Optimization and Dynamics

Summer semester 2015

Exercise sheet 3

Due 12pm, 04.05.2015 ${ }^{1}$

1. Let $X \subseteq \mathbb{R}$ and define $f: X \rightarrow \mathbb{R}$ by $f(x):=\frac{1}{4}\left(x^{2}+3\right)$.
(a) Take $X=\left[0, \frac{3}{2}\right]$. Show that $f(X) \subseteq X$ and that in this case $f: X \rightarrow X$ is a contraction.
(b) Hence, or otherwise, find the fixed point(s) of f in $\left[0, \frac{3}{2}\right]$ and describe their properties.
(c) Now take $X=\mathbb{R}$. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is not a contraction. Does f have any fixed points in $\mathbb{R} \backslash\left[0, \frac{3}{2}\right]$? Do they have the same properties as those of (b)?
2. Let $f: I \rightarrow I$ be a continuous and strictly increasing function on the closed and bounded interval $I \subset \mathbb{R}$ and consider the time discrete system given by $x_{n+1}=f\left(x_{n}\right), n \in \mathbb{N}_{0}$.
(a) Prove that there are no eventually periodic points in I.
(b) Prove that any orbit under f is either constant (that is we have a fixed point) or strictly monotonous.
(c) Prove that any non-constant orbit converges to a fixed point.
(d) Does the fixed point from (c) have to be unique, or may different orbits converge to different fixed points?
3. Consider the dynamical system defined by $f: \mathbb{R} \rightarrow \mathbb{R}$ where

$$
f(x)= \begin{cases}1 & \text { for } \frac{1}{4}<x<1 \\ \frac{1}{2} & \text { for } x=\frac{1}{4}, 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Sketch the graph and the phase portrait.
(b) Find the fixed points of f and describe their properties.
(c) Find the periodic orbits of f and describe their properties.

[^0]
[^0]: ${ }^{1}$ Note later due date as Friday 1st May is a public holiday.

