Optimization and Dynamics

Summer semester 2015

Exercise sheet 0

Due 12pm, 10.04.2015

1. (a) Define what it means for a sequence $\left(a_{n}\right)_{n \geq 1}$ to converge.
(b) For each of the following sequences $\left(a_{n}\right)_{n \geq 1}$, either find the limit or briefly state why the limit does not exist.

$$
a_{n}:=\frac{(-1)^{n}}{n^{2}} \quad ; \quad a_{n}:=\frac{n(1-3 n)}{n^{2}-5} \quad ; \quad a_{n}:=\frac{n}{\ln (n+1)}
$$

2. Which of the following functions are linear?
(a) $f: \mathbb{R} \rightarrow \mathbb{R} ; f(x):=17 x-\pi$
(b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R} ; f(x, y):=x y$
(c) $f: \mathbb{R} \rightarrow \mathbb{R} ; f(x):=e^{x}$
3. Consider the matrices

$$
A:=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right), \quad B:=\left(\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right)
$$

(a) Show that A and B do not commute.
(b) Does A have an inverse? If so, find A^{-1}.
4. Let

$$
A:=\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

and let

$$
x_{0}:=A ; \quad x_{n}:=A^{n+1} \text { for } n \in \mathbb{N}
$$

Find A^{2}, A^{3} and A^{4} and hence express x_{n} in the form $x_{n}=f(n) x_{0}$ for $n \in \mathbb{N}$.
5. Find the eigenvalues and eigenvectors of the matrix

$$
M:=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Write down the diagonalisation of M and hence (or otherwise) find M^{n} for $n \in \mathbb{N}$.
6. Express the following complex numbers in the form $x+i y$.
(a) $\frac{i}{1+i}$
(b) $\left(\frac{i}{1+i}\right)^{15}$ (Hint: Use polar coordinates.)
7. Solve the differential equations
(a) $x^{\prime}=\left(1+e^{t}\right) x^{2}$,
(b) $x^{\prime}-x \cos t=\cos t$.
8. Solve the initial value problem

$$
\dot{x}=t \tan x, \quad x(0)=\frac{\pi}{6} .
$$

9. Consider the function $f(x)=x^{\frac{1}{3}}, x \in \mathbb{R}$. Show that $x=0$ is a fixed point of the Newton-Raphson iteration and that for any starting value $x_{0} \neq 0$, the Newton-Raphson method will fail to converge to the root $x=0$.
10. Consider the function $f(x)=x^{3}-2 x+2$. Show that f has at least one real root. Then, taking as initial value $x_{0}=0$, apply the Newton-Raphson method. What happens?
