# Optimization and Dynamics 

Summer semester 2015

## Exercise sheet 6

Due 12pm, 22.05.2015

1. Consider the dynamical systems defined by the following functions.
(a) $f_{a}(x)=x+x^{2}-a$
(b) $g_{a}(x)=x+x^{2}-a^{2}$

In each case, by finding the fixed points and considering their stability in a nieghbourhood of $a=0$, discuss the bifurcation that occurs at $a=0$. Sketch the corresponding bifurcation diagrams.
2. Consider the family of dynamical systems defined by

$$
f(x)=a x+x^{4} .
$$

Discuss the bifurcation that occurs at $a=1$ and sketch the corresponding diagram.
3. In Theorem 4.6 (Saddle node bifurcation), we proved the existence of a function $h: K \rightarrow \mathbb{R}$ such that $h(\bar{x})=\bar{a}, F(h(x), x)=x($ for $x \in K)$ and $h^{\prime}(\bar{x})=0$. Show that

$$
h^{\prime \prime}(\bar{x})=-\frac{\frac{\partial^{2} F}{\partial x^{2}}(\bar{a}, \bar{x})}{\frac{\partial F}{\partial a}(\bar{a}, \bar{x})} .
$$

Hint: Implicitly differentiate the expression $F(h(x), x)=x$ with respect to $x$. (Twice!)

