Optimization and Dynamics

Summer semester 2015
Exercise sheet 13

Due 12pm, 10.07.2015

1. Discuss the stability of the system $x^{\prime}=A x$ in the case $A=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ where $\lambda_{1} \neq 0$ and $\lambda_{2}=0$. Sketch phase diagrams.
2. (a) Consider the system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1}-8 x_{2} \\
x_{2}^{\prime}=x_{1}-4 x_{2}
\end{array}\right.
$$

Find all fixed points and discuss their stability. Write down the general solution to the system and draw a phase diagram.
(b) Now consider the system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1}+a x_{2} \\
x_{2}^{\prime}=x_{1}-4 x_{2} .
\end{array}\right.
$$

For which values of $a \in \mathbb{R}$ is the fixed point $x=0$ asymptotically stable?
3. For each of the following systems, find the fixed points and discuss their stability.
(a) $\left\{\begin{array}{l}x^{\prime}=-3 x+4 y \\ y^{\prime}=-2 x+3 y\end{array}\right.$
(b) $\left\{\begin{array}{l}x^{\prime}=4 x-2 y \\ y^{\prime}=5 x+2 y\end{array}\right.$
4. Consider the linear differential equation $x^{\prime}=A x$ where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

(a) Find the general solution.
(b) Find the fixed points and discuss their stability.
(c) Sketch the phase diagram.

