Optimization and Dynamics

Summer semester 2015

Exercise sheet 9

Due 12pm, 12.06.2015

1. Consider the dynamical system

$$\left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array}\right) = \left(\begin{array}{c} \frac{1}{2}\sin x_n + y_n \\ \frac{1}{2}y_n + x_n^2 \end{array}\right) \,.$$

Prove that (0,0) is an attracting fixed point of the system.

2. Consider the discrete dynamical system given by the function $F : \mathbb{R}^2 \to \mathbb{R}^2$,

$$F\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}\frac{1}{2}\left(x+x^3\right)\\\frac{2y}{1+2x^2}\end{array}\right), \quad \text{for } \left(\begin{array}{c}x\\y\end{array}\right) \in \mathbb{R}^2.$$

- (a) Determine the fixed points.
- (b) Show that all fixed points are saddle points.
- (c) Sketch the phase portrait of F.
- 3. Consider the logistic map $f_a : \mathbb{R} \to \mathbb{R}, f_a(x) = ax(1-x)$.
 - (a) Let a = 4 and describe $O^+(\frac{1}{2})$, that is, the orbit of $x = \frac{1}{2}$ under f_4 . Show that this orbit is unstable with respect to [0, 1].
 - (b) Compare this with the case a = 1. That is, find the orbit $O^+(\frac{1}{2})$ under f_1 and discuss the stability of the orbit with respect to [0, 1].