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Remark of the translators

This translation still may have translational mistakes in it. We highly advice
in questionable cases to advise the original.
We are grateful to any mistakes pointed out to us and would be thankful if
you could email those to uhansper@math.uni-bielefeld.de such that correc-
tions can be made.
Also, we would like to mention that this translation intentionally is made
close to the original such that the structure is not very neatly arranged,
but it is easier to compare to the original this way. The translation uses
in high means terms of the English version of a following paper also by V.
M. Bondarenko, called "Representations of bundles of semichained sets, and
their applications", published 1992 in St. Petersburg J., Vol. 3, No.5. We
recommend reading the introduction and first chapter of this second paper
before studying this one.
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In [1], the problem of describing the representations of the quiver
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with relations a+a− = b+b− is considered, which was posed by I. M. Gelfand
on the International Congress in Nice [2] in connection with the classifica-
tion of Harish-Chandra-modules in a given special point for SL(2,R). In
the solution of this problem there arose a certain class of matrix problems
(representations of sets X of special structures, [1], §1) which are interest-
ing by themselves. Many problems in representation theory reduce to such
problems (cf. for example [3] - [7]).

With the help of the self-reproducing matrix problem method in §2 [1] it
was proved that the indicated problems have tame type, and in §3 and §4 an
algorithm of the construction of the indecomposable representations of the
set X is considered.
In the present work we explicitly look at the indecomposable representations
of a set X and remove certain inexactnesses and assumptions in [1]. Addi-
tionally in §1 we consider a wider class of matrix problems than in [1].

The author expresses deep gratitude to L.A. Nazarova and A.V. Roiter for
constant attention to work and valuable advice.

1 Definition of bundles and their representations

A semichained set or simply a semichain is an arbitrary (finite) partially
ordered set which does not contain subsets of the form (1,1,1) and (1,2)
[8] 1. It is evident that a semichain Π is uniquely represented in the form
⋃
n
i=1 Πi, where each Πi is of the form (1) or (1,1) and Πi < Πj for i < j (that

is, x < y for all x ∈ Πi, y ∈ Πj). The set Πi is called a link of the semichain
Π. The set of points of the semichain Π that are comparable with all points
x ∈ Π, will be denoted by Π0.
Let S = {A1, . . . ,An,B1, . . . ,Bn}, n ≥ 1, be some family of (pairwise disjoint)
semichains, where Ai ≠ ∅ or Bi ≠ ∅ for each 1 ≤ i ≤ n, and let α0 be
an involution on S0 = (⋃

n
i=1A

0
i ) ∪ (⋃

n
i=1B

0
i ). The pair (S,α0) is called a

bundle of semichains A1, . . . ,An,B1, . . . ,Bn. The collection of all bundles
S = (S,α0) is denoted by X0.
We introduce for a bundle (S,α0) the following sets: A = ⋃

n
i=1Ai, B =

⋃
n
i=1Bi, Si = Ai ∪Bi. When we consider block matrices, dimP denotes the
1(n1, . . . , nk) denotes the union of incomparable chains (i.e. linearly ordered sets)

Z1, . . . , Zk which contain n1, . . . , nk elements.
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number of rows (columns) of a horizontal (vertical) band P .
A representation of the bundle S = (S,α0) over a field k is a collection U =

{U1, . . . , Un} of block matrices with coefficients in k, satisfying the following
conditions:

(1) for each 1 ≤ i ≤ n there is a 1-1-correspondence between the points of
the semichain Ai (Bi) and the horizontal (vertical) bands of the matrix
Ui. We denote by P (x) the band with number x ∈ A∪B (which belongs
to Ui if x ∈ Si);

(2) if y = α0(x), then dimP (x) = dimP (y);

(3) if x < y, where x, y ∈ Ai (Bi), then the band P (x) lies in the matrix Ui
above (left of) the band P (y).

Note that certain of the bands P (x) can be empty. A representation U is
called exact if dimP (x) ≠ 0 for all x ∈ A ∪ B, and inexact otherwise. The
dimension of a representation U is given by the sums of the numbers of rows
and columns of all matrices Ui (1 ≤ i ≤ n).
We will call the following sets of transformations of the matrices U1, . . . , Un
admissible:

(1) we can do arbitrary elementary transformations on rows (columns)
within the band P (x) where x ∈ A (B); but in case that y = α0(x),
y ≠ x, it is necessary to do the same transformation within the rows
(columns) of the band P (y), if y ∈ A (B), and the inverse transforma-
tion within the columns (rows) of the band P (y) if y ∈ B (A);

(2) if x < y, where x, y ∈ Ai (Bi), then one can add any multiplicative of
a row (column) of P (x) to a row (column) of P (y) in the matrix Ui
(here, multiplicative means multiplied by an element of the field k).

Two representations are called equivalent, if one can be obtained from the
other by admissible transformations. Equivalence is denoted, as always, by
≃.
Indecomposable and direct sums of representations are defined naturally. 2

We remark that the theorem of Krull-Schmidt holds for representations of
bundles (cf. for example [9]).

2Note that there are indecomposable representations which are empty representations
(see [1]). More precisely, if x ∈ A ∪ B and either x ∉ S0 or x ∈ S0, α0(x) = x, then
there is an indecomposable representation Ix of dimension 1, for which dimP (x) = 1
and dimP (y) = 0 for y /= x. If α0(x) = y where x ≠ y, x ∈ Ai (Bi), y ∉ Bi (Ai), then
the empty indecomposable representation Ix,y = Iy,x has dimension 2 and is given by
the equality: dimP (x) = dimP (y) = 1 and dimP (z) = 0 for the other bands. The
"empty" representation I0 for which dimP (x) = 0 for all x ∈ A ∪ B , is not considered
indecomposable.
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2 X-chains and X-cycles

We denote by X(Π) linear ordered sets consisting of links of the semichain Π
(cf. §1). A link Πi = {x} will be identified with the point x. Links consisting
of two points will also be denoted by one small letter x and the points of the
link by x+ and x−. The number of points in the link x is denoted by r(x).
Let S = (S,α0) be a bundle of semichains A1, . . . ,An,B1, . . . ,Bn. Let Ei =
X(Ai), Fi = X(Bi), Xi = Ei ∪ Fi (1 ≤ i ≤ n), E = ⋃

n
i=1Ei, F = ⋃

n
i=1 Fi. The

union of the sets E and F is denoted by X(S), or simply by X.
We introduce on the set X two binary operations α and β. Namely, two
elements a and b from X are in relation α if and only if either a ≠ b, r(a) =
r(b) = 1 and α0(a) = b, or a = b and r(a) = 2. The relation β is defined as
β(a, b) if and only if a ∈ Ei, b ∈ Fi or a ∈ Fi, b ∈ Ei, 1 ≤ i ≤ n. 3 We remark
that if r(a) = 1 and α0(a) = a, then α(a, x) for all x ∈X. The relation β will
also be represented by a straight mark (−) and the relation α by a wavy (∼).
The collection of setsX with the indicated structure is denoted by X. Clearly,
there exists a natural 1-1-correspondence between the elements of the sets
X0 and X.
We will now introduce the notion of an X-graph [1].
Let Γ be the set of finite connected graphs C consisting of chains

c1 c2 . . . cm, (m ≥ 1)

and cycles
c1 c2 . . . cm (m ≥ 2).

An X-graph is given by a function g defined on an arbitrary C ∈ Γ which
puts each point ci ∈ C in correspondence with an element g(ci) ∈ X and
each edge ρ ∈ C in correspondence with a relation g(ρ) ∈ {α,β}. Moreover
it satisfies the following conditions:

(a) if ρ connects the points ci and ci+1 in C, then g(ci) and g(ci+1) satisfy
the relation g(ρ);4

(b) if ρ and δ are neighbouring edges in C, then g(ρ) ≠ g(δ).

An X-graph corresponding to a chain (cycle) C is called an X-chain (X-
cycle). An X-chain defined on C ∈ Γ is called admissible if α(a, b) with a ≠ b
and g(ci) = a implies the existence of an edge γ ∈ C connecting the points ci
and cj (j = i−1 or j = i+1) such that g(cj) = b and g(γ) = α (for an X-cycle,
this condition is always satisfied). The set of admissible X-chains is denoted
by L(X) and the set of X-cycles by Z(X). We define Γ(X) = L(X)∪Z(X).
Thus, anX-chain (X-cycle) g gives sequences g0 = {a1, . . . , am} of elements of

3We write γ(a, b) (γ(a, b)) for γ = α or γ = β if the relation γ is satisfied (not satisfied)
for the elements a and b.

4For a cycle, the indices i < 1 and i >m are always considered modulo m.
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X and g1 = {γ1,2, γ2,3, . . . , γm−1,m} (g1 = {γ1,2, γ2,3, . . . , γm−1,m, γm,1}) where
γi,i+1 ∈ {α,β}, γi−1,i ≠ γi,i+1 and γi,i+1(ai, ai+1) ∈ X. The number m will be
called length of the X-chain (X-cycle) and be denoted by ∣g∣. It is evident
that the length of an arbitrary X-cycle is even.
The left (right) end a1 (am) of an admissible chain is called double if γ1,2 ≠ α
(γm−1,m ≠ α) 5 and α(a1, a1) (α(am, am)) holds in X. The number of double
ends of an X-chain g ∈ L(X) is denoted by d(g) 6.
Let G be the automorphism group of the graph C ∈ Γ. Then the action of
G defined on C naturally carries over to the set of X-graphs on C. Two
X-graphs are called equivalent if they are defined on one and the same C
and they can be transformed into each other by some element of the group
G. Each s ∈ G such that s(g) = g is called automorphism on the X-graph
g, i.e. s(ai) = ai for every element of the set X and s(γi,i+1) = γi,i+1 for an
element of the set {α,β} (for any ai ∈ g0, γi,i+1 ∈ g1). An automorphism s
of the X-cycle g is called rotation if s translates ai into ai+k (1 ≤ i ≤ m),
where k is an integer not depending on i. The group of automorphisms of
the X-graph g is denoted by Aut(g). An X-chain (X-cycle) g is called sym-
metric (symmetric) if the group Aut(g) (factor group Aut(g) by subgroup
of rotations) is non-trivial.
The natural form of an X-subchain (or simply called subchain) of an X-
graph g is given by the restriction of the function g to the connected sub-
chain C ′ = { ci ci+1 . . . ci+k } of the graph C.
Let g(1) and g(2) be two admissible X-chains such that the right point
am ∈ g

(1)
0 and the left point b1 ∈ g

(2)
0 are double and such that b1 = am.

If the two points am and b1 are connected by relation α, then we obtain a
new X-chain which will be denoted by g(1) ∼ g(2). Analogously we define
X-chains g(1) ∼ g(2) ∼ ⋅ ⋅ ⋅ ∼ g(k) for any k ≥ 2.
Let h be an X-chain, h0 = {b1, . . . , bs}, h1 = {γ1,2, . . . , γs−1,s}. We de-
note by h∗ the following X-chain: h∗0 = {b∗1 , . . . , b

∗
s}, h∗1 = {γ∗1,2, . . . , γ

∗
s−1,s},

where b∗1 = bs, b∗2 = bs−1, . . . , b∗s−1 = b2, b∗s = b1 and γ∗1,2 = γs−1,s, . . . ,
γ∗s−1,s = γ1,2. If both ends of h are double, then there exists an X-chain
of form h(1) ∼ h(2) ∼ ⋅ ⋅ ⋅ ∼ h(k) (k ≥ 1), where h(i) = h for odd i and h(i) = h∗

for even i. An X-chain of this form will be denoted by h[k]. If h only has a
double point at the right end of h, then one can construct h[k] only for k ≤ 2.
We remark that any X-chain g ∈ L(X) is represented in the form g = h[k],
where h is a simple X-chain and k ≥ 1, clearly. This fact follows from the
following lemma which is also necessary in the following paragraph.

Lemma 1. If u is a simple X-chain of which both ends are double, and
u ∼ u∗ ∼ u = v ∼ v∗ ∼ w, then ∣v∣ ≤ ∣u∣.

5Writing γ1,2 ≠ α (γm−1,m ≠ α) means either γ1,2 = β (γm−1,m = β) or length g is equal
to 1.

6For an X-chain g = {a1} with α(a1, a1) it is natural to assume d(g) = 1.
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Proof. We suppose otherwise and choose u and v such that the difference
∣v∣ − ∣u∣ is minimal. Let v = u ∼ v′. Then by the assumption of the lemma
u∗ = (v′)[k] ∼ u′ where k > 1 and 0 < ∣u′∣ < ∣v′∣ and also, if k is odd (even), then
(v′)∗ = u′ ∼ v′′ (v′ = u′ ∼ v′′) and for this v′′ ∼ (v′′)∗ ∼ (u′)∗ ∼ u′ = (u′)∗ ∼ u′ ∼
v′′ ∼ (v′′)∗. From this equality we easily obtain that u∗ ∼ u ∼ u∗ = v ∼ v∗ ∼ w
where v = u∗ ∼ (u′)∗, w = (v′)[k−1] ∼ (v′′)∗. This contradicts the choice of u
and v, since ∣u′∣ < ∣v′∣.

We denote by L0(X) the set of all simple admissible X-chains, and by
Z0(X) the set of X-cycles with trivial group of rotations. We set Γ0(X) =

L0(X)∪Z0(X). It is clear that ∣Aut(g)∣ = 1 for all g ∈ L0(X) and ∣Aut(g)∣ ≤
2 for all g ∈ Z0(X). If g is a symmetric X-cycle in Z0(X) and g0 =

{a1, . . . , am}, we set σ0(g) = 1
2σ(g) where σ(g) is the number of pairs

(ai, ai+1) such that ai, ai+1 ∈ E or ai, ai+1 ∈ F and additionally also ai ≠ ai+1.
Let Pi(X) = {g ∈ L0(X) ∣ d(g) = i}, i ∈ {0,1,2}; N the set of natural num-
bers; Nj = {1, . . . , j}. We put P (X) = P0(X)∪[P1(X)×N2]∪[P2(X)×N4×

N].
We denote by k0[t] the set of all irreducible polynomials over the field k
(with highest coefficient 1). For an element a ∈ k we set Ka = {ϕK0 ∣ ϕ0 ∈

k0[t], ϕ0 ≠ t, t + a,K ∈ N}. We further take

Q1(X) = {g ∈ Z0(X) ∣ ∣Aut(g)∣ = 1},

Q1
2(X) = {g ∈ Z0(X) ∣ ∣Aut(g)∣ = 2, σ0(g) odd},

Q2
2(X) = {g ∈ Z0(X) ∣ ∣Aut(g)∣ = 2, σ0(g) even},

and
Q(X,k) = [Q1(X) ×K0] ∪ [Q1

2(X) ×K−1] ∪ [Q2
2 ×K1].

Let finally I(X,k) = P (X) ∪Q(X,k).
It will follow from the main theorem (of the following paragraph) that there
exists a 1-1-correspondence between the elements of I(X,k) (considered up
to the equivalence of X-graphs) and equivalence classes of indecomposable
representations of the bundle S.

3 Main results

3.1 Orientation of X-graphs. Elementary subchains.

Let g be an X-graph and g0 = {a1, . . . , am}. Denote by D(g0) the set of pairs
(ai, ai+1) such that ai = ai+1 (then evidently: γi,i+1 = α). A mapping ε from
the set D(g0) into the set {1,−1} will be called orientation of the X-graph
g.
We define for each g ∈ Γ(X) a certain orientation ε0 which will play a fun-
damental role for the construction of the canonical representations of the
bundle S.
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We consider first the case where g is a simple X-chain. We will introduce
for each 1 ≤ i ≤ m elements xi, yi ∈ X ∪ {0} such that (ai, ai+1) ∈ D(g0). We
insert g in the following X-chain:

∼
g =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

g if d(g) = 0,

g∗ ∼ g (g ∼ g∗) if d(g) = 1 and a1 (am) is double end,
g∗ ∼ g ∼ g∗ if d(g) = 2.

Let g(i) be the maximal subchain of ∼
g of the form w ∼ w∗ where the right

end of w coincides with the element ai of the chain g. We remark that
s = ∣w∣ = 1

2 ∣g(i)∣ is an odd number (in case of d(g) = 2 this follows from
Lemma 1). If g(i) does not contain the left (right) end of the X-chain ∼

g,
then we denote by xi (yi) the element of ∼

g0 which is connected in ∼
g by

the relation β with the left (right) end of the subchain g(i). Otherwise we
set xi = ∞ (yi = ∞) 7. We remark that in all cases xi ≠ yi, moreover, if
xi ∈ Ej ∪ {∞} (Fj ∪ {∞}) then yi also belongs to this set. Therefore the
elements xi and yi are always comparable (we consider ∞ > x for all x ∈X).
We define now for an X-chain g ∈ L0(X) the orientation ε0, deeming that
ε0(ai, ai+1) = 1 (ε0(ai, ai+1) = −1) in the following cases:

a) xi < yi (xi > yi) and either ai ∈ E, xi ∈ E ∪{∞} or ai ∈ F , xi ∈ F ∪{∞},

b) xi > yi (xi < yi) and either ai ∈ E, xi ∈ F ∪{∞} or ai ∈ F , xi ∈ E ∪{∞}.

Let now g be a composite X-chain. We represent it in the form g = h[k] =
h(1) ∼ ⋅ ⋅ ⋅ ∼ h(k), where h is a simple X-chain and k > 1. Let ∣h∣ = p and
h
(i)
0 = {a

(i)
1 , . . . , a

(i)
p }. The orientation ε0 is already defined for each simple

subchain h(i), and at the "joints" ε0 is defined by ε0(a
(i)
p , a

(i+1)
1 ) = 1 if ai ∈ E

and ε0(a
(i)
p , a

(i+1)
1 ) = −1 if ai ∈ F (1 ≤ i ≤ k).

We consider now the case where g is an X-cycle. We denote by D(g0) the set
of pairs (ai, ai+1) ∈ D(g0) for which there exists an automorphism z ∈ Aut(g)
which transfers ai into ai+1 (and thus ai+1 into ai). Clearly, D(g0) ≠ ∅ only
for symmetric X-cycles. If (ai, ai+1) ∉ D(g0), then ε0(ai, ai+1) is defined in
the same way as for a simple X-chain g with d(g) = 0 (in this case affine
subchains g(i) of the X-cycle g have length 2s < m where s is odd), and
if (ai, ai+1) ∈ D(g0), then in the same way as "at the joints" of composite
X-chains, i.e. ε0(ai, ai+1) = 1 (−1), if ai ∈ E (F ).
In the case where (ai, ai+1) ∈ D(g0) and ε0(ai, ai+1) = 1 (ε0(ai, ai+1) = −1),
we will write ÐÐÐÐÐ→ai ∼ ai+1 (←ÐÐÐÐÐai ∼ ai+1).
Any subchain of the following form is called elementary subchain of the X-
graph g ∈ Γ(X):

7In other words, if γ1,2 = α, set a0 = ∞, and if γm−1,m = α, set am+1 = ∞ (γ1,2, γm−1,m ∈
g1). Then, in all cases we have: xi = ai−s for s ≤ i, xi = a∗m−s+i = as−i+1 for s > i, yi = ai+1+s
for s ≤m − i and yi = a∗s−m+i+1 = a2m−s−i for s >m − i.

8



1) ai−1 − ai;

2) ÐÐÐÐÐ→ai−1 ∼ ai − ai+1;

2’) ai−1 −
←ÐÐÐÐÐai ∼ ai+1;

3) ÐÐÐÐÐ→ai−1 ∼ ai −
←ÐÐÐÐÐÐai+1 ∼ ai+1.

Lemma 2. An arbitrary X-cycle g contains a maximal elementary subchain
of length 2 (i.e. not belonging to an elementary subchain of length 3).

Proof. Let ai = ai+1 each time when γi,i+1 = α (in opposite case the assertion
is clear). We will suppose that γm,1 = β. We have fixed an element as ∈ g0

such that as ∈ Ek for some 1 ≤ k ≤ n and ai ≥ as if ai ∈ Ek. We set
C ′ = {ai ∣ ai−1 = as, i odd}, C ′′ = {ai ∣ ai+1 = as, i even} and C = C ′ ∪C ′′. We
remark that each element of C belongs to Fk. If aj is some minimal element
of C (with respect to the ordering on Fk) and aj ∈ C

′ (aj ∈ C ′′) then it is
easily seen that ε0(aj−2, aj−1) = −ε0(aj , aj+1) (ε0(aj−1, aj) = −ε0(aj+1, aj+2)),
whence the assertion of the lemma follows.

3.2 Canonical representations. Main theorem.

Let g ∈ Γ0(X), g0 = {a1, . . . , am} and g0,1 = {ai ∈ g0 ∣ α(ai, ai)}. Denote by
Ψ(g) the set of mappings ψ ∶ g0,1 → {1,−1} such that ψ(ai) = 1 (ψ(ai) = −1)
each time that ai = ai+1 (ai = ai−1). If ai ≠ ai+1 and ai ≠ ai−1 (ai ∈ g0,1) then
ψ(ai) can be equal to 1 or −1 (in this case, clearly, g ∈ L0(X) and ai is a
double end of g). Thus, if g is an X-chain without double ends or an X-cycle,
then Ψ(g) consists of one mapping which is denoted ψ1. If g is a X-chain
with one double end a1 (am) then Ψ(g) consists of two mappings ψ1 and ψ2;
for definiteness we will suppose that ψ1(a1) = −1 and ψ2(a1) = 1 (ψ1(am) = 1,
ψ2(am) = −1) 8. Finally, if g is an X-chain for which d(g) = 2, then Ψ(g)
consists of four maps ψs, 1 ≤ s ≤ 4; we will suppose that ψ1(a1) = −1,
ψ1(am) = 1, ψ2(a1) = 1, ψ2(am) = 1, ψ3(a1) = −1, ψ3(am) = −1, ψ4(a1) = 1,
ψ4(am) = −1. Each map ψs ∈ Ψ(g) induces a map ψ∗s ∈ Ψ(g∗) which acts on
each ai ∈ g0,1 with opposite sign, i.e. ψ∗s (a∗j ) = −ψs(am+1−j) for each a∗j ∈ g

∗
0,1

(cf. page 5).
We denote by δ(ai), where ai ∈ g0, the number of those aj ∈ g0, 0 < j ≤ i, for
which aj = ai and by δ(a, g), for a ∈X, the number of elements aj ∈ g0 equal
to a. If ai ∈ g0,1 and 0 < s ≤ ∣Ψ(g)∣, then we denote by δs(ai) the number of
those aj ∈ g0, 0 < j ≤ i, for which aj = ai and ψs(aj) = ψs(ai). By δ+s (a, g)
(δ−s (a, g)) where a ∈ X, α(a, a), we denote the number of elements aj ∈ g0,1

such that aj = a and ψ(aj) = 1 (ψ(aj) = −1).

8The X-chain g = {a1}, where α(a1, a1), has one double end. In this case we will
suppose that ψ1(a1) = −1, ψ2(a1) = 1.
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We associate now with each X-graph g ∈ Γ0(X), where X = X(S), a rep-
resentation of special form for the bundle S = (S,α0). Namely, we associate
an X-chain g ∈ L0(X) with representations Us(g) if d(g) ≤ 1 and with rep-
resentations Us(g, p) if d(g) = 2, where 1 ≤ s ≤ ∣Ψ(g)∣ and p is any natural
number. We associate an X-cycle g ∈ Z0(X) with representations U(g,ϕ),
where ϕ = ϕ(t) is a polynomial equal to a power of an irreducible polynomial
ϕ0 over the field k (with highest coefficient 1), moreover ϕ0 ≠ t for asymmet-
ric g and ϕ0 ≠ t, t + 1 (ϕ0 ≠ t, t − 1) for symmetric g for even (odd) σ0(g).
We construct first for X-chains g ∈ L0(X) representations of the form U =

Us(g) and U = Us(g,1), (1 ≤ s ≤ ∣Ψ(g)∣).
We establish, first of all, in a 1-1-manner a correspondence between rows
and columns of the "future" matrices U1, . . . , Un of the representation U and
the elements from g0. If a ∈ Ek (a ∈ Fk) and α(a, a), then the band P (a) of
the matrix Uk consists of δ(a, g) rows (columns), moreover to the j-th row
(column) of this band corresponds an element ai ∈ g0, equal to a and such
that δ(ai) = j. If however a ∈ Ek (a ∈ Fk) and α(a, a), then the band P (a+)
of the matrix Uk consists of δ+s (a, g) rows (columns) and P (a−) of δ−s (a, g)
rows (columns). To this j-th row (column) of the band P (a±) corresponds
an element ai ∈ g0 equal to a and such that ψs(ai) = ±1 and δs(ai) = j. We
will always suppose that the band P (a+) stands above (left of) the band
P (a−).
In the matrices Uk (1 ≤ k ≤ n) stands at the intersection of a row correspond-
ing to an element ai ∈ g0 and a column corresponding to an element aj ∈ g0,
the identity element if there is an elementary subchain of length 2,3 or 4 in
g, having at its ends the elements ai and aj , and the zero element otherwise.
Thus there exists a 1-1-correspondence between nonzero (identity) elements
of the representations U (U = Us(g) or U = Us(g,1)) and elementary sub-
chains in g.
In case when g is an X-chain, it remains to construct representations of the
form Us(g, p) for p > 1.
We set h = g[p] = g(1) ∼ ⋅ ⋅ ⋅ ∼ g(p), where g(i) = g (g(i) = g∗) for odd (even)
i. For a composite X-chain h, we define the set Ψ(h) in the following way:
Ψ(h) = {ψs ∣ ψs ∈ Ψ(g)}, where ψs is a mapping from the set h0,1 = ⋃

p
k=1 g

(k)
0,1

into the set {1,−1} which induces the mapping ψs ∈ Ψ(g), i.e. which coin-
cides on each subchain g(i) = g with ψs, and on each subchain g(i) = g∗ with
ψ∗s . The representation Us(g, p) for p > 1 is built in the same way as the
representation Us(g,1) but now g has to be replaced by h = g[p] and ψs by
ψs (in particular, δs(bi), where bi ∈ h0, and δ±s (a, h) are already defined with
respect to ψs).
Let now g be an X-cycle from Z0(X), g0 = {a1, . . . , am}. We denote by h
the maximal elementary subchain of the form ai−1 − ai (cf. Lemma 2) with
minimal i (1 ≤ i ≤m).
The representation U(g,ϕ) = {U1, . . . , Un} is built analogously to the repres-
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entation U1(g) for an X-chain g without double ends. The only difference
is that, firstly, in the matrix Uk, (1 ≤ k ≤ n), the bands of the form P (a)
and P (a±), where a ∈ Ek (a ∈ Fk), consist of, respectively, the subbands
δ(a, g) and δ±1 (a, g), each of which contains j = deg(ϕ) rows (columns), and,
additionally, the elements ai ∈ g0 are no longer associated with rows and
columns, but rather with the mentioned horizontal and vertical subchain
matrices U1, . . . , Un, and, secondly, to each elementary subchain, except for
h, corresponds a unity cell E of the size j × j, and to the subchain h corres-
ponds a Frobenius cell φ with characteristic polynomial ϕ 9.
We remark that if g = { b b c c }, where b ∈ Ek (Fk), c ∈ Fk
(Ek), then at the intersection of the bands P (b+) and P (c−) (P (b−) and
P (c+)) in Uk stands the matrix E +φ, in so far as first and last (second and
third) elements of g appear as double ends at the elementary subchains of
length 2 and 4.
The representations of form Us(g), Us(g, p) and U(g,ϕ) will be called the
canonical representations of the bundle S = (S,α0).
The class of all canonical representations which correspond to an X-graph
g, is denoted by K(g). It is evident that ∣K(g)∣ = ∣Ψ(g)∣, if X ∈ L0(X),
d(g) < 2, and ∣K(g)∣ = ∞ in all remaining cases. Two classes of canonical
representations K(g) and K(h) are called equivalent if for each representa-
tion U ∈ K(g) there exists an equivalence with a representation V ∈ K(h),
and conversely.
The main results of this work are the following assertions:

Main Theorem.

1) An arbitrary indecomposable representation of the bundle S = (S,α0)

is equivalent to some canonical representation.

2) All canonical representations are indecomposable.

3) Representations from one class are pairwise non-equivalent.

4) If two X-graphs g and h are equivalent, then the classes K(g) and
K(h) are also equivalent. Otherwise K(g) and K(h) do not contain
equivalent representations.

This theorem gives a complete classification of the indecomposable repres-
entations of the bundle S = (S,α0) (in order to obtain a full list of indecom-
posable pairs of inequivalent representations of the bundle S, it is necessary
to construct in each equivalence class of the X-graph the canonical repres-
entations 10.

9If the field k is algebraically closed, then the subchain h corresponds to a Jordan cell
with characteristic polynomial ϕ.

10From formal considerations, we take as invariants slightly other X-graphs, than in
[1]. In reality, we get, from our considerations, the enumeration of indecomposable rep-

11



Remark. In certain cases, the identity elements (blocks) of canonical rep-
resentations corresponding to elementary subchains of length 4, can be "re-
moved" with the help of admissible transformations (for example if g =

{b − ÐÐ→c ∼ c −
←ÐÐ
b ∼ b}). However, the definition of canonical representation is

easily modified thus, the "new" representations which we will denote by
U0
s (g), U0

s (g, p) and U0(g,ϕ) do not already contain "superfluous" identity
elements (cells). Let g ∈ Γ(X), g0 = {a1, . . . , am}.
If γi,i+1 = β, we define by g(ai, ai+1) the maximal subchain of g which con-
tains the elements ai, ai+1 and any element aj which is equal to ai or ai+1

(if g is an X-cycle and any element aj ∈ g0 is equal to ai or ai+1, then we
take g(ai, ai+1) = {ai−1 ∼ ai − ⋅ ⋅ ⋅ − ai−3 ∼ ai−2}). An elementary subchain
ÐÐÐÐÐ→ai−1 ∼ ai −

←ÐÐÐÐÐÐai+1 ∼ ai+2 of the X-graph g will be called important if g(ai, ai+1)

has no double ends and the direction of the arrows of g(ai, ai+1) (which
give the direction ε0 of the X-graph g) alternate. If g is an X-chain and
γ1,2 = β (γm−1,m = β), we denote by g0(a1) (g0(am)) the set of elements
ak ∈ g0 that are equal to a1 (am) and belong to some subchain ←ÐÐÐÐÐai ∼ ai+1

or ÐÐÐÐÐ→aj ∼ aj+1, where ai+1 ∈ g(a1, a2), aj+2 ∈ g(a1, a2) (ai−1 ∈ g(am−1, am),
aj ∈ g(am−1, am)). In all other cases, in particular for an X-cycle g, we take
g0(a1) = ∅ (g0(am) = ∅). We now associate to each mapping ψs ∈ Ψ(g),
where g is a simple X-chain, a mapping ψ0

s ∶ g0,1 → {1,−1}, where we take
ψ0
s(ai) = ψs(ai) if ai ∉ g0(a1) ∪ g0(am); ψ0

s(ai) = ∓ψs(a1) if ai ∈ g0(a1),
ai = ai±1; ψ0

s(ai) = ±ψs(am) if ai ∈ g0(am), ai = ai±1. The representations
U0
s (g), U0

s (g, p) and U0(g,ϕ) are defined in the same way as the canonical
representations, but to the elementary subchains of length 4, which are not
important, now correspond zero elements (blocks) and, additionally, instead
of mappings ψs the mappings ψ0

s are considered. It is not hard to prove that
U0 ≅ U for any canonical representation U .

4 Examples

4.1 Quivers

It is clear that the problem of representing a quiver Λ, which has the shape
of a cycle (chain), is posed in the shape of a bundle (S,α0) of singleton
sets A1 = {a1}, . . . ,An = {an}, B1 = {b1}, . . . ,Bn = {bn}, where n is the
number of arrows of the quiver. If λ1, λ2, . . . , λn is some numbering of the
arrows of Λ and ε1(λ) (ε2(λ)) denotes the beginning point (end point) of
the arrow λ, then the involution α0 is given the following way: α0(ai) = aj
(i ≠ j), α0(bi) = bj (i ≠ j), α0(ai) = bj if ε1(λi) = ε1(λj), ε2(λi) = ε2(λj),

resentations, given in Theorem 7 of [1] (for some modification of the definition of a special
chain, see [1], p. 61). However, representations corresponding to one invariant from work
[1] do not always belong to one weak equivalence class (in the case when both ends of the
X-chain appear as double ends and are equal among themselves, the four corresponding
indecomposable representations turn into not one, but two classes).
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ε1(λi) = ε2(λj); additionally, α0(ai) = ai (α0(bi) = bi) if Λ is a chain and
ε1(λi) (ε2(λi)) is one of its links. In particular, for the classical problem
of matrix similarity and of a matrix bundle, we get the following: n = 1,
α0(a1) = b1 and n = 2, α0(a1) = a2, α0(b1) = b2. Let Λ now be a quiver of
the following type:

0+
λ+1

(m + 1)+
λ+m+1

1
λ2

2 . . . m − 1
λm

m (m ≥ 1)

0−
λ−1

(m + 1)−

λ−m+1

with some direction on the edges.
Let us assume that m = 1. Now it it sufficient to look at (up to duality of
quivers) the following cases:

a) 2+

0+ 1oo //

OO

��

2−

0−

a′) 2+

��
0+ 1oo

��

2−oo

0−

a′′) 2+

0+ 1oo

OO

��

2−.oo

0−

The problem of giving the representations of the quiver a) [10]-[12] is the
problem of giving the representations of the bundle (S,α0) of semichains
A1,A2,B1,B2, whereA1 = {p1

1}, A2 = {p2
1}, B1 = {(p0+ , p0−)}, B2 = {(p2+ , p2−)}

and α0(p
1
1) = p

2
1

11. In case a’), the bundles are defined analogously (repla-
cing A2 by B2 and vice-versa). The problem of giving the representation of
the quiver of a”), is easily reduced to a bundle of semichain sets, however,
unlike in cases a) and a’), it cannot be directly represented in this way.
Let T be a (matrix) representation of the quiver a”). We will bring the
matrices Tλ+2 and Tλ−2 to the following structural shape:

Tλ+2 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0

0 0 0

E 0 0

0 E 0

⎞
⎟
⎟
⎟
⎟
⎠

, Tλ−2 =
⎛
⎜
⎝

E 0 0 0

0 0 E 0

0 0 0 0

⎞
⎟
⎠
,

(the horizontal bandstructure of Tλ+2 corresponds to the vertical bandstuc-
ture of Tλ−2 ) and we make the corresponding subdivision in the matrices Tλ+1

11By pk1 and (pi+ , pi−) we denote one-point and two-point links, the generators are the
point 1 and the points i+, i−, respectively.
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and Tλ−1 :

Tλ+1 =

⎛
⎜
⎜
⎜
⎜
⎝

C(1)

C+

C−

C(2)

⎞
⎟
⎟
⎟
⎟
⎠

, Tλ−1 =

⎛
⎜
⎜
⎜
⎜
⎝

D(1)

D+

D−

D(2)

⎞
⎟
⎟
⎟
⎟
⎠

.

Now we will perform on T only transformations that do not disturb the
shape of the matrices Tλ+2 , Tλ−2 . Now it is easy to check that for the matrix

U = (Tλ+1 ∣Tλ
−

1
)

only transformations that are defined by the bundle of semichains A1 = {p1
1 <

(p+1 , p
−
1) < p

2
1} and B1 = {(p0+ , p0−)} (with the involution being trivial) are

admissible. Here, if T does not contain direct summands that are "empty"
representations which are exact in exactly one point 2+ or 2− , then U is
indecomposable (as a representation of a bundle) if and only if T is in-
decomposable. 12

In the general case we consider the following cases:

b) ε1(λ
−
1) = ε1(λ

+
1), ε1(λ

−
m+1) = ε1(λ

+
m+1);

b’) ε1(λ
−
1) = ε1(λ

+
1), ε2(λ

−
m+1) = ε1(λ

+
m+1) = ε1(λm);

b”) ε2(λ
−
1) = ε1(λ

+
1) = ε1(λ2), ε2(λ

−
m+1) = ε1(λ

+
m+1) = ε1(λm)

(the other cases can be considered in an analogous way).
We denote by S = (S,α0) the bundle of singleton setsA1, . . . ,Am+1,B1, . . . ,Bm+1

that correspond to the chain

0+
λ+1

1
λ2

2 . . . m
λ+m+1

(m + 1)+ (cf. above) .

In case b) the problem of giving the representation of the quiver Λ is given in
the shape of the bundle (Ŝ, α̂0) of semichainsA1, . . . ,Am+1,B

2
1 ,B2, . . . ,Bm,B

2
m+1

where B2
1 (B2

m+1) are obtained from B1 (Bm+1) by "fractoring" its one-
point link. In the case b’), after reducing the matrix with respect to the
arrows λ+m+1 and λ−m+1 (see case a”) ), we get the bundle (Ŝ, α̂0) of semi-
chains A1, . . . ,Am−1, Âm,B

2
1 ,B2, . . . ,Bm, where Âm = {p1

m < (p+m, p−m) < p2
m},

α̂0(p
1
m) = p1

m, α̂0(p
2
m) = p2

m (in the other cases we have α̂0(x) = α0(x)). In the
case b”) we get the bundle of semichains Â2,A3, . . . ,Am−1, Âm,B2, . . . ,Bm
in an analogous way.
Note that if one puts 0+ = 0− and λ+1 = λ−1 in Λ then we get a quiver of finite

12The transition from the quiver a”) to the bundle of semichains A1 and B1 can be given
in the language of bigraphs [9, 13] if first one induces the arrow γ−2 and after that the new
arrow γ+2 (the reincarnation of γ+2 after reducing γ−2 ) and, finally, the arrow γ+2 itself.
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type. Additionally, here case b”) is impossible and in cases b) and b’) the
link B1 does not split into two.
Multiple problems of giving the representations of quivers with relations can
be reduced to bundles of semichains. To exemplify this we will look at several
such problems (over an arbitrary field), that arise in the study of different
kinds of classes of algebras [7, 14, 15]13:

c) 0+

  

2+

��

2−

��

5+

~~
1

γ // 3
δ // 4 γδ = 0;

0−

>>

5−

``

d) 0+

��

4+

0
γ // 1

δ // 2
η // 3

??

��

γδη = 0;

0−

??

4−

e) 0+

��

●

γ1

��

γ2

��
1 // 2

δ1
��

●

δ2
��

γ1δ1 = γ2δ2;

0−

??

●

f) ●
γ2

��

γ1

��

●
γ1

��

γ2

��
●

δ1
��

1 //

δ2
��

2

δ1 ��

●

δ2��

γ1δ1 = γ2δ2,

● ● γ1δ1 = γ2δ2;

(we take the convention of right hand side writing of morphisms).
In each of the cases c) − f) the problem of representing the quiver can be
reduced to some bundle (S,α0) analogously to what was done in case a′′).
Here we consider respectively the following matrices: Tγ ; Tγ and Tδ; Tγi and
Tδi (i = 1,2); Tγi , Tδi , Tγ̄i and Tδ̄i (i = 1,2).
It is easy to check that the bundle (S,α0) has the following form:

13For more complicated examples see paragraph 4–6
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c) A1 = {(p0+ , p0−)}, A2 = {(p2+ , p2−)}, A3 = {p1
3}, A4 = {p5+ , p5−}, B1 =

{p1
1 < p

2
1}, B2 = {p2

3 < p
3
3}, B3 = {p1

4}, B4 = {p2
4}, α0(p

1
1) = p

3
3, α0(p

2
1) =

p2
1, α0(p

1
3) = p

2
3, α0(p

1
4) = p

2
4;

d) A1 = {(p0+ , p0−)}, A2 = {p1
2 < p

2
2}, A3 = {p1

3}, B1 = {p1
1 < (p+1 , p

−
1) < p

2
1},

B2 = {p2
3}, B3 = {(p4+ , p4−)}, α0(p

1
1) = p1

2, α0(p
2
1) = p2

1, α0(p
2
2) = p2

2,
α0(p

1
3) = p

2
3;

e) A1 = {(p0+ , p0−)}, A2 = {p1
1}, B1 = {p2

1}, B2 = {p1
2 < p

2
2 < (p+2 , p

−
2) < p

3
2 <

p4
2}, α0(p

1
1) = p

2
1, α0(p

j
2) = p

j
2 (1 ≤ j ≤ 4);

f) A1 = {p1
1 < p

2
1 < (p+1 , p

−
1) < p

3
1 < p

4
1}, B1 = {p1

2 < p
2
2 < (p+2 , p

−
2) < p

3
2 < p

4
2},

α0(p
j
i ) = p

j
i (i = 1,2, 1 ≤ j ≤ 4)

(see footnote on page 13).

4.2 Partially ordered sets

Let S = {A1,A2,B1,B2} where Ai = {ai} and Bi is any semichain (i = 1,2),
α0(a1) = a1 and α0(x) = x for any x ∈ B0

1 ∪ B
0
2 . The problem of finding

representations of the bundle (S,α0) is the problem of finding representations
of partially ordered sets of the form H(B1,B2) = B1 ∪B2 (i.e. the points of
different semichains are incomparable).
The set H(B1,B2) plays the main role in the study of partially ordered sets
of infinite growth. In [16] it has been proven that a partially ordered set has
infinite growth if and only if it does not contain a subset of the form H(C,D)

where C = {c+, c−}, D = {d±1 , d
±
2 ∣ dγ1 < dδ2, γ, δ ∈ {+,−}}. Additionally any

exact set of infinite growth has the form H̄(B1,B2), where the bar over
H expresses the presence of some number k > 0 of additional comparisons
between points of the semichains B1 and B2 [17] 14.

4.3 Π-matrices

Let us consider the class of matrix problems which arises in the study of the
representations of some algebras (see in particular paragraph 4 and 5).
Let Π be a semichain with the involution γ0 on the subset Π0. A Π-matrix
over the field k is a block-square matrix U (with coefficients in k), which
satisfies the following conditions:

a) there exists a 1-1-correspondence between points of the semichain Π
and the horizontal bands of U , additionally a band with index x stands
above the band with index y if x < y;

b) horizontal bands with index x and γ0(x) have the same number of
rows;

14Exact partially ordered sets of infinite growth are described in [18].
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c) the matrix U has the same number of horizontal and vertical bands
and additionally all diagonal blocks are square.

On the lines of the Π-matrix U one can perform any transformation which
is given by the semichain Π and the involution γ0 (see transformations 1)
and 2), §1), but here one has to perform the inverse transformation on the
columns of U . Two Π-matrices which can be transformed into one another
by using these transformations will be called equivalent.
It is easy to prove that the problem of describing (up to equivalence) a Π-
matrix over a field k is wild if ∣Π∣ > 1.
In the work [5] one considers the problem of describing Π-matrices (over a
field k), of which the square is zero 15 (in particular the case where Π a
chain is also studied in work [19] in connection with the description of the
representations of the algebra Λ = ⟨a, b ∣ a2 = 0, b2 = 0⟩).
Let us denote by Π′ the semichain which one obtains from Π by adding single
point links x̄, where x runs through the set X(Π), where x̄ = x, if γ0(x) = x
and x̄ < x in all other cases, and the comparison x̄ < y, x < ȳ, x̄ < ȳ for
links x, y, x̄, ȳ ∈ X(Π′) (x ≠ y) is performed if and only if x < y. The dual
semichain of Π will be denoted by Π∗ (i.e. x < y in Π∗ if x > y in Π). We will
take the following bundle corresponding to the semichain Π: T (Π) = (T,α0)

of semichains A1 = Π′ and B1 = (Π∗)′, where α0(x) = y in the following
cases: a) x, y ∈ Π ⊂ A1(x, y ∈ Π∗ ⊂ B1) and γ0(x) = y; b) x = ā ∈ A1 ∖ Π,
y = b̄ ∈ B1 ∖Π∗ and γ(a, b) (γ is binary relationship on X(Π) corresponding
to the involution γ0; see §2).
In §2 [5] it is proven that the problem of describing Π-matrices U of which
the square is zero is equivalent to the problem of describing the row-wise
non-degenerate representations of the bundle T (Π) 16.

4.4 Representation of the algebra
Λ = ⟨a, b∣(a − a1)(a − a2) = 0, (b − b1)(b − b2) = 0⟩

Let us consider the problem of finding the representations of the algebra Λ
over any field k (ai, bi ∈ k). Here we consider the following cases:
a) a1 ≠ a2, b1 ≠ b2, b) a1 ≠ a2, b1 = b2, c) a1 = a2, b1 = b2.
In case a) the problem of finding representations of the algebra Λ is clearly
equivalent to the problem of describing non-degenerate representations of
the bundle S̄ of the semichains A1 and B1 which consist respectively of links
x = (x+, x−) and y = (y+, y−) (see [10]).
In case b) after diagonalising the matrix which corresponds to the elements

15In [5] for such Π-matrices the term "S-representation" is used.
16Let U = {U1, . . . , Un} be the canonical representation of the bundle S̄ = (S,α0) cor-

responding to the X-graph g. From the results §5 and §6 it follows that the matrix Uk is
row-wise (column-wise) non-degenerate if and only if any element ai of g0 which is an ele-
ment of the set Ek (Fk) is connected in g with some neighbouring elements by the relation
β. In particular if g is an X-cycle, then all matrices U1, . . . , Un are non-degenerate.
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a, one obtains a problem about Π-matrices of which the square is zero, where
Π consists of one link x = (x+, x−) (see example 3).
Finally the problem of describing representations of the algebra Λ in case
c) was solved in work [19] (see also [20]). Note that it is equivalent to the
problem about Π-matrices of which the square is zero where Π = {x < y < z},
α0(x) = z, α0(y) = y.

4.5 Representation of the algebra
Λn = ⟨a, b∣a3

= 0, b2
= 0, a2

= (ba)nb⟩

The classical representation of the algebra Λn was given in [5]17.
Let Πn+1 denote the semichain composed by the links

C−(n+1) < C−n < ⋅ ⋅ ⋅ < C−1 < C0 < C1 < C2 < ⋅ ⋅ ⋅ < Cn+1,

where all links but C0 are trivial (contain only one point). We define an in-
volution on Π0

n+1 in the following way: γ(ci) = c−i for all i ≠ 0. In §3 [5] it was
proven that representing the algebra Λn is equivalent to describing the Πn+1-
matrices whose squares are zero. And thus this problem is reduced to de-
scribing the non-singular row-wise permutations of the bundles T (Πn+1) (see
section 3). Additionally the Πn+1-matrices, and thus the representations of
T (Πn+1) satisfy additional conditions ([5], p. 39,40). These conditions mean
that practically the representations of the bundle of semichains T̂ (Πn+1) with
Â1 = A1∖{Cn+1,C−(n+1),C−(n+1)}, B̂1 = B1∖{Cn,Cn+1,Cn+1} are considered
(the involution γ0 is induced in a natural way). And canonical represent-
ations are only constructed for X-graphs g(X = X(S), S = {Â1, B̂1}) that
do not contain neighbors ai and ai±1 connected in g by β and belonging to
the set {Ci,Ci∣i < 0} ∩ Â1 and {Ci,Ci∣i < 0} ∩ B̂1, respectively. Addition-
ally, since only row-wise non-singular permutations of bundles T̂ (Πn+1) are
considered, the X-graph g satisfies the condition mentioned on the previous
page (relating the sets Ê1 =X(Â1)).

4.6 Generalization of the I.M. Gelfand Problem

Consider the problem of describing (over an arbitrary field) the quiver

0+
b+1

��

(m + 1)+

a+2tt1
a+1

VV

a−1

��

c1
((
2

d1

hh
c2
((
3

d2

hh . . . m − 1
cm−1

**
m

dm−1

ll

b+2 77

a−2

��

(m ≥ 1)

0−
b−1

HH

(m + 1)−
b−2

^^

17A special case of this problem is the problem of describing representations of the
Quasi-dieder-group Om = ⟨x, y ∣ x2 = y2

m

= 1, yx = xy2
m−1

−1⟩ (m ≥ 3) over a field with
characteristic 2 (see §1 [5]).
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with the relations a+i b
+
i = a−i b

−
i (i = 1,2) and d1a

±
1 = 0, b±1c1 = 0, cjcj+1 = 0,

dj+1dj = 0 (1 ≤ j < m − 1), cm−1a
±
2 = 0, b±2dm−1 = 0 (for m = 1 ∶ bσka

τ
s = 0 for

any σ, τ ∈ {+,−} and {k, s} = {1,2}, k ≠ s) 18.
Using easy arguments (see, in particular, lemma I in [5]) one can prove that
any matrix representation T has the following shape

Ta±1 =

⎛
⎜
⎜
⎜
⎜
⎝

0 ±A11 A±
11

0 0 0

0 ±A21 A±
21

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, Tb±1 =
⎛
⎜
⎝

0 0 B±
11 B±

21

0 0 B11 B21

0 0 0 0

⎞
⎟
⎠
,

Tci =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 C1i C2i

0 0 C3i C4i

0 0 0 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, Tdi =

⎛
⎜
⎜
⎜
⎜
⎝

0 D1i 0 D2i

0 0 0 0

0 D3i 0 D4i

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, (1 ≤ i ≤m − 1),

Ta±2 =

⎛
⎜
⎜
⎜
⎜
⎝

0 ±A12 A±
12

0 ±A22 A±
22

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, Tb±2 =
⎛
⎜
⎝

0 B±
12 0 B±

22

0 B12 0 B22

0 0 0 0

⎞
⎟
⎠
,

where the matrices

V1 = (
A11 A+

11 A−
11

A21 A+
21 A−

21
) , V2 =

⎛
⎜
⎝

B−
11 B−

21

B+
11 B+

21

B11 B21

⎞
⎟
⎠
, V2i+1 = (

C1i C2i

C3i C4i
) ,

V2i+2 = (
D1i D2i

D3i D4i
) , V2m = (

A12 A+
12 A−

12

A22 A+
22 A−

22
) , V2m+2 =

⎛
⎜
⎝

B−
12 B−

22

B+
12 B+

22

B12 B22

⎞
⎟
⎠
,

(1 ≤ i ≤m − 1) are row-wise non degenerate. 19

We consider in the matrix Vi (1 ≤ i ≤ 2m + 2) the horizontal block-rows
and write them in the opposite order. The resulting matrix we denote by
Ui. To the first and the second block-row (block-column) of the matrix Ui,
for i ≠ 2,2m + 2(i ≠ 1,2m + 1), we assign the number a1

i and a2
i (b1i and

b2i ). For the other matrices Ui we number the block-rows ( block-columns)
as follows: a1

i , a
+
i , a

−
i (b1i , b

+
i , b

−
i ). We denote by S = (S,α0) the bundles of

18Some particular cases of this problem were considered in work [21] in the study of
indecomposable representations of the group SO(1, n) and its connecting group SO0(1, n).

19If ε1(x) = ε1(y) (ε2(x) = ε2(y)), then the horizontal (vertical) subbands of the matrices
Tx Ty correspond. If ε1(x) = ε2(y), then the horizontal subband structure of Tx corres-
ponds to the vertical subband structure of Ty.

19



semichains A1, ...,A2m+2,B1, ...,B2m+2 where Ai = {a1
i < a

2
i } for i ≠ 2,2m+2;

Ai = {a1
i < (a+i , a

−
i )} for i = 2,2m + 2, Bi = {b1i < b

2
i } for i ≠ 1,2m + 1; Bi =

{b1i < (b+i , b
−
i )} for i = 1,2m+1 and α0(a

2
1) = a

2
3, α0(b

2
2) = b

2
4, α0(a

i
2i+1) = b

1
2i+2,

α0(a
1
2j) = b

1
2j−1, α0(a

2
2k+1) = a

2
2k, α0(b

2
2s−1) = b

2
2s+2 (0 ≤ i ≤ m, 1 ≤ j ≤ m + 1,

1 < k, s ≤ m). Let us consider on T only the operations that conserve the
given shape. In this case it is easy to see that for the matrices Ui only the
operations are allowed that are defined by the bundle (S,α0).
In this way, our problem is reduced to the question of describing the repres-
entation U = {U1...U2m+2} of the bundle (S,α0) for which each matrix Ui is
row-wise non-degenerate (see footnote on page 17).
Remark that for each 1 ≤ i ≤ 2m + 2 the set Ai or Bi is a chain. In this case
the canonical representation is easier than in the general case, because in the
X-graph there are no elementary semichains of length 4.

5 Selfreproduction

In the work [1] (see §2) it is shown that any non-zero representation of a
bundle S of two semichain sets can be reduced to the representation of a
lower dimesional bundle S′ by some block operations. This result easily
translates to general bundles S = (S,α0) of semichains A1, ...,An,B1, ...Bn.
Let U = {U1, . . . , Un} be a non-zero representation of a bundle S. Without
loss of generality, we can say that U1 ≠ 0. If e is a link of the semichain A1

and f is a link of the semichain B1, then we denote by U1(e, f) the part of
the matrix U1 on the intersection of the bands corresponding to the elements
of these links. It is clear that U1(e, f) consists of one entry of the matrix U1

if r(e) = r(f) = 1, of two entries if r(e) = 1, r(f) = 2 (r(e) = 2, r(f) = 1),
and of four entries if r(e) = r(f) = 2.
Let us fix links e0 and f0 such that U1(e0, f0) ≠ 0 and U1(e, f) = 0 when
e < e0 or e = e0, f < f0. The following cases are possible: 1) r(e0) = r(f0) = 1
and α0(e0) ≠ f0; 2) r(e0) = 2, r(f0) = 1; 2’) r(e0) = 1, r(f0) = 2; 3)
r(e0) = r(f0) = 1 and α0(e0) = f0; 4) r(e0) = r(f0) = 2.
The matrix U1(e0, f0) can be seen as a representation of the bundle S0 =

(S0, η0) of the semichains A0 and B0 where A0 (B0) consists out of one
link e0 (f0) and η0 is the restricted involution α0 on S○0 = A○

0 ∪B
○
0 (that is

η0(e0) = f0 in case 3) and η0 is trivial in the other cases). Let us assume
that X0 =X(S0) (see §2) and let η denote the relation on X0 corresponding
to η0. It is clear that X0 = E0 ∪F0, where E0 = {e0}, F0 = {f0} and we have
η(e0, e0), η(f0, f0) in case 1), η(e0, e0), η(f0, f0) in case 2), η(e0, e0), η(f0, f0)

in case 2’), η(e0, f0) in case 3) and η(e0, e0), η(f0, f0) in case 4). Let us state
explicitly the X0-graph g ∈ Γ0(X0) in all the cases 1)-4) (up to equivalence).
In the cases 1),2) and 2’) we have X0-chains:
a) e0; b) f0; c) e0−f0 and additionally in case 2) - d) f0−

←ÐÐÐe0 ∼ e0 and in case 2’)
- e) e0−

←ÐÐÐÐ
f0 ∼ f0. In case 3) we have the X0 -chain e0 ∼ f0−e0 ∼ f0−⋅ ⋅ ⋅−e0 ∼ f0
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and X0-cycle e0 ≃ f0. In case 4) we have the X0-chains: a) ÐÐÐ→e0 ∼ e0 −
←ÐÐÐÐ
f0 ∼ f0 −

⋅ ⋅ ⋅−ÐÐÐ→e0 ∼ e0−
←ÐÐÐÐ
f0 ∼ f0, b) e0−

ÐÐÐÐ→
f0 ∼ f0−

←ÐÐÐe0 ∼ e0−⋅ ⋅ ⋅−
ÐÐÐÐ→
f0 ∼ f0−

←ÐÐÐe0 ∼ e0, b’) f0−
ÐÐÐ→e0 ∼ e0−

←ÐÐÐÐ
f0 ∼ f0 − ⋅ ⋅ ⋅ −

ÐÐÐ→e0 ∼ e0 −
←ÐÐÐÐ
f0 ∼ f0, c) e0 −

←ÐÐÐÐ
f0 ∼ f0 −

ÐÐÐ→e0 ∼ e0 − ⋅ ⋅ ⋅ −
ÐÐÐ→e0 ∼ e0 −

←ÐÐÐÐ
f0 ∼ f0,

c’) f0 −
←ÐÐÐe0 ∼ e0 −

ÐÐÐÐ→
f0 ∼ f0 − ⋅ ⋅ ⋅ −

ÐÐÐÐ→
f0 ∼ f0 −

←ÐÐÐe0 ∼ e0, d) e0 − f0 and the X0-cycle
e0

//
e0 f0 f0

oo
. It is easy to see that, in the cases 1)-3)for the

bundle S0 the main theorem, formulated in §3, holds, in the case 4) this
follows from [10].
We will call the subset X0 = {e0, f0} of the set X = X(S) closed if α0(x0) ∈

X0 for each x0 ∈ S
○
0 . In the case that X0 is closed, denote by R0 the set of

permutations W = {W1} of the bundle S0, consisting of square non-singular
matrices W1. If X0 is not closed, we define R0 = ∅.
Assume that U /∈ R0 . Let us decompose the matrix U1(e0, f0) into a dir-
ect sum of canonical representations of the bundle S0 (with respect to the
X0-graphs that we mentioned earlier). Let us denote the representations by
V i (1 ≤ i ≤ l). The X0-graph corresponding to the representation V i will be
denoted by hi (i.e. V i ∈K(hi) ) and the dimension of the representation V i

by si. If hi is an X0-cycle or an X0-chain, for which d(hi) = 2, then V i can be
separated in the direct sum of U , because in this case V i ∈ R0. If hi is an X0-
chain for which d(hi) < 2 and hi0 = {a1, ...am}, hi1 = {γ12, ..., γm−1,m} (m ≥ 1),
then in U1 all entries on the columns/rows of V i are zero, except those that
correspond to the end a1 if γ12 ≠ β and the end am if γm−1,m ≠ β (see [1]).
In this case, if V i = Us(h

i) where s ∈ {1,2}, then each such end aj ∈ hi0
"creates" a subband of the band P (aj), if r(aj) = 1 and P (a±j ), if r(aj) = 2
and ψs(aj) = ±1 (the number of rows or columns of this band is equal to the
number of representations V k equal to V i). Let us give this new band the
number (aj , (−1)si−1si−1), if ∣Ψ(hi)∣ = 1 and (a±j , (−1)si−1si−1), if ∣Ψ(hi)∣ = 2

and ψs(ak) = ±1 where ak is the double end of hi. Additionally, in the case
where aj is the end of the X0-chain hi and α(aj) = b where b ∉ {e0, f0}, the
element aj "creates" some subband of the band P (b). Let σx = 1 (σx = −1)
where x ∈ A (x ∈ B) and let us give this band the number (b, σbσaj(si − 1))
if ∣Ψ(hi)∣ = 1, and (b±, σbσaj(si − 1)) if ∣Ψ(hi)∣ = 2 and ψs(ak) = ±1 (where
ak is the double end of hi). Note that if the X0-chain hi does not create any
new bands, then V i can be separated as a summand from the direct sum of
U (it is clear that in this case V i ∈ R0).
In this way the representations V i (1 ≤ i ≤ l) create a family of bands in
U , numbered by the pairs (c, p) and (c±, p). For si = 1 let us say that
(c, p) = (c,+0), (c±, p) = (c±,+0) if c ∈ {E0, F0}; and (c, p) = (c,±0) if
c ∉ {E0, F0} and σcσα0(c) = ±1. Additionally, the elements (x,±0) and x
are always identified with one another.
Let us now perform on the matrices U1, . . . , Un transformations that conserve
the shape of the matrix U1. Then, after removing all rows and columns, in
which we got zero entries by the representations V i, from the bands corres-
ponding to the links e0, f0 of the matrix U1, we get a collection of matrices
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U ′ = (U ′
1, . . . U

′
n), which is a representation of some bundle S′ = (S′, α′0) (see

§2 [1]).
Let us give the explicit form of S′. Let us denote by A′

k (B′
k) the set that

we get from Ak (Bk) by adding all elements (c, p) and (c±, p) where c ∈ Ek
(Fk). Let S′ = {A′

1, . . . ,A
′
n,B

′
1, . . . ,B

′
n}, A′ = ⋃nk=1A

′
k,B

′ = ⋃nk=1B
′
k and thus

depending on the earlier mentioned cases A′ ∪B′ is obtained by adding the
following elements:

1) (a, σa) if α0(e0) = a, a ≠ e0; and (b,−σb) if α0(f0) = b, b ≠ f0;

2) (e0,2) and additionally (b±,−σb) and (b,−2σb), if α0(f0) = b, b ≠ f0;

2’) (f0,2) and additionally (a±, σa) and (a,2σa) if α0(e0) = a, a ≠ e0;

3) (e0,−2s − 1), (f0,−2s − 1), s ≥ 0;

4) (e0,−4s − 1), (f0,−4s − 1), (e±0 ,4s − 2),(f±0 ,4s − 2), (e±0 ,4s), (f±0 ,4s),
s ≥ 1. 20

The sets A′
k and B′

k (1 ≤ k ≤ n) are semichains. The links of A′
k (B′

k) will
be, additional to the links of Ak (Bk), single point links (c, p) and two point
links consisting of the elements (c+, p) and (c−, p), which we denote by (c, p)
(c ∈ Ek(Fk)). It is clear that for k > 1 all new links of A′

k (B′
k) are single

point links. The linear order on the links of A′
k (B′

k) is the previous one and

(a, p)
<
> b(a ≠ b) ↔ a

<
> b, (a, p) < (a, q) ↔ p−1

> q−1

(where (+0)−1 = +∞, (−0)−1 = −∞).
To finish the construction of the bundle S′ = (S′, α′0), it remains to define
α′0. On the old elements the involution remains the previous, on the new
elements we have α′0(x) = y for the following elements x and y (depending
on the case):

1) x = (a, σa), y = (b,−σb);

2) x = (e0,2), y = (b,−2σb);

2’) x = (f0,2), y = (a,2σa);

3) x = (e0,−2s − 1), y = (f0,−2s − 1), s ≥ 0;

4) x = (e0, p), y = (f0, p), where p < 0.

Note that if the representation U is a zero-representation (in particular
"empty"), then it is natural to say that S′ = S and U ′ = U . However, if
U ∈ R0, then S′ = S and U ′ = I0.

20In the cases 3) and 4) A′

1 (B′

1) are infinite, but for every finite U the new bands of U ′

1

correspond to elements of some finite subset A′′

1 ⊂ A′

1 (B′′

1 ⊂ B′

1).
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From the explicit construction of the transition from the representation U
to the representation U ′ we can conclude the following statements:

Statement 1.
If U is indecomposable and U ∉ R0 then U ′ is indecomposable. If U ′ is in-
decomposable then U ≅ V ⊕W , where V is indecomposable and W ∈ R0.

Statement 2.
Representations U and V of the bundle S that do not contain direct sum-
mands from the representations in R0

21 are equivalent if and only if U ′ and
V ′ are equivalent.

Let X ′, a set from X, correspond to the bundle S′. (The binary relations on
X ′ will be denoted by α′ and β′.) For each x ∈ X with α(x,x) we have the
corresponding subset [x] of X ′ given by:

• [c] = {c} if c ∉ {e0, f0};

• [e0] = {e0, (b,−σb)} in case 2);

• [f0] = {f0, (a, σa)} in case 2′);

• [e0] = {e0, (e0,4q), (f0,4q − 2) ∣ q ≥ 1} and [f0] = {f0, (f0,4q), (e0,4q −
2) ∣ q ≥ 1} in case 4).

Let U be a representation of the bundle S, then we will denote by Ux the rep-
resentation that we obtain from U after interchanging the bands P (x+) and
P (x−). Analogously we define the representation V [x] where V is the rep-
resentation of the bundle S′ (by interchanging the bands P (y+) and P (y−)
for all y ∈ [x]).
From the definition of U ′ the following lemma follows.

Lemma 3. (Ux)′ ≅ (U ′)[x].

For each X-graph g ∈ Γ(X) we have (for fixed e0 and f0) a corresponding
X ′-graph ψ(g) (see [1]). The mapping ψ is consistent with the transition
from the canonical representation of the bundle S to the representation of
the bundle S′ (see next paragraph).
Let g ∈ Γ(X). We denote by M0(g) the set of the maximal subchains of g,
consisting of e0 and f0 (if g is an X-cycle consisting of the elements e0 and
f0, then we takeM0(g) = {g}). The elements of the X-graph h ∈M0(g) that
are connected inside of h by the relationship β will be called the main ones,
the others will be called additional ones.
We construct the X ′-graph ψ(g) in the following way:

21it is assumed that for the representations U and V the elements e0 and f0 are one
and the same.
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1) we throw out from g the main elements ai in all h ∈ M0(g) (together
with the relations γi−1,i and γi,i+1);

2) instead of the additional elements e0 and f0 of the X-chain h ∈M0(g),
we put the corresponding elements (e0, (−1)s−1s−1) and (f0, (−1)s−1s−

1) where s = ∣h∣
∣Aut(h)∣ ;

3) an element b that is connected in g by α with an element of an X-
chain h ∈M0(g) but which is not an element of h is transformed into
(b, σbσa(s − 1)) where s = ∣h∣

∣Aut(h)∣ ;

4) in all places where an X-chain (X-cycle) is broken we introduce the
relation α′;

5) we replace the relation β by the relation β′.

Note that if the X-graph g consists of elements equal to e0 and f0 and does
not contain additional elements, then ψ(g) is an empty X ′-graph (to which
corresponds a representation I0 which, as mentioned in §1, is not considered
indecomposable).
It is clear that if g is an X-chain (X-cycle) and ψ(g) ≠ ∅, then ψ(g) is an
X ′-chain (X ′-cycle), where ψ(g) ∈ Γ(X ′). Additionally ψ(g) ∈ Γ0(X

′) if
g ∈ Γ0(X).
The following lemma follows directly from the definition of the X ′-graph
ψ(g):

Lemma 4. If g, h ∈ Γ(X) and ψ(g) ≠ ∅, ψ(h) ≠ ∅, then ψ(g) and ψ(h) are
equivalent if and only if g and h are equivalent.

6 Proof of the main theorem

Recall (see §5), that U ′ denotes a representation of a bundle S′ = (S′, α′0)
constructed from the representation U of the bundle S = (S,α0) with re-
spect to e0 and f0; there we also introduced the representation Ux, the set
of representations R0 and the X ′-graph ψ(g) which we will denote by g′ for
simplicity.

Statement 3. Let g ∈ L0(X), d(g) < 2, c ∈ X, α(c, c). We have for
the canonical representation Us(g):

1. If g′ ≠ ∅ then [Us(g)]
′ ≅ Us(g)′. Conversely,if U ′ ≅ Us(g′) and U does

not contain direct summands from R0 then U ≅ Us(g).

2. [Us(g)]
c ≅ Uŝ(g) where 1̂ = 2, 2̂ = 1 if g has a double end equal to c

and ŝ = s in all other cases.
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First we prove part 1. An admissible transformation which adds to a row
(column) with number ai ∈ g0 the row (column) with the number aj ∈ g0

multiplied by x ∈ k will be denoted by Px(ai, aj). The multiplication of the
row (column) with number ai by an element x ≠ 0 will be denoted by Qx(ai).
Let us first assume that s = 1 and U = U1(g) = {U1, . . . , Un}. Let us choose
e0 and f0 as in §5 (we can assume that U1 ≠ 0, otherwise we perform a
renumbering of the semichains of the bundle S). In the case that e0 and
f0 satisfy condition 1) or 3) the matrix U1(e0, f0) is automatically a direct
sum of canonical representations of the bundle S0 = (S0, η0). By removing
the rows and columns of U1 that correspond to the main elements of all
subchains h ∈M0(g) (see §5) it is easy to see that we get the representation
U1(g

′). Analogously in the case 2) ( 2’) ) if α0(f0) = f0 (α0(e0) = e1). In
the other cases, that is in case 2) with α0(f0) = b, b ≠ f0, in case 2’) with
α0(e0) = a, a ≠ e0 and in the case 4), among the subchains h ∈ M0(g) that
contain at least one additional element, there could be symmetrical sub-
chains. In this case their direct summands can always be decomposed (by
using admissible transformations on U) into a direct sum of two canonical
representations of the bundle S0 corresponding to the left and right "half" of
the subchain h. We give these transformations. Let us assume, to concretize,
that aj and aj+1 are the middle elements of h, then ÐÐÐÐÐ→aj ∼ aj+1 (←ÐÐÐÐÐaj ∼ aj+1) for
aj = e0 (aj = f0).
In case 2) ( 2’) ) we do for the subchain h = {ai − ai+1 ∼ ai+2 − ai+3} the
transformations P−1(ai, ai+3), P1(ai+4, ai−1) (P−1(ai+3, ai), P−1(ai+4, ai−1)) if
b ∈ E (a ∈ E) and P−1(ai, ai+3), P−1(ai−1, ai+4) (P−1(ai+3, ai), P1(ai−1, ai+4))
if b ∈ F (a ∈ F ). Additionally, if b ∈ F (a ∈ E), "new" elements of the rep-
resentation U that are equal to −1 we will make into 1 by transformations
Q−1(aj), aj ∈ g0.
In case 4) we will assume that the first element ai of the subchain h is equal
to e0 (the second case can be understood in a dual way); additionally, the
elements of the subchain h = {ai ∼ ai+1 − ai+2 ∼ ai+3 − ⋅ ⋅ ⋅ − ai+2k−2 ∼ ai+2k−1}

where k is an odd number (for a symmetric h) will be numbered, for conveni-
ence, in the following way: ai = e1

0, ai+1 = e
2
0, ai+2 = f

1
0 , ai+3 = f

2
0 , ai+4 = e

3
0,

ai+5 = e4
0 etc.. In this case we do the transformation P−1(e

2p+1
0 , e2q+1

0 ) for
p < q, 2p + 2q = k ± 1, P−1(e

2p
0 , e

2q
0 ) for p < q, 2p + 2q = k + 3, P1(f

2p+1
0 , f2q+1

0 )

for p > q, 2p+2q equal to k−1 or k−3, P1(f
2p
0 , f2q

0 ) for p > q, 2p+2q = k+1. Ad-
ditionally, to obtain zero elements in the matrix U1 in all rows and columns
going through U1(e0, f0) which correspond to main elements of the subchain
h, we have to perform the transformation P1(f

1
0 , ai+2k); and if←ÐÐÐÐÐÐÐÐÐai+2k ∼ ai+2k+1,

then also the transformation P1(f
1
0 , ai+2k+1).

After performing these transformations for all symmetric subchains h ∈

M0(g) and going to the representation U ′ of the bundle S′ = (S′, α′0), we get
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that U ′ ≅ U1(g
′) 22!

In an analogous way one can study the case where U = U2(g).
Conversely, if U satisfies the condition in the statement and U ′ ≅ Us(g′) then
by applying the inverse to the previously mentioned transformations we get
U ≅ Us(g).
Part 2 is now easy to prove by induction over the length of the X-chain by
using part 1, Lemma 3 and Statement 2.
Let g ∈ Γ(X) and g0 = {a1, . . . , an}. Let us define the operation ε∗0 of the
X-chain (X-cycle) g in the following way: ε∗0(ai, ai+1) = −ε0(ai, ai+1) on
the "junction" of the compound X-chain (for a symmetric X-cycle with
(ai, ai+1) ∈ D(g0)) and ε∗0(ai, ai+1) = ε0(ai, ai+1) in all other cases. Note
that ε∗0 = ε0 for every simple X-chain (for every non-symmetric X-cycle). If
g ∈ L0(X) and d(g) = 2 (g ∈ Z0(X)), then we denote by U∗

s (g, p) (U∗(g,ϕ))
the representation of the bundle S which is constructed analogously to the
canonical representation Us(g, p) (U(g,ϕ)) but with respect to the operation
ε∗0 .

Statement 4.
Let g ∈ L0(X), d(g) = 2 and c ∈ X, α(c, c). Then we have for a canonical
representations Us(g, p):

1. If g′ ≠ ∅, then [Us(g, p)]
′ ≅ Us(g

′, p). Conversely, if U ′ ≅ Us(g
′, p)

and U does not contain direct summands representative from R0, then
U ≅ Us(g, p).

2. [Us(g, p)]
c ≅ Uŝ(g

′, p) where ŝ ≠ k̂ for s ≠ k. Additionally, ŝ = s if
a1 ≠ c, am ≠ c;

1̂ = 2, 2̂ = 1, 3̂ = 4, 4̂ = 3 if a1 = c, am ≠ c;

1̂ = 3, 2̂ = 4, 3̂ = 1, 4̂ = 2 if a1 ≠ c, am = c;

1̂ = 4, 2̂ = 3, 3̂ = 2, 4̂ = 1 if a1 = c, am = c.

3. U∗
s (g, p) ≅ Us(g, p).

The proof is done by induction over the length of g analogously to the proof
of Statement 3. Note that in the proof of part 1. instead of the canonical
representation Us(g′, p) the representation U∗

s (g
′, p) can appear. In this case

22In §5 we agreed on decomposing the matrix U1(e0, f0) into a direct sum of canonical
representations of the bundle S0 that correspond to some fixed (pairwise non-equivalent)
X0 - chains (see page 20-21). Because of this, formally, by the transition to U ′ in case 4
we need to obtain (by using admissible transformations) that all canonical representations
that are direct summands of U1(e0, f0) correspond only to fixed X0-chains (in particular,
we need to "replace" canonical representations that correspond to the left part of sym-
metric subchains h ∈ M0(g) by equivalent canonical representations that correspond to
the right part of the respective subchain).
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one needs to use the induction assumption of part 3. (more precisely, part
3. for the X ′-chain g′). Analogously, one can prove part 1. for the repres-
entations U∗

s (g, p). Let us additionally note that for the proof of part 2. the
equality (U c)∗ = (U∗)c, where U = Us(g, p) is used and in the proof of part
3., part 1. for the representations Us(g, p) and U∗

s (g, p) is used.
In an analogous way one can look at the cases where g is an X-cycle. More
precisely, we have the following statement:

Statement 5.
Let g ∈ Z0(X) and c ∈ X,α(c, c). Then it holds for the canonical represent-
ations U(g,ϕ):

1. If g′ ≠ ∅, then [U(g,ϕ)]′ ≅ U(g′, ϕ′), where ϕ′1 ≠ ϕ′2 for ϕ1 ≠ ϕ2.
Conversely, if U ′ ≅ U(g′, ϕ) and U does not contain as direct summands
any representations from R0, then U ≃ U(g,ϕ′).

2. [U(g,ϕ)]c ≃ U(g,ϕ′), where ϕ′1 ≠ ϕ
′
2 for ϕ1 ≠ ϕ2.

3. U∗(g,ϕ) ≃ U(g,ϕ′), where ϕ′1 ≠ ϕ
′
2 for ϕ1 ≠ ϕ2.

Note that a Frobenious block φ of the canonical representation U(g,ϕ) cor-
responding to the subchain h = {ai−1−ai} can be "moved" by using admissible
transformations of kind 1) to any other place that corresponds to a maximal
elementary subchain h = {aj−1 − aj}. Hereby, the new block is equal to φ or
φ−1. Because of this in the condition of part 1. we can assume that ϕ′ is the
characteristic polynomial of the matrix σ1φ

σ2 , where σ1, σ2 ∈ {1,−1} (σ1 and
σ2 are uniquely defined by the X-chain g). In the condition of part 2. (3.)
ϕ′ is the characteristic polynomial of the matrix φσ2 if g is not a symmetric
X-chain of length 4, and of the matrix (E + φ)−1 −E (φ) otherwise.
The main theorem is now easily to prove by induction over the dimension of
representations by using statements 1-5.
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[7] Zavadskĭı A. G., Quivers without cycles and with an isolated path of
tame type (Russian), Akad. Nauk Ukrain. SSR Inst. Mat. Preprint
No. 43 (1978), 42–56

[8] Nazarova, L. A., Bondarenko, V. M., Rŏıter, A. V., Representa-
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