Optimization and Dynamics

Summer semester 2015
Exercise sheet 10

Due 12pm, 19.06.2015

1. Determine whether or not each of the following functions fulfils a Lipschitz condition on the set $\Omega:=[0,1] \times[0,1]$.
(a) $f(t, x)=t^{2}+x^{2}$
(b) $f(t, x)=\sin t \cdot \cos t$
(c) $f(t, x)=|t-x|$
2. Consider the initial value problem $\left\{\begin{array}{l}x^{\prime}=t x \\ x(0)=x_{0}\end{array}\right.$.
(a) Does the function $f(t, x)=t x$ fulfil a Lipschitz condition on $\mathbb{R} \times \mathbb{R}$?
(b) Solve the differential equation. Is there a solution for all $x_{0} \in \mathbb{R}$?
(c) Is the solution in each case unique?
3. Consider the initial value problem $\left\{\begin{array}{l}x^{\prime}=t x^{2} \\ x(0)=x_{0}\end{array}\right.$
(a) Does the function $f(t, x)=t x^{2}$ fulfil a Lipschitz condition on $\mathbb{R} \times \mathbb{R}$?
(b) Solve the differential equation. Is there a solution for all $x_{0} \in \mathbb{R}$? Is it defined on \mathbb{R} or just on a subset of \mathbb{R} ?
(c) Is the solution in each case unique?
4. Consider the initial value problem $\left\{\begin{array}{l}x^{\prime}=\sqrt{x} \\ x(0)=x_{0}\end{array}\right.$.
(a) Does the function $f(x)=\sqrt{x}$ fulfil a Lipschitz condition on \mathbb{R}^{+}?
(b) Solve the differential equation. Is there a solution for all $x_{0} \in \mathbb{R}^{+}$?
(c) Is the solution in each case unique?
