Optimization and Dynamics

Summer semester 2015

Exercise sheet 7

Due 12pm, 29.05.2015

1. Consider the following family of dynamical systems

$$
f(x)=a x+x^{3} .
$$

Discuss the bifurcation that occurs at $a=1$ and sketch the corresponding diagram.
2. Consider the family of dynamical systems defined by

$$
f_{a}(x)=x-x\left(x^{2}-a\right)\left(x^{2}-4 a\right),
$$

as discussed in Example 4.15. Show that for $a=0$, the fixed point $x=0$ is attracting and stable.
3. Consider the family of dynamical systems defined by

$$
f_{a}(x)=x-\left(x^{2}-a\right)\left(x^{2}-4 a\right),
$$

as discussed in Example 4.14.
(a) Show that for $a=0$, the fixed point $x=0$ is neither attracting nor repelling and is hence unstable.
(b) For which values of a do you expect another bifurcation?
4. Let A be a real 2×2 matrix with a complex eigenvalue λ and corresponding eigenvalue v. Set $\lambda=\alpha+i \beta, \alpha, \beta \in \mathbb{R}$ and $v=x+i y, x, y \in \mathbb{R}^{2}$.
(a) Show $A x=\alpha x-\beta y$ and $A y=\alpha y+\beta x$.
(b) Hence show that $\bar{v}=x-i y$ is an eigenvector of A corresponding to the eigenvalue $\bar{\lambda}$.
(c) Prove that x and y are linearly independent.
(d) Let S be the matrix whose columns are the vectors x and y, that is, $S=(x, y)$. Show that

$$
S^{-1} A S=\left(\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right)
$$

Hint: Note that $S^{-1} x=\binom{1}{0}$ and $S^{-1} y=\binom{0}{1}$.

