Optimization and Dynamics

Summer semester 2015

Exercise sheet 1

Due 12pm, 17.04.2015

1. Consider the difference equation

$$
x_{n+1}=-x_{n}, n \in \mathbb{N} ; \quad x_{0} \in \mathbb{R}
$$

Find an expression for x_{n} in terms of x_{0}. What are the fixed points? Are there periodic points?
2. Consider the difference equation

$$
x_{n+1}=4 x_{n}\left(1-x_{n}\right) .
$$

Let $x_{0}=\left(\sin \phi_{0}\right)^{2}$. Describe the sequence $\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right)$ (ie, the orbit of x_{0}) for each of the initial values $\phi_{0}=\frac{\pi}{7}, \frac{2 \pi}{7}$ and $\frac{\pi}{5}$.
Hint: Use the identity $(\sin (\theta))^{2}=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)$.
3. Consider the difference equation

$$
x_{n+1}=a x_{n}\left(1-x_{n}\right) .
$$

(a) Let $0<a<1$.
(i) Describe the behaviour of the system for intial states $x_{0}=0$ and $x_{0}=1$.
(ii) Show that for $0<x_{0}<1,\left(x_{n}\right)_{n=0}^{\infty}$ is a strictly monotone decreasing sequence that is bounded below, and hence that the sequence converges to 0 .
(b) Now let $a \geq 1$.
(i) Show that if $x_{0}<0$ then $x_{n}<0$ for all $n \in \mathbb{N}$ and hence that the sequence is strictly monotone decreasing. Does it converge?
(ii) What happens if $x_{0}>1$?
4. Solve the differential equation

$$
x^{\prime}(t)=(x(t))^{2}
$$

for the initial value $x(0)=x_{0}>0$ in the time interval $0 \leq t<\frac{1}{x_{0}}$. Sketch the graph. What happens at $t=\frac{1}{x_{0}}$? Does the same problem arise if x_{0} is negative and $t \geq 0$?

