Optimization and Dynamics

Summer semester 2015

Exercise sheet 10

Due 12pm, 19.06.2015

- 1. Determine whether or not each of the following functions fulfils a Lipschitz condition on the set $\Omega := [0, 1] \times [0, 1]$.
 - (a) $f(t,x) = t^2 + x^2$
 - (b) $f(t, x) = \sin t \cdot \cos t$
 - (c) f(t, x) = |t x|

2. Consider the initial value problem $\begin{cases} x' = tx \\ x(0) = x_0. \end{cases}$

- (a) Does the function f(t, x) = tx fulfil a Lipschitz condition on $\mathbb{R} \times \mathbb{R}$?
- (b) Solve the differential equation. Is there a solution for all $x_0 \in \mathbb{R}$?
- (c) Is the solution in each case unique?
- 3. Consider the initial value problem $\begin{cases} x' = tx^2 \\ x(0) = x_0 . \end{cases}$
 - (a) Does the function $f(t, x) = tx^2$ fulfil a Lipschitz condition on $\mathbb{R} \times \mathbb{R}$?
 - (b) Solve the differential equation. Is there a solution for all $x_0 \in \mathbb{R}$? Is it defined on \mathbb{R} or just on a subset of \mathbb{R} ?
 - (c) Is the solution in each case unique?
- 4. Consider the initial value problem $\begin{cases} x' = \sqrt{x} \\ x(0) = x_0 \end{cases}$
 - (a) Does the function $f(x) = \sqrt{x}$ fulfil a Lipschitz condition on \mathbb{R}^+ ?
 - (b) Solve the differential equation. Is there a solution for all $x_0 \in \mathbb{R}^+$?
 - (c) Is the solution in each case unique?