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Abstract. A conjecture of Voisin states that two points on a smooth projective complex variety whose

algebra of holomorphic forms is generated in degree 2 are rationally equivalent to each other if and only

if their difference lies in the third step of the Bloch–Beilinson filtration. In this note, we formulate a
generalization that allows for rational equivalence of effective zero-cycles of higher degree, at the expense

of looking deeper in the Bloch–Beilinson filtration. In the first half, we provide evidence in support of

this conjecture in the case of abelian varieties and projective hyper-Kähler manifolds. Notably, we give
explicit criteria for rational equivalence of effective zero-cycles on moduli spaces of semistable sheaves

on K3 surfaces, generalizing that of Marian–Zhao. In the second half, in an effort to explain our main

conjecture, we formulate a second conjecture predicting when the diagonal of a smooth projective variety
belongs to a subalgebra of the ring of correspondences generated in low degree.

1. Introduction

We work throughout over the field of complex numbers and with Chow rings with rational coefficients.
The class in CH0(X) of a closed point x ∈ X will be denoted by [x].

1.1. Effective zero-cycles on moduli spaces of sheaves on K3 surfaces. Building on work of
O’Grady [O’G13] and Shen–Yin–Zhao [SYZ20], Marian and Zhao established the following criterion for
two points on a smooth projective moduli space of semistable sheaves to be rationally equivalent.

Theorem 1.1 (Marian–Zhao [MZ20] ; see Theorem 2.5). Let M be a smooth projective moduli space of
semistable sheaves on a projective K3 surface S and let F and G be closed points of M. Then

[F ] = [G] in CH0(M) ⇐⇒ c2(F) = c2(G) in CH0(S).

A first aim of this paper is to establish the following generalization to effective zero-cycles of arbitrary
degree:

Theorem 1.2 (Theorem 2.6). Let M be as in Theorem 1.1 and let 2n be its dimension. Let F1, . . . ,Fm

and G1, . . . ,Gm be closed points of M. Then
m∑
i=1

[Fi] =

m∑
i=1

[Gi] in CH0(M) ⇐⇒
m∑
i=1

c2(Fi)
×k =

m∑
i=1

c2(Gi)
×k in CH0(S

k) for all k ≤ min(m,n).

We also refer to Theorem 2.7 and Theorem 2.8 for versions of Theorem 1.2 concerned with other types
of hyper-Kähler varieties, namely generalized Kummer varieties and Fano varieties of lines on smooth
cubic fourfolds.

1.2. Rational equivalence of effective zero-cycles. As outlined in [Voi22, §2.2], motivated by the
criterion of Marian–Zhao, Voisin formulated the following:

Voisin’s Conjecture 1.3 ([Voi22, Conj. 2.11]). Let X be a smooth projective variety whose algebra of
holomorphic forms is generated in degree ≤ 2. Then, given closed points x, y of X,

[x] = [y] in CH0(X) ⇐⇒ [x] = [y] in CH0(X)/F 3
BBCH0(X), (1.1)

where F •
BB denotes the (conjectural) Bloch–Beilinson filtration.

In turn, motivated by Theorem 1.2, we propose the following generalization of Voisin’s Conjecture 1.3,
by allowing for rational equivalence of effective zero-cycles of higher degree, at the expense of looking
deeper into the Bloch–Beilinson filtration.
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Main Conjecture 1.4. Let X be a smooth projective variety whose algebra of holomorphic forms is
generated in degree ≤ d. Then, for closed point x1, . . . , xm, y1, . . . , ym ∈ X,

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/Fmd+1
BB CH0(X). (1.2)

Equivalently, the image of the following map intersects Fmd+1
BB CH0(X) only in {0} :

Φm : SymmX × SymmX −→ CH0(X)

(x1 + · · ·+ xm, y1 + · · ·+ ym) 7−→
m∑
i=1

[xi]−
m∑
i=1

[yi].

Remark 1.5. Since F r
BBCH0(X) = 0 for r ≥ dimX, Main Conjecture 1.4 is only interesting for small

m and l. For instance, it holds trivially for curves or varieties with an indecomposable top form e.g.,
Calabi-Yau varieties, complete intersections of general type, etc.

In practice, we will consider Main Conjecture 1.4 with respect to candidate filtrations for the Bloch–
Beilinson filtration. As a first example, using Beauville’s filtration F •

B as the candidate Bloch–Beilinson
filtration for abelian varieties, we have:

Theorem 1.6 (Theorem 3.3). Let A be an abelian g-fold and let x1, . . . , xm, y1, . . . , ym ∈ A,

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(A) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/Fm+1
B CH0(X). (1.3)

In (1.3) we write

Fm+1
B CH0(X) =def

g⊕
s=m+1

CHg
(s)(A),

where CHg
(s)(A) are the graded pieces of the Beauville filtration on CH0(A):

CHg
(s)(A) =def {α ∈ CHg(A) : [k]∗(α) = k2g−sα for all k ∈ Z},

where [k] : A −→ A is the multiplication by k isogeny.

There are two further candidates for the Bloch–Beilinson filtration on CH0(X) that we will consider
in this work. The first, F •

VCH0(X), was proposed by Voisin in [Voi04], and is defined by

F i
VCH0(X) =

⋂
Γ,Y

ker
(
Γ∗ : CH0(X) −→ CH0(Y )

)
,

where Y ranges over all smooth projective (i − 1)-folds and Γ over all correspondences in the group
CHi−1(X × Y ). In Proposition 3.2 and in Proposition 3.6, we adapt arguments of Voisin from [Voi22]
to deduce Main Conjecture 1.4 for abelian varieties and for hyper-Kähler varieties with respect to the
candidate filtration F •

V from well-known conjectures on algebraic cycles.

The second candidate, which is particularly useful to provide unconditional evidence in favor of Main
Conjecture 1.4, is inspired by Murre’s filtration [Mur93] and uses the language of birational motives as
introduced by Kahn–Sujatha [KS16], see [Via22, §2] for an overview. Briefly, a birational correspondence
between two connected smooth projective varieties X and Y over a field k is a cycle

γ ∈ lim
U⊆X

CHdimY (U ×k Y ) = CH0(Yk(X)),

where the limit runs through all Zariski open subsets of X and where k(X) is the function field of X.
Birational correspondences can be composed and there is a well-defined induced action

γ∗ : CH0(X) → CH0(Y ),

which in fact determines γ if k is a universal domain [Via22, Lem. 2.1]. A birational motive is a pair
(X,ϖ), also denoted h◦ϖ(X), consisting of a smooth projective variety X and a birational idempotent
correspondence ϖ ∈ CH0(Xk(X)).
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Let now ϖ ∈ End(h◦(X)) be any birational idempotent correspondence and denote by δk−1 : X ↪→ Xk

the diagonal embedding, where by convention δ−1 is the structure morphism. These induce a morphism⊕
k≥0

ϖ⊗k ◦ δk−1 : h◦(X) −→ Sym∗ h◦ϖ(X).

We define for all j and all 1 ≤ i ≤ d the following descending filtration

F dj+i
ϖ CH0(X) =def ker

(
j⊕

k=0

ϖ⊗k ◦ δk−1
∗ : CH0(X) −→

j⊕
k=0

CH0(X
k)

)
.

If X is a smooth projective variety whose algebra of holomorphic forms is generated in degree d and if
ϖ acts on H0(X,Ωnd

X ) as the identity for n = 1 and as zero otherwise, then this filtration is a candidate
for the Bloch–Beilinson filtration (see [Via22]).

In this language, we have

Proposition 1.7 (Proposition 2.2). Let X be a smooth projective variety and h◦ϖ(X) =def (X,ϖ) a
direct summand of the birational motive h◦(X) such that h◦(X) is co-generated by h◦ϖ(X), i.e., such that
the morphism h◦(X) −→ Sym∗ h◦ϖ(X) is split injective. If x1, . . . , xm and y1, . . . , ym are closed points of
X, then

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/F dm+1
ϖ CH0(X).

The link to Main Conjecture 1.4 is provided by the following. Assume that H0(X,Ω•
X) is gener-

ated by
⊕

i≤d H
0(X,Ωi

X). A combination of the standard conjectures and of the Bloch–Beilinson con-

jecture implies the existence of a birational idempotent correspondence ϖ such that ϖ∗H
0(X,Ω•

X) =⊕
0<i≤d H

0(X,Ωi
X) and, for any choice of such ϖ, h◦(X) is co-generated by h◦ϖ(X) (this is [Via22,

Conj. 5.1]) and the filtration F •
ϖ defined above is the Bloch–Beilinson filtration on CH0(X). Hence, one

may formulate the following variant of Main Conjecture 1.4:

Conjecture 1.8. Let X be a smooth projective variety whose algebra of holomorphic forms is generated
in degree ≤ d. Then there exists a birational idempotent correspondence ϖ such that ϖ∗H

0(X,Ω•
X) =⊕

0<i≤d H
0(X,Ωi

X) and such that, for x1, . . . , xm and y1, . . . , ym closed points on X,

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/F dm+1
ϖ CH0(X).

The following gives evidence for Conjecture 1.8 and therefore Main Conjecture 1.4 in the case of
hyper-Kähler varieties.

Theorem 1.9 (Theorem 2.3). Let X be a hyper-Kähler variety. Assume that X is one of the following:

(1) Hilbn(S), the Hilbert scheme of length-n closed subschemes on a K3 surface S ;
(2) Mσ(v), a moduli space of stable objects on a K3 surface ;
(3) Kn(A), the generalized Kummer variety associated to an abelian surface A ;
(4) F (Y ), the Fano variety of lines on a smooth cubic fourfold Y ;

(5) K̃v(A), O’Grady’s six-dimensional example.

Then there exists a birational idempotent correspondence ϖ such that ϖ∗H
0(X,Ω•

X) = H0(X,Ω2
X) and

such that, for any closed points x1, . . . , xm and y1, . . . , ym on X,

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/F dm+1
ϖ CH0(X).

From there and the work carried out in [Via22], we derive explicit criteria as in Theorem 1.2 for rational
equivalence of effective zero-cycles; we refer to Theorem 2.6 for case (2), Theorem 2.7 for case (3) and
Theorem 2.8 for case (4).
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1.3. Polynomial decomposition of the diagonal. In the last part of the paper, in an attempt to
further explain and motivate Main Conjecture 1.4, we introduce in Definition 4.2 the notion of polynomial
decomposition of the diagonal up to coniveau c. A special instance of the definition is the following:

Definition 1.10. A smooth projective n-fold X admits a degree l polynomial decomposition of the
diagonal if

∆X = Z1 + Z2 ∈ CHn(X ×X),

where Z1 belongs to the subalgebra of CH•(X × X) generated in degree ≤ l and Z2 is supported on
D ×X for some divisor D ⊂ X.

In Proposition 4.8, we observe that if X has a degree l polynomial decomposition of the diagonal,
then its algebra of holomorphic forms is generated in degrees ≤ l. We show in Proposition 4.10 that if
X has a degree l polynomial decomposition of the diagonal and satisfies Nori’s Conjecture 3.1, then for
x1, . . . , xm, y1, . . . , ym ∈ X,

m∑
i=1

xi =

m∑
i=1

yi in CH0(X) ⇐⇒
m∑
i=1

xi =

m∑
i=1

yi in CH0(X)/Fml+1
V CH0(X).

Accordingly, the following conjecture in conjunction with Nori’s Conjecture 3.1 implies Main Conjec-
ture 1.4:

Conjecture 1.11 (Special instance of Conjecture 4.6). A smooth projective variety X admits a degree l
polynomial decomposition of the diagonal if and only if the algebra H0(X,Ω•) is generated in degree ≤ l.

Finally, we will show in Proposition 4.9 how Conjecture 1.11 easily implies the generalized Bloch
conjecture in coniveau 1.

Acknowledgments. We thank Salvatore Floccari for mentioning Remark 2.4 and its proof, which led
to a proof of Theorem 2.3(5). Ch.V. is grateful to Stony Brook University for a pleasant stay in March
2023.

2. Effective zero-cycles on hyper-Kähler varieties

In this section we show that Main Conjecture 1.4 holds unconditionally for certain hyper-Kähler
varieties, with respect to a certain Bloch–Beilinson candidate filtration induced by some birational cor-
respondence. We also give explicit criteria for the rational equivalence of effective zero-cycles on some
hyper-Kähler varieties.

2.1. Hyper-Kähler varieties satisfying Main Conjecture 1.4. We start by considering the general
situation of an arbitrary smooth projective variety X over an algebraically closed field. We take on
the definitions and notation from [Via22] concerning birational motives and their co-algebra structure.
Our main tool used to prove Theorem 1.2 and its variants for generalized Kummer varieties and Fano
varieties of lines on smooth cubic fourfolds is the observation that [Via22, Prop. 5.2] can be extended to
the following:

Proposition 2.1. Let X be a smooth projective variety over an algebraically closed field and denote
δk−1 : X ↪→ Xk the diagonal embedding, where by convention δ−1 is the structure morphism. Let
h◦ϖ(X) =def (X,ϖ) be a direct summand of the birational motive h◦(X) and assume that there exists
r ≥ 0 such that the morphism

r⊕
k=0

ϖ⊗k ◦ δk−1
∗ : h◦(X) −→ Sym≤r h◦ϖ(X)

is split injective (we say h◦(X) is co-generated by h◦ϖ(X)).
If x1, . . . , xm and y1, . . . , ym are closed points on X, then

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

(ϖ∗[xi])
×k =

m∑
i=1

(ϖ∗[yi])
×k in CH0(X

k) for all k ≤ min(m, r).
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Proof. Under the morphism h◦(X) → Sym≤r h◦ϖ(X), the class of a closed point x is mapped to 1 +
(ϖ)∗[x] + · · ·+ (ϖ⊗r)∗δ

r−1
∗ [x]. Since δk−1

∗ [x] = [x]× · · · × [x] in CH0(X
k), we find that

m∑
i=1

[xi] 7→ m+

m∑
i=1

ϖ∗[xi] + · · ·+
m∑
i=1

(ϖ∗[xi])
×r.

Now, the basic point is that if the morphism h◦(X) → Sym≤r h◦ϖ(X) is split injective, then the induced
map on Chow groups of zero-cycles is injective. Hence

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

(ϖ∗[xi])
×k =

m∑
i=1

(ϖ∗[yi])
×k in CH0(X

k) for all k ≤ r.

On the other hand, the fundamental theorem on symmetric polynomials provides the equivalence
m∑
i=1

(ϖ∗[xi])
×k =

m∑
i=1

(ϖ∗[yi])
×k ∀k ≤ r ⇐⇒

m∑
i=1

(ϖ∗[xi])
×k =

m∑
i=1

(ϖ∗[yi])
×k for all k ≤ min(m, r).

This concludes the proof. □

Let now ϖ ∈ End(h◦(X)) be any birational idempotent correspondence. Recall that for all j and all
1 ≤ i ≤ d we consider the descending filtration

F dj+i
ϖ CH0(X) =def ker

( j⊕
k=0

ϖ⊗k ◦ δk−1
∗ : CH0(X) −→

j⊕
k=0

CH0(X
k)
)
.

Proposition 2.1 can be reformulated as:

Proposition 2.2. Let X be a smooth projective variety over an algebraically closed field. Let h◦ϖ(X) =def

(X,ϖ) be a direct summand of the birational motive h◦(X) and assume that h◦(X) is co-generated by
h◦ϖ(X), i.e., that the morphism h◦(X) −→ Sym∗ h◦ϖ(X) is split injective. If x1, . . . , xm and y1, . . . , ym
are closed points on X, then

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/F dm+1
ϖ CH0(X).

The following gives evidence for Conjecture 1.8 and Main Conjecture 1.4 in the case of hyper-Kähler
varieties.

Theorem 2.3. Let X be a hyper-Kähler variety. Assume that X is one of the following:

(1) Hilbn(S), the Hilbert scheme of length-n closed subschemes on a K3 surface S ;
(2) Mσ(v), a moduli space of stable objects on a K3 surface ;
(3) Kn(A), the generalized Kummer variety associated to an abelian surface A ;
(4) F (Y ), the Fano variety of lines on a smooth cubic fourfold Y ;

(5) K̃v(A), O’Grady’s six-dimensional example [O’G03].

Then there exists a birational idempotent correspondence ϖ such that ϖ∗H
0(X,Ω•

X) = H0(X,Ω2
X) and

such that, for any closed points x1, . . . , xm and y1, . . . , ym on X,
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/F dm+1
ϖ CH0(X).

Proof. For a hyper-Kähler varietyX, the existence of a birational idempotent correspondenceϖ such that
ϖ∗H

0(X,Ω•
X) = H0(X,Ω2

X) and such that the morphism h◦(X) → Sym≤nh◦ϖ(X) is an isomorphism (in
particular, h◦(X) is co-generated by h◦ϖ(X)) is conjectured in [Via22, Conj. 2] (see also [Via22, Prop. 5.3])
and is established in cases (1), (2), (3), and (4) in [Via22, Thm. 5.5]. Regarding case (5), we use below the
work of Mongardi–Rapagnetta–Saccà [MRS18] and Floccari [Flo23] to reduce to case (1) by showing that

the birational motive of K̃v(A) is isomorphic to that of a Hilbert scheme of length-3 closed subschemes
on a K3 surface as co-algebra objects. The theorem in all cases listed then follows from Proposition 2.2.

O’Grady’s hyper-Kähler sixfold is obtained as follows. Let A be an abelian surface and let v = 2v0 be a
Mukai vector on A such that v0 is primitive, effective, and of square 2. Given a v-generic polarization H,



6 OLIVIER MARTIN AND CHARLES VIAL

let Mv(A) be the corresponding moduli space ofH-semistable sheaves on A and denoteKv(A) its Albanese

fiber. Then Kv(A) admits a crepant resolution K̃v(A) which is a hyper-Kähler sixfold. By [MRS18], there
exists a variety Yv(A), which by [Flo23, Prop. 3.3] is birational to a moduli space M(A, v) of stable sheaves

on the Kummer surface associated to A, and a rational map f : Yv(A) 99K K̃v(A) of degree 2. From

the results of [Flo23], f∗ : CH0(Yv(A)) → CH0(K̃v(A)) is an isomorphism, and consequently by [Via22,

Prop. 2.3] gives an isomorphism h◦(M(A, v)) ∼= h◦(K̃v(A)) of co-algebra objects. □

Remark 2.4 (The Voisin filtration S• and the co-radical filtration agree in case (5)). The proof of
Theorem 2.3 in Case (5) was made possible after Salvatore Floccari communicated to us the following.

Let K̃v(A) be O’Grady’s six-dimensional example. Together with [Via22, Thm. 1(i)], the arguments in

the proof of Theorem 2.3 in that case show that there exists a point o ∈ K̃v(A) such that, for all k ≥ 0

and for all x ∈ K̃v(A),

[x] ∈ SkCH0(K̃v(A)) ⇐⇒ ([x]− [o])×k+1 = 0 in CH0(K̃v(A)k+1),

or equivalently, such that

SkCH0(K̃v(A)) = RkCH0(K̃v(A))

for all k ≥ 0. Here, S• is Voisin’s filtration [Voi16] and R• is the co-radical filtration introduced in [Via22].

2.2. Explicit criteria for rational equivalence of effective zero-cycles on hyper-Kähler vari-
eties. In this paragraph we exploit the so-called strictness of the explicit co-multiplicative birational
Chow–Künneth decompositions on the birational motive of certain hyper-Kähler varieties, which were
constructed in [Via22], to derive criteria for the coincidence of effective zero-cycles on these hyper-Kähler
varieties.

2.2.1. Moduli spaces of stable objects on K3 surfaces. Let S be a smooth projective complex K3 surface.
For a primitive v ∈ H•(S,Z), and a v-generic stability condition σ, let Mσ(v) be the moduli space of
σ-stable complexes on S of Mukai vector v ; this defines a hyper-Kähler variety and we denote by 2n its
dimension. Marian and Zhao [MZ20] have established the following:

Theorem 2.5 (Marian–Zhao [MZ20]). Let F and G be closed points of Mσ(v). Then

[F ] = [G] in CH0(Mσ(v)) ⇐⇒ c2(F) = c2(G) in CH0(S).

We have the following generalization to effective zero-cycles of arbitrary degree:

Theorem 2.6. Let F1, . . . ,Fm and G1, . . . ,Gm be closed points of Mσ(v). Then
m∑
i=1

[Fi] =

m∑
i=1

[Gi] in CH0(Mσ(v))

⇐⇒
m∑
i=1

c2(Fi)
×k =

m∑
i=1

c2(Gi)
×k in CH0(S

k) for all k ≤ min(m,n).

Proof. Denote by [oS ] the Beauville–Voisin class on S and let c ∈ Z be the constant (which depends only
on the Mukai vector v) such that deg c2(F) = c for all F ∈ Mσ(v). We denote h◦2(S) the image of the bira-
tional idempotent correspondence (∆S−S× [oS ])|ηS×S acting on h◦(S). The birational motive h◦(Mσ(v))

is then canonically isomorphic to Sym≤n h◦ϖ(Mσ(v)) for a birational idempotent correspondence ϖ fac-
torizing as ϖ : h◦(Mσ(v)) ↠ h◦2(S) ↪→ h◦(Mσ(v)) with the left arrow satisfying [F ] 7→ c2(F)−c[oS ] for all
F ∈ Mσ(v). See the proofs of [Via22, Thm. 3.1] and [Via22, Thm. 5.5], which are based on the theorem
of Marian–Zhao. From Proposition 2.1 it follows that

m∑
i=1

[Fi] =

m∑
i=1

[Gi] in CH0(Mσ(v))

⇐⇒
m∑
i=1

(c2(Fi)− c[oS ])
×k =

m∑
i=1

(c2(Gi)− c[oS ])
×k in CH0(S

k) for all k ≤ min(m,n).

The latter is easily seen to be further equivalent to
∑m

i=1 c2(Fi)
×k =

∑m
i=1 c2(Gi)

×k in CH0(S
k) for all

k ≤ min(m,n). □
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2.2.2. Generalized Kummer varieties. Let A be an abelian surface. Recall that the 2n-dimensional gener-
alized Kummer variety Kn(A) is the fiber over 0 of the composition of the Hilbert–Chow morphism with
the sum map Hilbn+1(A) → An+1/Sn+1 → A. We thus have a natural morphism Kn(A) → An+1

0 /Sn+1,
where An+1

0 =def ker(Σ : An+1 → A). Let us denote by {x1, . . . , xn+1} the closed points of An+1
0 /Sn+1;

these are unordered (n+ 1)-tuple of closed point of A such that x1 + · · ·+ xn+1 = 0 in A. By [FTV19,
§6], the pushforward map CH0(Kn(A)) → CH0(A

n+1
0 /Sn+1) is an isomorphism. Therefore the rational

equivalence class of a point in Kn(A) only depends on its image in An+1
0 /Sn+1 and we have a canonical

isomorphism h◦(Kn(A)) ∼= h◦(An+1
0 /Sn+1).

Theorem 2.7. Let p1, . . . , pm and q1, . . . , qm be closed points of Kn(A) with respective images
{x1,1, . . . , x1,n+1}, . . . , {xm,1, . . . , xm,n+1} and {y1,1, . . . , y1,n+1}, . . . , {ym,1, . . . , ym,n+1} in An+1

0 /Sn+1.
Then

m∑
i=1

[pi] =

m∑
i=1

[qi] in CH0(Kn(A))

⇐⇒
m∑
i=1

( n+1∑
j=1

[xi,j ]
)×k

=

m∑
i=1

( n+1∑
j=1

[yi,j ]
)×k

in CH0(A
k) for all k ≤ min(m,n).

Proof. We equip the Chow motive h(A) of A with its Deninger–Murre Chow–Künneth decomposition
(which we consider covariantly)

h(A) =

4⊕
i=0

hi(A), with hi(A) =def (A,ϖA
i ).

By construction, this decomposition is an eigenspace decomposition for the multiplication by r maps
[r] : A → A, a 7→ ra. The action on zero-cycles satisfies

(ϖA
0 )∗[a] = [0], (ϖA

1 )∗[a] =
1

2
([a]− [−a]) and (ϖA

2 )∗[a] =
1

2
([a] + [−a])− [0]

for all closed points a ∈ A. The product Chow–Künneth decomposition on Al (which coincides with the
Deninger–Murre Chow–Künneth decomposition on Al) then also provides an eigenspace decomposition
for the multiplication by r maps on Al and hence provide a Chow–Künneth decomposition for h(Al/Sl).

Likewise, identifying Al+1
0 with Al and noting that the sum map commutes with the multiplication by r

maps on Al, the product Chow–Künneth decomposition on Al provides a Chow–Künneth decomposition
for h(Al+1

0 /Sl+1). Via the identification h◦(Kn(A)) ∼= h◦(An+1
0 /Sn+1), this provides a birational Chow–

Künneth decomposition h◦(Kn(A)) =
⊕n

i=0 h
◦
2i(Kn(A)) and it is shown in [Via22, Thm. 5.5(iii)] that the

canonical morphism

h◦(Kn(A))
≃−→ Sym≤nh◦2(Kn(A))

is a graded isomorphism. On the other hand, the natural embedding ι : An+1
0 /Sn+1 ↪→ An+1/Sn+1

commutes with the multiplication by r maps and thus induces a graded morphism of Chow motives

ι∗ : h(A
n+1
0 /Sn+1) −→ h(An+1/Sn+1).

Moreover, its restriction to the generic point

ι∗ : h
◦(Kn(A)) ≃ h◦(An+1

0 /Sn+1) −→ h◦(An+1/Sn+1)

is split injective. Indeed, if

Γ =def A
(n,n+1) =def {({x1, . . . , xn}, {x1, . . . , xn, xn+1}) | x1, . . . , xn+1 ∈ A} ⊂ An/Sn ×An+1/Sn+1

denotes the incidence correspondence, we have 1
n+1Γ

∗ι∗([p]) = [p] in CH0(Kn(A)) for all closed points

p ∈ Kn(A).
Therefore, by Proposition 2.1,

∑m
i=1[pi] =

∑m
i=1[qi] in CH0(Kn(A)) if and only if

m∑
i=1

(
(ϖAn+1

2 )∗ι∗[pi]
)×k

=

m∑
i=1

(
(ϖAn+1

2 )∗ι∗[qi]
)×k

in CH0((A
n+1)k) for all k ≤ min(m,n),
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where

ϖAn+1

2 =
(
ϖA

2 ⊗ϖA
0 ⊗ · · · ⊗ϖA

0 + (sym)
)︸ ︷︷ ︸

ϖ2,0

+
(
ϖA

1 ⊗ϖA
1 ⊗ϖA

0 ⊗ · · · ⊗ϖA
0 + (sym)

)︸ ︷︷ ︸
ϖ1,1

.

Since (ϖ2,0)∗ι∗[pi] = c
∑n+1

j=1 [{xij , 0, . . . , 0}] for some non-zero combinatorial constant c only depending

on n (and similarly for qi in place of pi), we only need to show that, for any point x = {x1, . . . , xn+1}
in An+1

0 /Sn+1, (ϖ
An+1

2 )∗[x] vanishes if and only if (ϖ2,0)∗[x] vanishes. The “only if” part is clear since
the idempotents ϖ2,0 and ϖ1,1 are orthogonal. For the “if” part, we first note that (ϖ2,0)∗[x] is equal to

the symmetrization of d(
∑n+1

i=1 [xi] − (n + 1)[0]) × [0]×n in CH0(A
n+1) for some non-zero combinatorial

constant d. In particular, if (ϖ2,0)∗[x] vanishes, then
∑

[xi] = (n+1)[0] in CH0(A). Second, the identity∑
i xi = 0 in A implies [Lin18] that

∑
i[xi] =

∑
i[−xi] in CH0(A), i.e., that (ϖA

1 )∗
∑

i[xi] = 0 in CH0(A).
Now (ϖ1,1)∗[x] is a non-zero multiple of the symmetrization of(∑

i

(ϖA
1 )∗[xi]×

∑
i

(ϖA
1 )∗[xi]−

∑
i

(ϖA
1 )∗[xi]× (ϖA

1 )∗[xi]
)
× [0]×(n−1)

in CH0(A
n+1). Thus if x1, . . . , xn+1 are closed points in A such that x1 + · · · + xn+1 = 0 in A, then

(ϖ1,1)∗[x] is a non-zero multiple of the symmetrization of∑
i

(ϖA
1 )∗[xi]× (ϖA

1 )∗[xi]× [0]×(n−1) =
(
(ϖA

1 ×ϖA
1 )∗δ∗

∑
i

[xi]
)
× [0]×(n−1),

where δ : A ↪→ A×A is the diagonal embedding. It then clearly follows that if
∑

i[xi] = (n+ 1)[0], then

(ϖ1,1)∗[x] vanishes and hence that (ϖAn+1

2 )∗[x] vanishes. □

2.2.3. Fano varieties of lines on cubic fourfolds. Let Y be a smooth cubic hypersurface in P5
C and let

X = F (Y ) be the Fano variety of lines on Y ; it is a hyper-Kähler variety of dimension 4 polarized by the
restriction g of the Plücker polarization on the Grassmannian Gr(P1,P5). By abuse we will denote both
by l a line in Y and the corresponding point in X.

Theorem 2.8. Let X = F (Y ) be the Fano variety of lines on a smooth cubic fourfold Y . Then

[l] = [l′] in CH0(F (Y )) ⇐⇒ [l] = [l′] in CH1(Y )

and, for m > 1,

m∑
i=1

[li] =

m∑
i=1

[l′i] in CH0(F (Y )) ⇐⇒

{∑m
i=1[li] =

∑m
i=1[l

′
i] in CH1(Y ), and∑m

i=1[li]× [li] =
∑m

i=1[l
′
i]× [l′i] in CH2(Y × Y ).

Proof. Recall from [SV16, Thm. 21.9] that the action of Voisin’s birational map φ : X 99K X on CH0(X)
diagonalizes. We then consider the birational idempotent correspondenceϖ on h◦(X) given by the projec-
tor with respect to the eigenspace decomposition of φ on the eigenspace corresponding to the eigenvalue
−2. By [Via22, Thm. 5.5(iv)], the canonical morphism h◦(X) → Sym≤2 h◦ϖ(X) is an isomorphism.

Let now Z =def {(y, l) ∈ Y ×X | y ∈ l} be the universal line. By the Franchetta conjecture for X ×X
[FLV19], ϖ is in fact the restriction to the generic point of the idempotent correspondence

h6(X)prim h4(Y )prim(−1) h6(X)prim.
Z∗ − 1

6 (p
∗
2g

2)◦Z∗

Moreover both arrow are isomorphisms of Chow motives. Here h4(Y )prim is the direct summand of

the Chow motive h(Y ) cut out by the idempotent p =def ∆Y − 1
3

∑4
i=0 h

i × h4−i with h ∈ CH1(Y ) the

hyperplane class, and h6(X)prim is the direct summand of h(X) cut out by the idempotent correspondence
Z∗ ◦ p ◦

(
− 1

6 (p
∗
2g

2) ◦Z∗). We can then conclude by Proposition 2.1 after noting that p ◦Z∗[l] = [l]− [l0]

where l0 is any line on Y with class 1
3h

3. □
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3. The Voisin filtration

In this section we show that Main Conjecture 1.4 holds unconditionally with respect to the Beauville
candidate for the Bloch–Beilinson filtration for abelian varieties, and present some cases in which Main
Conjecture 1.4 is satisfied conditional on well-known conjectures on algebraic cycles with respect to the
Voisin candidate for the Bloch–Beilinson filtration.

3.1. Main Conjecture 1.4 for abelian varieties. In [Voi22], Voisin shows that given an abelian
variety A, a desingularization of the quotient A/± satisfies Voisin’s Conjecture 1.3. This is essentially
equivalent to the fact that abelian varieties satisfy Main Conjecture 1.4 for m = 2, and the proof can be
adapted to show that the following conjecture of Nori implies Main Conjecture 1.4 for abelian varieties.

Nori’s Conjecture 3.1 ([Nor93]). Let X be a smooth projective variety and w ∈ CHi(X) a cycle such
that w|T = 0 ∈ CH0(T ) for any i-fold T ⊂ X. Then w = 0 ∈ CHi(X).

Proposition 3.2. Main Conjecture 1.4 holds for abelian varieties and m = 2. Moreover, Nori’s Con-
jecture 3.1 for an abelian g-fold A implies Main Conjecture 1.4 for A.

Proof. Suppose
[a] + [a′] = [b] + [b′] in CH0(A)/F 3

VCH0(A).

Then a+ a′ = b+ b′ so, translating by −a− a′ if needed, we can assume that a′ = −a, b′ = −b. Voisin
shows in [Voi22, Prop. 2.17] that

[a] + [−a] = [b] + [−b] in CH0(A)/F 3
BBCH0(A) ⇐⇒ [a] + [−a] = [b] + [−b] in CH0(A).

For the general case we can follow a similar argument. The main differences are the use of the
fundamental theorem on symmetric polynomials and the substitution of Nori’s Conjecture 3.1 in place
of a theorem of Joshi [Jos95]. Suppose that

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(A)/Fm+1
BB CH0(A). (3.1)

Let Θ be an ample divisor that gives an isogeny

A −→ Â

x 7−→ Dx =def Θx −Θ.

The map x 7→ Dj
x ∈ CHj(A) is a given by a correspondence in CHj(A × A). Hence, assuming Nori’s

Conjecture 3.1, we can use Lemma 3.5 and (3.1) to deduce that
m∑
i=1

Dj
xi

=

m∑
i=1

Dj
yi
, ∀j ∈ {1, . . . ,m}.

The fundamental theorem on symmetric polynomials then implies that
m∑
i=1

Dj
xi

=

m∑
i=1

Dj
yi

in CHj(A), ∀j ∈ N.

The Chow ring of A has two ring structures, one given by intersection and the other by the Pontryagin
product:

CH•(A)× CH•(A) −→ CH•(A)

(α, β) 7−→ σ∗(α× β),

where σ : A×A −→ A is the summation map. A formula of Beauville then gives
m∑
i=1

Θg−j

(g − j)!
Dj

xi
=

m∑
i=1

Θg

g!
∗ γ(xi)

∗j in CH0(A), ∀j ∈ N,

where

γ(x) =

n∑
k=1

1

k
([x]− [0A])

∗k
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is the logarithm of [x]. Since exp(γ(x)) = [x] and we can assume that Θg/g! = d[0A] for some positive
integer d, we get

m∑
i=1

[xi] =

m∑
i=1

exp(γ(xi)) =

m∑
i=1

exp(γ(yi)) =

m∑
i=1

[yi] ∈ CH0(A).

□

Instead of considering the filtration F •
V, we can consider the Beauville filtration F •

B on the Chow ring of
an abelian variety (see [Bea86]) to obtain an unconditional proof of an analogue of Main Conjecture 1.4:

Theorem 3.3. Let A be an abelian g-fold and let x1, . . . , xm, y1, . . . , ym ∈ A,

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(A) ⇐⇒
m∑
i=1

[xi]−
m∑
i=1

[yi] lies in

g⊕
s=m+1

CHg
(s)(A).

Proof. The map x 7→ Dj
x ∈ CHj(A) as above is a given by a correspondence Γj ∈ CHj(A × A). Since

CHi
(s)(A) = 0 for all s > i,

Γj∗(CH
g
(s)(A)) = 0, ∀s ≥ j.

Thus, if
∑m

i=1[xi]−
∑m

i=1[yi] ∈
⊕g

s=m+1 CH
g
(s)(A),

m∑
i=1

Dj
xi

=

m∑
i=1

Dj
yi
, ∀j ∈ {1, . . . ,m}.

We can then apply the same reasoning as in the proof of Proposition 3.2. □

Remark 3.4. Let h(A) =
⊕2g

i=0 hi(A), with hi(A) = (A,ϖi), be the Deninger–Murre decomposition
of the Chow motive of A. If one takes ϖ to be ϖ1|ηA×A, where ηA is the generic point of A, then by
Künnemann [Kün94] h◦(A) is co-generated by h◦ϖ(A) and the filtration F •

ϖ is the Beauville filtration, so
that Proposition 2.2 recovers Theorem 3.3.

3.2. Deducing Main Conjecture 1.4 for hyper-Kähler varieties from well-known conjectures
on algebraic cycles. In [Voi22], the author shows how the nilpotence conjecture implies Voisin’s Con-
jecture 1.3 for hyper-Kähler varieties satisfying the Lefschetz standard conjecture in degree 2. In [Voi22,
Rem. 2.14] she specifies that her proof does not imply a stronger version of the statement of Main Con-
jecture 1.4, where the depth in the Bloch–Beilinson does not depend on the degree m of the effective
zero-cycles. In short the reason is that (s− t) ∈ Z[s, t] divides (sn − tn) for all n > 0, whereas

m∑
i=1

si −
m∑
i=1

ti in Q[s1, . . . , sm, t1, . . . , tm]

need not divide
m∑
i=1

sni −
m∑
i=1

tni .

Nonetheless, one can adapt Voisin’s argument using the fundamental theorem on symmetric polynomials
and Nori’s Conjecture 3.1. The main consequence of Nori’s Conjecture 3.1 we will need is the following:

Lemma 3.5 ([Voi22, Lem. 2.8]). If Nori’s Conjecture 3.1 holds, then for any smooth projective varieties
X,Y , correspondence Γ ∈ CHi(X × Y ), and w ∈ F i+1

BB CH0(X), we have Γ∗w = 0.

Proposition 3.6. Let X be a hyper-Kähler variety which satisfies Nori’s Conjecture 3.1 and the Lefschetz
standard conjecture in degree 2. Then the nilpotence conjecture implies Main Conjecture 1.4 for X.

Proof. This proof is a simple adaptation of Voisin’s argument in Section 2.2 of [Voi22] and we use the
same notation. X is a smooth projective hyper-Kähler variety of dimension 2n and we fix a polarizing
class hX ∈ Pic(X). We let Zlef ∈ CH2(X ×X) be a cycle whose existence is predicted by the Lefschetz
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standard conjecture in degree 2, namely such that [Zlef]
∗ : H4n−2(X) −→ H2(X) is the inverse of the

cup product map with h2n−2
X . As shown in [Voi22], there is a polynomial in Zlef and pr∗2hX

P =

n∑
i=0

µiZ
i
lef · pr∗2h2n−2i

X in CH2n(X ×X)

such that [P ]∗ acts as the identity on holomorphic forms. Reasoning as in [Voi22] and assuming the
nilpotence conjecture, one sees that the map P∗ : CH0(X) −→ CH0(X) is the identity.

Suppose that x1, . . . , xm, y1, . . . , ym ∈ X and

m∑
i=1

[xi]−
m∑
i=1

[yi] ∈ F 2m+1
V CH0(X).

Then by Nori’s Conjecture 3.1

m∑
i=1

(Zj
lef)xi

=

m∑
i=1

(Zj
lef)yi

in CH2i(X), j = 1, . . . ,m.

Here, for a correspondence Z ∈ CHi(X ×X) and a closed point x ∈ X, we write Zx for Z∗[x]. Denoting
by ιx : X −→ X ×X the embedding given by ιx(y) = (x, y), we have

Zj
lef · {x} ×X = Zj

lef · ιx∗(X) = ιx∗(ι
∗
x(Z

j
lef)) = ιx∗(ι

∗
x(Zlef)

j)

= ιx∗
(
(Zlef,x)

j
)
= pr∗1({x}) · pr∗2

(
(Zlef,x)

j
)
.

Accordingly,

(Zj
lef)x = (Zlef,x)

j , j = 0, . . . , n.

This gives
m∑
i=1

(Zlef,xi
)j =

m∑
i=1

(Zlef,yi
)j , j = 0, . . . ,m.

By the fundamental theorem on symmetric polynomials the same equality holds for all j and thus

m∑
i=1

(Zj
lef)xi =

m∑
i=1

(Zj
lef)yi , j = 0, . . . , n.

Finally, we conclude that

m∑
i=1

[xi] = P∗

(
m∑
i=1

[xi]

)
= P∗

(
m∑
i=1

[yi]

)
=

m∑
i=1

[yi] in CH0(X).

□

4. Polynomial decompositions of the diagonal

4.1. Definition and examples. In [Voi22], Voisin formulates the following conjecture, which implies
Voisin’s Conjecture 1.3 for hyper-Kähler varieties with respect to the Voisin filtration; see [Voi22, Prop. 2.15].

Conjecture 4.1 ([Voi22, Conj. 2.16]). Consider a smooth projective hyper-Kähler 2n-fold X, a polariza-
tion hX , and a cycle Zlef ∈ CH2(X ×X) such that [Zlef]

∗ is the inverse of the cup product with h2n−2
X .

There are cycles γi ∈ CH2n−2i(X), i = 0, . . . , n, a divisor D ⊂ X, and a cycle W ∈ CH2n(X × X)
supported on D ×X such that

∆X =

n∑
i=0

Zi
lef · pr∗2(γi) +W ∈ CH2n(X ×X).

This conjecture suggests the following definition:
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Definition 4.2. A smooth projective variety X admits a degree l polynomial decomposition of the diag-
onal up to coniveau c if

∆X = Z1 + Z2 ∈ CHn(X ×X),

where Z1 belongs to the subalgebra of CH•(X ×X) generated in degree at most l and Z2 is supported
on Y ×X for some closed Y ⊂ X of codimension c. If c can be taken to be positive, we say that X has
a degree l polynomial decomposition of the diagonal.

Examples 4.3.

(i) Pn has a degree 1 polynomial decomposition of the diagonal. Indeed, writing h for c1(O(1)), we
have

∆Pn =

n∑
i=0

pr∗1(h
i) · pr∗2(hn−i) ∈ CHn(Pn × Pn).

(ii) A variety with a rational decomposition of the diagonal in the sense of Bloch-Srinivas [BS83] has a
polynomial decomposition of the diagonal in degree 1 up to coniveau 1.

(iii) Curves have a degree 1 polynomial decomposition of the diagonal. More generally, any n-fold has
a degree n polynomial decomposition of the diagonal.

(iv) A surface X with pg(X) = 0 has a degree 1 polynomial decomposition of the diagonal if and only
if it satisfies Bloch’s conjecture. Murre [Mur90] defines a decomposition of the motive h(X)

h(X) =

4∑
i=0

hi(X).

The motives hi(X), i ̸= 2 are cut out by idempotent correspondences which are products of divisors.
The motive h2(X) further breaks up as a sum h2

alg(X) + h2
tr(X) [KMP07]. If Bloch’s conjecture

holds for X, then h2
tr(X) = 0 and thus ∆ is a polynomial in divisor classes. We will explain the

converse in Proposition 4.9.
(v) An abelian variety A has a degree 1 polynomial decomposition of the diagonal. Indeed, the diagonal

of A is a rational multiple of f∗(Θ)dimA, where f : A2 −→ A is given by f(a, b) = a− b, and Θ is a
symmetric ample divisor.

(vi) If X1, . . . , Xr have polynomial decompositions of degree l1, . . . , lr up to coniveau c1, . . . , cr then
X1 × · · · ×Xr has a degree max1≤i≤r(li) polynomial decomposition of the diagonal up to coniveau
max1≤i≤r(ci).

Example 4.4. Let X be a smooth projective variety with H0(X,Ω1) = 0. Since

Pic(X ×X) = pr∗1Pic(X)⊕ pr∗2Pic(X),

X has a degree 1 polynomial decomposition decomposition of the diagonal up to coniveau 1 if and only
if X has a rational decomposition of the diagonal. By Proposition 1 of [BS83] this is the case if and only
if the degree map CH0(X) −→ Q is an isomorphism.

The generalized Bloch conjecture predicts when the degree map CH0(X) −→ Q is an isomorphism.

Conjecture 4.5 (generalized Bloch conjecture, see e.g. [Voi02]). Let X be a smooth projective n-fold
such that Hp,q(X) = 0 for all p ̸= q and p < c. Then the cycle class map

cl : CHi(X) −→ H2n−2i(X,Q)

is injective for all i < c.

4.2. Conjecture and relationship with the generalized Bloch conjecture. Example 4.4 explains
how the generalized Bloch conjecture predicts that a variety withH0(X,Ω1) = 0 has a degree 1 polynomial
decomposition of the diagonal up to coniveau 1 if and only if

Hk(X,Q) = N1
HHk(X,Q) ∀k > 0,

where N•
H denotes the Hodge coniveau filtration. Recall that Nr

HH•(X,Q) is by definition the largest
Hodge substructure V ⊂ H•(X,Q) which has coniveau at least r, namely such that V p,q

C = 0 if p < r.

This provides evidence that a polynomial decomposition of the diagonal can be detected by Hodge
theory.
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Conjecture 4.6. Let X be a smooth projective n-fold. Then X admits a degree l polynomial decompo-
sition of the diagonal up to coniveau c if and only if

Nr
HH•(X,Q)/Nr+1

H H•(X,Q)

is generated in degree at most l + r for all r < c.

Remark 4.7. It suffices to check this in degree ≤ n as the hard Lefschetz theorem then implies the same
generation statement in high degree. Example 4.3 (4) illustrates why the shift in degree of generation
according to coniveau is necessary. For example, a smooth cubic surface has a degree 1 polynomial
decomposition of the diagonal but its primitive cohomology is not generated in degree 1.

As is often the case, it is easy to deduce Hodge-theoretic information from cycle-theoretic information:

Proposition 4.8. If X has a degree l decomposition of the diagonal up to coniveau c the algebra

Nr
HH•(X,Q)/Nr+1

H H•(X,Q)

is generated in degrees at most l + r for all r < c.

Proof. Observe that the subspace of Hd(X,Q) generated in degrees at most l+r is a sub-Hodge structure
whose complexification is the subspace of Hd(X,C) generated in degrees at most l+r. Consider a simple
Hodge structure

V ⊂ Nr
HHd(X,Q)

which is not contained in Nr+1
H Hd(X,Q) and cycles W1, . . . ,Wk ⊂ X ×X of codimension d1, . . . , dk ≤ l

with
n =def dimX = d1 + · · ·+ dk.

For each i, decompose the cycle class of Wi into Künneth components

[Wi] =

di∑
ai,bi=0

vai,bi
i ⊗ wdi−ai,di−bi

i ,

where
vai,bi
i ⊗ wdi−ai,di−bi

i ∈ Hai,bi(X)⊗Hdi−ai,di−bi(X).

Given a non-zero class α ∈ V r,d−r
C , we have

[W1 · · ·Wk]
∗α =

∑
|a|=r,|b|=d−r

[
k∏

i=1

(vai,bi
i ⊗ wdi−ai,di−bi

i )

]∗
α

where the sum is over tuples a = (a1, . . . , ak), b = (b1, . . . bk) with sums r and d− r respectively. Since

(va1,b1
1 ⊗ wd1−a1,d1−b1

1 · · · vak,bk
k ⊗ wdk−ak,dk−bk

k )∗α

is a multiple of va1,b1
1 · · · vak,bk

k and ai ≤ r, bi ≤ di ≤ l, we must have ai + bi ≤ l + r. This shows that

[W1 · · ·Wk]
∗α is in the subspace of Hd(X,C) generated in degree ≤ l + r, and thus that V is contained

in the subspace of Hd(X,Q) generated in degree ≤ l + r. □

Proposition 4.9. Let X be a smooth projective n-fold with H0(X,Ωp) = 0 for all p ≥ 2 and set
F 2CH0(X) to be either F 2

VCH0(X) or the kernel of the albanese map on zero-cycles of degree 0. If X has
a degree 1 polynomial decomposition of the diagonal up to coniveau 1 then F 2CH0(X) = 0. In particular,
Conjecture 4.6 for c = 1 implies the generalized Bloch conjecture for c = 1.

Proof. Since X has a degree 1 polynomial decomposition of the diagonal up to coniveau 1 we can write

∆X = Z1 + Z2 ∈ CHn(X ×X),

where Z1 is a polynomial in divisors and Z2 is supported on Y ×X for some divisors Y ⊂ X. Accordingly,

idCH0(X) = ∆X∗ = Z1∗ : CH0(X) −→ CH0(X).

We will show that any monomial D1 · · ·Dn, where Di ∈ Pic(X × X), gives a zero map on F 2CH0(X)
which will imply that F 2CH0(X) = 0. Observe that

Pic(X ×X) = pr∗1Pic(X)⊕ pr∗2Pic(X)⊕H,
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where H is the group that consists of pullbacks of divisors classes on Alb(X)×Alb(X) which have trivial
restriction to the factors.

Given a monomial D1 · · ·Dn, if one of the Di is in pr∗1Pic(X) then the map

(D1 · · ·Dn)∗ : CH0(X) −→ CH0(X)

is identically zero. Similarly, if at least n− 1 of the Di belong to pr∗2Pic(X) then the same map factors
through the Chow group of zero-cycles on a variety of dimension 1 so that the induced map

(D1 · · ·Dn)∗ : F 2CH0(X) −→ F 2CH0(X)

is identically zero.

Finally, suppose that D1, . . . , Di belong to pr∗2Pic(X) and that Di+1, · · · , Dn are pulled back from
divisors D′

i+1, . . . , D
′
n on Alb(X) × Alb(X) under α × α, where α : X −→ Alb(X) is the Albanese

morphism. Since H0(X,Ω2) = 0, the Albanese dimension of X is at most 1. We can assume that the
image of X in its Albanese is a curve C, or else H = 0 and we are done by the considerations above.
Since Di+1 ·Dn = 0 if i < n− 2, it suffices to consider the case i = n− 2. Then Dn−1 ·Dn is the pullback
of a zero cycle on C ×C. Since the pullback of a point on C ×C is the product of a divisor in pr∗1Pic(X)
and a divisor in pr∗2Pic(X), we see that D1 · · ·Dn induces the zero map on CH0(X). □

4.3. Relation between Conjecture 4.6 and Main Conjecture 1.4. The following proposition shows
that Conjecture 4.6 for c = 1 along with Nori’s Conjecture 3.1 implies Main Conjecture 1.4 using Voisin’s
filtration as a candidate Bloch–Beilinson filtration.

Proposition 4.10. Assume that X has a degree l polynomial decomposition of the diagonal and that X
satisfies Nori’s Conjecture 3.1. Then, for closed point x1, . . . , xm, y1, . . . , ym ∈ X,

m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X) ⇐⇒
m∑
i=1

[xi] =

m∑
i=1

[yi] in CH0(X)/Fml+1
V CH0(X).

Proof. By assumption ∆X = Z1+Z2, where Z1 is in the subalgebra of CH•(X×X) generated in degrees
≤ l, and Z2 is supported on some proper closed subset Y ⊂ X. Hence,

∆X∗ = Z1∗ : CH0(X) −→ CH0(X).

Consider cycles W1, . . . ,Wn in
⊕

i≤l CH
i(X × X) generating a subalgebra containing Z1. Consider

a = (a1, . . . , an) ∈ Nn \ {0} with a1 + · · ·+ an ≤ m. The cycle

Pa =def W
a1
1 · · ·W an

n

has codimension at most ml. Given x1, . . . , xm, y1, . . . , ym ∈ X such that
m∑
i=1

[xi]−
m∑
i=1

[yi] lies in Fml+1
V CH0(X),

Nori’s Conjecture 3.1 and Lemma 3.5 imply that
m∑
i=1

Pa,xi
=

m∑
i=1

Pa,yi
.

The same argument as in the proof of Proposition 3.6 shows that

Pa,xi = W a1
1,xi

· · ·W an
n,xi

∈ CH•(X),

so that
m∑
i=1

W a1
1,xi

· · ·W an
n,xi

=

m∑
i=1

W a1
1,yi

· · ·W an
n,yi

∈ CH•(X). (4.1)

In order to proceed, we will need a generalization of the fundamental theorem on symmetric poly-

nomials. Consider variables w
(i)
j where 1 ≤ j ≤ n and 1 ≤ i ≤ m. The symmetric group Sm acts on

the ring Q[w
(i)
j ] by permuting the superscript and the subalgebra Q[w

(i)
j ]Sm is called the subalgebra of
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multi-symmetric polynomials. Given an element a =def (a1, . . . , an) ∈ Nn \ 0, the corresponding power
sum multisymmetric polynomial is

pa(w
(i)
j ) =

m∑
s=1

w
(s)
1

a1

· · ·w(s)
n

an ∈ Q[w
(i)
j ]Sm .

It is a classical fact that Q[w
(i)
j ]Sm is generated by elementary multisymmetric power sums (see the

references in the introduction of [Bri04]).

Proposition 4.11 ([Bri04, Cor. 5]). All power sums are in the ideal generated by the powers sums

pa(w
(i)
j ) with a1 + · · ·+ an ≤ m.

Now consider two morphisms f, g : Q[w
(i)
j ] −→ CH•(X) given respectively by f(w

(i)
j ) = Wj,xi

and

g(w
(i)
j ) = Wj,yi . The equality (4.1) amounts to f(pa(w

(i)
j )) = g(pa(w

(i)
j )) for all a = (a1, . . . , an) in

Nn \ {0} satisfying a1 + · · · + an ≤ m. Proposition 4.11 then implies that f(pa(w
(i)
j )) = g(pa(w

(i)
j )),

namely
m∑
i=1

Pa,xi =

m∑
i=1

Pa,yi ∈ CH•(X),

for any a = (a1, . . . , an) ∈ Nn \ {0}. Since Z1 is a polynomial in the Wi, it follows that
m∑
i=1

[xi] =

m∑
i=1

Z1,xi
=

m∑
i=1

Z1,yi
=

m∑
i=1

[yi] in CH0(X),

thereby concluding the proof of the proposition. □
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