Optimization and Dynamics

Summer semester 2015

Exercise sheet 5

Due 12pm, 15.05.2015

- 1. Consider the dynamical systems defined by the following functions. In each case, show that x = 0 is a fixed point of the dynamical system and discuss its stability properties.
 - (a) $f(x) = -x x^3$
 - (b) $f(x) = -x + x^3$
 - (c) $f(x) = -x + x^2$
 - (d) $f(x) = -x x^2$
- 2. Let $f : \mathbb{R} \to \mathbb{R}, f(x) := -x^2 + 5x 4.$
 - (a) Find the unique fixed point, \bar{x} , of f.
 - (b) Show that for all $x \in B_1(\bar{x}) = (\bar{x} 1, \bar{x} + 1)$, the inequality

 $|f(x)| \le |x|$

holds, with equality if and only if $x = \bar{x}$.

- (c) Show that $x = \bar{x}$ is neither an attracting nor a repelling fixed point.
- (d) Explain the difference between this situation and that of Proposition 3.8.
- 3. Consider the function $f: [0,1] \to [0,1]$ defined by

$$f(x) = \begin{cases} \frac{1}{2}x + \frac{1}{2^{k+1}} & \text{for } \frac{1}{2^k} < x \le \frac{1}{2^{k-1}}, \ k \in \mathbb{N}, \\ 0 & \text{for } x = 0. \end{cases}$$

(a) Show that for $k \in \mathbb{N}, x \in \left(\frac{1}{2^k}, \frac{1}{2^{k-1}}\right]$,

$$\lim_{n \to \infty} f^n(x) = \frac{1}{2^k}.$$

Hint: Problem 3 from Exercise sheet 4 may be useful!

- (b) Show that the fixed point x = 0 of f is stable.
- 4. Consider the dynamical system given by $f : \mathbb{R} \to \mathbb{R}$, f(x) := 2|x| 1. Show that for every $m \in \mathbb{N}$, there exists a periodic point of f with minimal period m.