Optimization and Dynamics

Summer semester 2015

Exercise sheet 5

Due 12pm, 15.05.2015

1. Consider the dynamical systems defined by the following functions. In each case, show that $x=0$ is a fixed point of the dynamical system and discuss its stability properties.
(a) $f(x)=-x-x^{3}$
(b) $f(x)=-x+x^{3}$
(c) $f(x)=-x+x^{2}$
(d) $f(x)=-x-x^{2}$
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x):=-x^{2}+5 x-4$.
(a) Find the unique fixed point, \bar{x}, of f.
(b) Show that for all $x \in B_{1}(\bar{x})=(\bar{x}-1, \bar{x}+1)$, the inequality

$$
|f(x)| \leq|x|
$$

holds, with equality if and only if $x=\bar{x}$.
(c) Show that $x=\bar{x}$ is neither an attracting nor a repelling fixed point.
(d) Explain the difference between this situation and that of Proposition 3.8.
3. Consider the function $f:[0,1] \rightarrow[0,1]$ defined by

$$
f(x)= \begin{cases}\frac{1}{2} x+\frac{1}{2^{k+1}} & \text { for } \frac{1}{2^{k}}<x \leq \frac{1}{2^{k-1}}, k \in \mathbb{N}, \\ 0 & \text { for } x=0\end{cases}
$$

(a) Show that for $k \in \mathbb{N}, x \in\left(\frac{1}{2^{k}}, \frac{1}{2^{k-1}}\right]$,

$$
\lim _{n \rightarrow \infty} f^{n}(x)=\frac{1}{2^{k}}
$$

Hint: Problem 3 from Exercise sheet 4 may be useful!
(b) Show that the fixed point $x=0$ of f is stable.
4. Consider the dynamical system given by $f: \mathbb{R} \rightarrow \mathbb{R}, f(x):=2|x|-1$. Show that for every $m \in \mathbb{N}$, there exists a periodic point of f with minimal period m.

