Optimization and Dynamics

Summer semester 2015
Exercise sheet 2

Due 12pm, 24.04.2015

1. Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
f(x)= \begin{cases}3 x+1 & \text { if } x \text { is odd } \\ \frac{x}{2} & \text { if } x \text { is even }\end{cases}
$$

(a) Is f injective? Is f surjective? (Explain why.)
(b) Describe the orbits of x for $x=1,2,3,4$ and 5 .
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous and invertible function and consider the discrete dynamical system defined by $x_{n+1}=f\left(x_{n}\right)$.
(a) Prove that any periodic point of f must have minimal period $p \leq 2$.
(b) Prove that f has no eventually periodic points.
3. Consider the dynamical system defined by the difference equation

$$
x_{n+1}=a x_{n}\left(1-x_{n}\right),
$$

where $a=2$.
(a) Find and describe its fixed points.
(b) Compare with the cases $1<a<2$ and $1=a$.
4. Describe the fixed point(s) of the dynamical systems determined by the family of functions

$$
f_{c}(x)=x^{2}+c .
$$

(Hint: Consider the three cases $c<\frac{1}{4}, c=\frac{1}{4}$, and $c>\frac{1}{4}$ separately.)

