ⊗N with

(M ⊗N)n =
⊕
i+j=n

Mi ⊗R Nj. (A.3)

The reader can check that the graded tensor product is associative. Moreover M ⊗ R ∼=
M ∼= R⊗M for any graded module M .

Given graded modules M,N , the homomorphism T : M ⊗ N → N ⊗ M defined on
homogeneous elements by

T (m⊗ n) = (−1)|m||n|n⊗m. (A.4)
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is an isomorphism called the twist, or switching, map. In general we use the Koszul sign
rule throughout, so a graded minus sign is introduced whenever the order of two elements is
interchanged.

If f : M → M ′ and f ′ : N → N ′ are homomorphisms, then f ⊗ f ′ : M ⊗N → M ′ ⊗N ′
is the homomorphism with (f ⊗ f ′)n =

⊕
i+j=n fi ⊗ f ′j. If M is a graded module, then its

dual module M∗ is that with

(M∗)n = HomR(Mn, R). (A.5)

If f : M → N is a homomorphism, then f ∗ : N∗ → M∗ is the homomorphism with
(f ∗)n = Hom(f, 1).

Definition 1 A graded algebra over R is a graded module A equipped with a pair of homo-
morphisms µ : A⊗ A→ A and η : R→ A which make the following diagram commutes

A⊗R
∼=

##F
FF

FF
FF

FF

1⊗η
��

A⊗ A µ // A

R⊗ A

η⊗1

OO

∼=

;;xxxxxxxxx

(A.6)

The homomorphism µ is called the product of A and the homomorphism η is called its
unit. The algebra A is said to be associative if the left-hand diagram below commutes, and
commutative if the right-hand diagram below commutes

A⊗ A⊗ A µ⊗1 //

1⊗µ
��

A⊗ A
µ

��
A⊗ A µ // A.

A⊗ A

µ
##G

GG
GG

GG
GG

T // A⊗ A

µ
{{xx
xx
xx
xx
x

A

(A.7)

where T is the twist map.
If (A, µA, ηA) and (B, µB, ηB) are algebras, then a graded homomorphism f : A → B is

said to be an algebra map if it makes both the following diagrams commute.

A⊗ A
f⊗f
��

µA // A

f

��
B ⊗B µB // B

R
ηA

��~~
~~
~~
~~ ηB

  A
AA

AA
AA

A

A
f // B.

(A.8)

Definition 2 Let M be a graded module. The tensor algebra on M is the graded algebra
T (M) defined as follows. We set

T (M) =
⊕
n≥0

M⊗n (A.9)
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where we set M⊗0 = R and inductively define M⊗n = M ⊗M⊗n−1 for n ≥ 1. The algebra
product is defined by concatenation. For x1⊗x2⊗. . .⊗xm ∈M⊗m and y1⊗y2⊗. . .⊗yn ∈M⊗n

we put
(x1 ⊗ x2 ⊗ . . .⊗ xm) · (y1 ⊗ y2 ⊗ . . .⊗ yn) ∈M⊗m+n (A.10)

and extend this in the obvious way to an R-linear product µ : T (M)⊗ T (M)→ T (M). The
product is associative by construction but fails to be commutative.

There is a homomorphism of modules

ιM : M → T (M) (A.11)

which identifies M = M⊗1. Clearly the image of ιM generates T (M) as an algebra. �

Proposition A.1 Let M be a graded module. Assume that f : M → A is a module ho-
momorphism into a associative algebra A. Then there is a unique algebra homomorphism
f : T (M)→ A making

M

ιM

��

f

""E
EE

EE
EE

EE

T (M)
f

// A

(A.12)

commute.

Proof For x1 ⊗ x2 ⊗ . . .⊗ xn ∈M⊗n put

f(x1 ⊗ x2 ⊗ . . .⊗ xn) = f(x1) · f(x2) . . . f(xn). (A.13)

This is well-defined since the associativity of A implies that the right-hand side makes sense
regardless of any particular bracketing scheme. The definition (A.13) is R-linear, and ex-
tending it in the obvious way yields a homomorphism f : T (M)→ A with fιM = f . Clearly
f is an algebra map. Since the image of ιM generates T (M) as an algebra, f is the unique
algebra map satisfying fιM = f .

Using the proposition we turn T (−) into a functor. If f : M → N is a map of graded
modules, then we let

T (f) : T (M)→ T (N) (A.14)

be the unique algebra map induced by the composition M
f−→ N

ιN−→ T (N). We can now
view T (−) as a functor from the category of graded modules to the category of associative
graded algebras. The reader can interpret Proposition A.1 as the statement that T (−) is
right adjoint to the forgetful functor in the opposite direction.
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