Ubung zu Mathematik I für Chemie Universität Bielefeld WiSe 2016/17 Dr. Thomas Jahn

Blatt 4

Aufgabe 1

Beweisen Sie, dass

- a) $\lim_{n\to\infty} \frac{1}{n^2} = 0$. b) $\lim_{n\to\infty} \frac{n+1}{n} = 1$.

Aufgabe 2

Eine Funktion $f:A\to B$ heißt injektiv, wenn für alle $x,y\in A$ mit f(x) = f(y) bereits x = y gilt¹.

Zeigen Sie: Sind $f:A\to B$ und $g:B\to C$ Funktionen und ist die Komposition $g \circ f$ injektiv, so ist auch f injektiv.

Aufgabe 3

Beweisen Sie: Ist (a_n) eine konvergente reelle Folge, so ist (a_n) beschränkt, d.h. die Funktion $f: \mathbb{N} \to \mathbb{R}$, $n \mapsto a_n$ ist beschränkt.

Aufgabe 4

Rufen Sie sich die Wertetabelle der Sinusfunktion in Erinnerung.

Wir wissen außerdem, dass der Sinus periodisch mit Periode 2π ist.

a) Geben Sie zwei reelle Folgen (a_n) , (b_n) an, sodass für jedes $n \in \mathbb{N}$ gilt: $|\sin(a_n) - \sin(b_n)| = 2$.

Hinweis: Finden Sie zwei Zahlen a_0 und b_0 mit der entsprechenden Eigenschaften und nutzen Sie dann die Periode.

b) Geben Sie zwei reelle Folgen (a'_n) , (b'_n) an, sodass für jedes $n \in \mathbb{N}$ gilt:

$$\left| \sin \left(\frac{\pi}{a'_n} \right) - \sin \left(\frac{\pi}{b'_n} \right) \right| = 2.$$

Hinweis: Formen Sie Ihre Folgen aus a) entsprechend um.

c) Gegeben sei nun die Funktion

$$f: \mathbb{R}_{\geq 0} \to \mathbb{R}, \quad x \mapsto \sin\left(\frac{\pi}{x}\right),$$

wobei $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$. Geben Sie zwei Zahlen $x, y \in \mathbb{R}$ an, sodass $|\bar{f}(x) - f(y)| = 2$ und $|x - y| \le 0,005$ gelten.

Abgabe am 21. November im Briefkasten Ihres Tutors.

¹Das ist gleichbedeutend mit der Definition, die wir auf Blatt 2 gegeben haben.