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Abstract

For these notes we will follow chapter 9 from [Die00] combined with chapter 14
from [Die08].

1 Definition of principal bundles

A principal G-bundle is a local trivial fibration where the charts are compatible with a
group action. We will specify this by definition 1.1. Some basic definitions about group
actions can be found in the appendix.

Definition 1.1. Let G be a topological group. A principal G-bundle is a map p : E → B
together with a right action r : E ×G→ E satisfying the following conditions.

1. For all x ∈ E and g ∈ G we have p(xg) = p(x).

2. For every b ∈ B there is an open neighbourhood U and a G-homeomorphism
ϕ : p−1(U) → U × G (where G acts on p−1(U) by restriction of r and on U × G
by ((u, x), g) 7→ (u, xg)) such that the following diagram commutes.

p−1(U) U ×G

U

ϕ

prU

(1)
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First we notice that the action of G on p−1(U) is well defined by the first condition.
Also because of the first condition, the map p induces a map p : E/G → B. From the
second condition we get that G acts freely on E and that the map p : E/G → B is a
homeomorphism (we can verify that p is bijective but the map p is, as a local trivial
fibration, a quotient map (Fibrations III Proposition 1.3) hence the set inverse of p is
continuous).

Theorem 1.2. Let p : X → B and q : Y → B be principal G-bundles and F : X → Y a
G-map such that qF = p. Then F is a homeomorphism.

Proof. We will show that F is locally a homeomorphism. We therefore assume that p and
q are trivial. Then F is of the form:

F : B ×G→ B ×G, F (b, g) = (b, α(b)g) (2)

with a map α : B → G. Then an inverse of F is given by (b, g) 7→ (b, α−1(b)g). The general
case follows since we can show that F is bijective.

Definition 1.3. Let

Y X

C B

F

q p

f

(3)

be a commutative square with principal G-bundles q and p and a G-map F : Y → X. Then
the map F or (F, f) is called bundle map.
If f is the identity then F is a homeomorphism by Theorem 1.2 and is called a bundle
isomorphism.

Let p : E → B be a principal G-bundle and f : X → B be a map. Then the map X×BE →
X from the pullback

X ×B E E

X B

p

f

(4)

is also a principal G-bundle. Here G acts on X ×B E by (x, e)g = (x, eg). We call the
map X ×B E → X the bundle induced from p by f .

Definition 1.4. A right G-space U is called trivial if there exists a continuous G-map
f : U → G into the G-space G with right translation action. A right G-space is called
locally trivial if it has an open covering by trivial G-subspaces.

Lemma 1.5. A G-space U is trivial if and only if U → U/G is isomorphic to the trivial
principal G-bundle pr: U/G×G→ U/G.

Proof. Let U be a trivial G-space. Hence there is a G-map f : U → G. Let p : U → U/G
be the projection map. Then we get a continuous G-map (p, f) : U → U/G×G over U/G.
Because the map U → U, u 7→ u · f−1(u) factors over p we get a map s : U/G → U . Now
we can verify that U/G×G→ U, (x, g) 7→ s(x)g is an inverse of (p, f).

With this Lemma get the following theorem:

Theorem 1.6. The total space E of a principal G-bundle is locally trivial. If E is locally
trivial, then E → E/G is a principal G-bundle.
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2 Universal Bundle

A principal G-bundle1 p : EG→ BG is called universal if it is numerable2 trivial and if
for every numerable trivial principal G-bundle q : E → B there exist up to homotopy a
unique bundle map from q to p.
Two bundle maps α0, α1 : E → EG are homotopic as bundle maps if there is a homotopy
Ht : α0 ' α1 such that Ht is a G-equivariant map for all t ∈ I.
Now assume that p′ : E′G → B′G is another universal bundle. Then by definition there
are up to homotopy unique bundle maps β : EG → E′G and γ : E′G → EG where the
compositions βγ and γβ are bundle maps and hence are homotopic to the identity. Also
BG and B′G are homotopy equivalent. The map p : EG→ EB is called universal bun-
dle and the space BG is called classifying space of G.
Let q : E → B be a numerable principal G-bundle. Then there is up to homotopy a
unique map k : B → BG induced from the bundle map from q to EG → BG. This
map is called classifying map. We denote by B(G,B) the set of isomorphism classes
of numerable principal G-bundles over B. By assigning each isomorphism class of a bun-
dle the corresponding homotopy class of the classifying map, we get a well defined map
κ : B(G,B) → [B,BG]. An inverse is given by assigning each k : E → BG the induced
principal G-bundle k∗ : B ×BG EG → B. This inverse is well defined because of the ho-
motopy theorem for principal G-bundles (see Theorem 3.7 Fibrations III).
Hence the classification of bundles is reduced to a problem in homotopy theory:

Theorem 2.1 (Classification Theorem). We assign to each isomorphism class of numer-
able principal G-bundles the homotopy class of a classifying map and obtain a well-defined
bijection B(G,B) ∼= [B,BG]. The inverse assigns to k : B → BG the bundle induced by k
from the universal bundle.

2.1 Construction of a universal bundle

In this section we want to actually construct a universal bundle for a given topological
group G.

Theorem 2.2. For every topological group G there exists a universal bundle p : EG→ BG.

Therefore we will use the infinite join of topological spaces. Let (Xj | j ∈ J) be a family
of topological spaces. The join

X = ?j∈JXj (5)

can be defined as the following space. The elements of X are are represented by families
(tj , xj)j∈J with tj ∈ [0, 1] and xj ∈ Xj such that only finitely many tj are not zero and∑

j∈J tj = 1. The families (tj , xj) and (uj , yj) represent the same element if and only if

1. tj = uj for each j ∈ J

2. xj = yj whenever tj 6= 0.

1Note that the spaces EG and BG are related to G but not to E and B.
2i.e. there is a numerable covering of BG such that p is trivial over each member of this open covering.
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We will use the notation tjxj for (tj , xj). This is suggestive since we can replace 0xj by
0yj for any xj and yj in Xj . We have coordinate functions:

tj : X → [0, 1], (tixi) 7→ tj pj : t−1j (0, 1]→ Xj , (tixi) 7→ xj (6)

The topology on X will be the coarsest topology such that all maps tj and pj are con-
tinuous. This topology is characterized by the following universal property: A map
f : Y → X for any space Y is continuous if and only if the maps tjf : Y → [0, 1] and
pjf : f−1t−1j (0, 1]→ Xj are continuous.
If all spaces Xj are G spaces, then ((tjxj), g) 7→ (tjxjg) defines a right G action on X.
The continuity can be verified with the universal property from above.
Now we can set

EG = G ? G ? G ? . . . (7)

as the join of countably many copies of G. We write BG = EG/G and therefore get the
orbit map p : EG→ BG.
We want to show that this map p : EG → BG is a numerable principal G-bundle. The
coordinate functions tj are G-invariant and induce therefore functions τj on BG. The
τj are a point-finite partition of unity subordinate to the open covering by the Vj/G,
Vj = t−1j (0, 1]. The bundle is trivial over Vj/G, since we have, by construction, G-maps
pj : Vj → G.

Proposition 2.3. Let E be a G space. Any two G-maps f, g : E → EG are G-homotopic.

Proof. We consider the coordinate form of f(x) and g(x)

(t1(x)f1(x), t2(x)f2(x), . . . ) and (u1(x)g1(x), u2(x)g2(x), . . . ), (8)

and show that f and g are G-homotopic to maps with coordinate form

(t1(x)f1(x), 0, t2(x)f2(x), 0, . . . ) and (0, u1(x)g1(x), 0, u2(x)g2(x), . . . ) (9)

where 0 denotes an element of the form 0 · y. In order to achieve this, for f say, we
construct a homotopy in an infinite number of steps. The first step has in the homotopy
parameter t the form

(t1f1, tt2f2, (1− t)t2f2, tt3f3, (1− t)t3f3, . . . ) (10)

It removes the first zero in the final result (9). We now iterate this process appropriately.
We obtain the desired homotopy by using the first step on the interval [0, 12 ], the second
step on the interval [12 ,

3
4 ], and so on. The total homotopy is continuous since in each

coordinate place only a finite number of homotopies are relevant.
Having arrived at the two forms (9), they are now connected by the homotopy

((1− t)t1f1, tu1g1, (1− t)t2f2, tu2g2, . . . ) (11)

in the parameter t.

Proposition 2.4. Let E be a G space. Let (Un |n ∈ N) be an open covering by G trivial
sets. Suppose there exists a point-finite partition of unity (vn |n ∈ N) by G-invariant
functions subordinate to the covering (Un). Then there exists a G-map ϕ : E → EG.
A numerable free G-space E admits a G-map E → EG.
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Proof. By definition of a G-trivial space, there exist G-maps ϕj : Uj → G. The desired
map ϕ is now given by ϕ(z) = (v1(z)ϕ1(z), v2(z)ϕ2(z), . . . ). It is continuous, by the
universal property of the topology of EG. In order to apply the last result to the general
case, we reduce arbitrary partitions of unity to countable ones (see Partitions of Unity
notes).
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A Appendix: Group actions

In this section we want to recall some basic definitions.

Definition A.1. A (right) group action of a topological group G on a space E is a
continous map r : E ×G→ E such that

1. r(x, e) = x for all x ∈ E

2. r(x, g1g2) = r(r(x, g1), g2) for all x ∈ E and g1, g2 ∈ G

We will write xg for r(x, g). Similarly we can define a left action as a map l : G×E → E.
Note that a left action is in principal something different than a right action since the
second condition will be (g1g2)x = g1(g2x). But with the map (g, x) 7→ xg−1 we can turn
a right action into a left one.

Definition A.2. Here is some more terminology.

1. The orbit of an element x ∈ E is the set x ·G = {xg | g ∈ G}.

2. For every x ∈ E the stabilizer subgroup of G with respect to x is the set of all
elements in G which fix x:

StabG(x) = {g ∈ G |xg = x}

3. A group action is called free if all stabilizer subgroups are trivial.

4. A group action is called transitive if x ·G = X for some x ∈ E (equivalent for all
x ∈ E).

5. The orbit space E/G is the topological space E/ ∼ where x1 ∼ x2 if and only if
there exist a g ∈ G such that x1g = x2.

Definition A.3. A G-equivariant map f : A→ B is a map of G-spaces (spaces which
are equipped with a right G-action) such that f(ag) = f(a)g for all a ∈ A and g ∈ G.
A G-homeomorphism is a G-map which is also a homeomorphism. The topological inverse
is then also a G-map.
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2008. isbn: 978-3-037-19048-7.

6


	Definition of principal bundles
	Universal Bundle
	Construction of a universal bundle

	Appendix: Group actions
	Bibliography

