Optimization and Dynamics

Summer semester 2015

Exercise sheet 14

Solutions will be discussed in the tutorial on 15.07.15.

1. Find a Lyapunov function for the system

$$
\left\{\begin{array}{l}
x^{\prime}=-2 x y-2 y^{2} \\
y^{\prime}=x^{2}-y^{3}+x y
\end{array}\right.
$$

and hence show that the origin is a stable fixed point of the system. Is it asymptotically stable?
2. Find a Lyapunov function for the system

$$
\left\{\begin{array}{l}
x^{\prime}=-3 x^{3}-y \\
y^{\prime}=x^{5}-2 y^{3}
\end{array}\right.
$$

and hence show that the origin is an asymptotically stable fixed point.
Hint: Look for a function of the form $E(x, y)=A x^{p}+B y^{q}$, for $A, B>0$ and $p, q \in \mathbb{N}$ even.
3. Consider the system $x^{\prime}=f(x)$ in \mathbb{R}^{d}, where f is a Lipschitz function on \mathbb{R}^{d} such that $f(0)=0$ and

$$
\sum_{k=1}^{d} x_{k} f_{k}(x)<0 \quad \text { if } x \neq 0
$$

Prove that $x(t) \rightarrow 0$ when $t \rightarrow \infty$ for all solutions $x(t)$ of the system, independently of the starting value $x(0)$.
Hint: Prove that $E(x)=\|x\|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}$ is a Lyapunov function for the system.

