
CUBIC FOURFOLDS,

KUZNETSOV COMPONENTS AND CHOW MOTIVES

LIE FU AND CHARLES VIAL

Abstract. We prove that the Chow motives of two smooth cubic fourfolds whose Kuznetsov
components are Fourier–Mukai equivalent are isomorphic as Frobenius algebra objects. As a
corollary, there exists a Galois-equivariant isomorphism between their `-adic cohomology Frobe-
nius algebras. We also discuss the case where the Kuznetsov component of a smooth cubic
fourfold is equivalent to the derived category of a K3 surface.

1. Introduction

In [FV21], we asked whether the bounded derived category of coherent sheaves on a hyper-
Kähler variety X encodes the intersection theory on X and its powers. Precisely, given two
hyper-Kähler varieties X and X ′ that are derived-equivalent, i.e. Db(X) ' Db(X ′), we asked
whether the Chow motives with rational coefficients of X and X ′ are isomorphic as algebra
objects. The main result of [FV21] establishes this in the simplest case where X and X ′ are K3
surfaces. The above expectation refines, in the special case of hyper-Kähler varieties, a general
conjecture of Orlov [Orl03], predicting that two derived-equivalent smooth projective varieties
have isomorphic Chow motives with rational coefficients.

Like hyper-Kähler varieties, the so-called K3-type varieties also behave in many ways like K3
surfaces. By definition [FLV21b], those are Fano varieties X of even dimension 2n with Hodge
numbers hp,q(X) = 0 for all p 6= q except for hn−1,n+1(X) = hn+1,n−1(X) = 1. Some basic
examples of such varieties are cubic fourfolds, Gushel–Mukai fourfolds and sixfolds [Muk89,
KP18], and Debarre–Voisin 20-folds [DV10]. As an important interplay between Fano varieties
of K3 type and hyper-Kähler varieties, many hyper-Kähler varieties are constructed as moduli
spaces of stable objects on some admissible subcategories of the derived categories of such Fano
varieties [BLM+17, LLMS18, LPZ23b, LPZ22]. Due to these links, in [FLV21b], we asked
whether the Chow motives, considered as algebra objects, of Fano varieties of K3 type had
similar properties as K3 surfaces (and what is expected for hyper-Kähler varieties).

Based on the above, we may ask whether two derived-equivalent Fano varieties of K3 type
have isomorphic Chow motives as algebra objects. However, this question is uninteresting : due
to the celebrated result of Bondal–Orlov [BO01], any two derived-equivalent Fano varieties are
isomorphic. In the case of a cubic fourfold X, Kuznetsov [Kuz10] has identified an interesting
admissible subcategory AX of Db(X), called the Kuznetsov component, consisting of objects E
such that Hom(OX(i), E[m]) = 0 for i = 0, 1, 2 and any m ∈ Z. The Kuznetsov component
is a K3-like triangulated category, see §4.1. Our first main result gives the correct analog of
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the aforementioned results on K3 surfaces for cubic fourfolds: two cubic fourfolds with Fourier–
Mukai equivalent Kuznetsov components have isomorphic Chow motives as algebra objects.
More precisely, we have the following.

Theorem 1. Let X and X ′ be two smooth cubic fourfolds over a field K with Fourier–Mukai
equivalent Kuznetsov components AX ' AX′. Then X and X ′ have isomorphic Chow motives,
as Frobenius algebra objects, in the category of rational Chow motives over K.

We refer to §5.4 for the notion of Fourier–Mukai equivalence for Kuznetsov components. By
[LPZ23a], if K = C and if AX and AX′ are equivalent as C-linear triangulated categories, then
they are Fourier–Mukai equivalent.

Following our previous work [FV21, §2], a Frobenius algebra object in a rigid tensor category
is an algebra object together with an extra structure, namely an isomorphism to its dual ob-
ject (which we call a non-degenerate quadratic space structure, see §2.3) with a compatibility
condition. The Chow motive of any smooth projective variety carries a natural structure of
Frobenius algebra object in the category of Chow motives, lifting the classical Frobenius algebra
structure on the cohomology ring (which essentially consists of the cup-product ^ together with
the degree map

∫
X). We refer to Section 2 for more details. An immediate concrete application

of Theorem 1 is the following result.

Corollary 1. Let X and X ′ be two smooth cubic fourfolds over a field K. Assume that their
Kuznetsov components are Fourier–Mukai equivalent AX ' AX′. Then there exists a correspon-
dence Γ ∈ CH4(X ×K X ′)⊗Q such that for any Weil cohomology H∗ with coefficients in a field
of characteristic zero,

Γ∗ : H∗(X)
∼−→ H∗(X ′)

is an isomorphism of Frobenius algebras. In particular,

(i) for any prime number ` 6= charK, there exists a Galois-equivariant isomorphism H∗(XK̄ ,Q`) '
H∗(X ′

K̄
,Q`) of `-adic cohomology Frobenius algebras ;

(ii) there exists an isocrystal isomorphism H∗cris(X) ' H∗cris(X
′) of crystalline cohomology

Frobenius algebras ;
(iii) if K = C, there exists a Hodge isomorphism H∗(X,Q) ' H∗(X ′,Q) of Betti cohomology

Frobenius algebras.

We note that item (iii) can also be directly deduced from arguments due to Addington–
Thomas [AT14] and Huybrechts [Huy17] ; see Remark 6.2. The proof of Theorem 1 is given in
§6 and employs essentially two different sources of techniques. On the one hand, we proceed to
a refined Chow–Künneth decomposition (§5.2), thereby cutting the motive of a cubic fourfold
into the sum of its transcendental part and its algebraic part. The transcendental part, as
well as its relation to the algebraic part, is then dealt with via a weight argument (§5.3), while
the algebraic part is dealt with via considering the Chow ring modulo numerical equivalence
(Proposition 6.1). On the other hand, our proof also relies on some cycle-theoretic properties of
cubic fourfolds, in particular those recently established in [FLV21b, FLV21a]. First, the so-called
Franchetta property for cubic fourfolds and their squares (Proposition 3.2) is used to establish
the following.

Theorem 2 (Theorem 5.6). Let X and X ′ be two smooth cubic fourfolds over a field K with
Fourier–Mukai equivalent Kuznetsov components AX ' AX′. Then the transcendental motives
h4

tr(X)(2) and h4
tr(X

′)(2), as defined in §5.2, are isomorphic as quadratic space objects in the
category of rational Chow motives over K.

Concretely, this involves exhibiting an isomorphism Γtr : h4
tr(X)→ h4

tr(X
′) with inverse given

by its transpose. Precisely, we show in Theorem 5.6 that such an isomorphism is induced by
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the degree-4 part of the Mukai vector of the Fourier–Mukai kernel inducing the equivalence
AX ' AX′ . Such an isomorphism is then upgraded in Proposition 6.1 to an isomorphism
Γ : h(X) → h(X ′) with inverse given by its transpose, or equivalently, to a quadratic space
object isomorphism Γ : h(X)(2)→ h(X ′)(2).

The next step towards the proof of Theorem 1 consists in showing that this isomorphism
Γ : h(X)→ h(X ′) respects the algebra structure. This is achieved in Proposition 6.3, the proof
of which relies on the recently established multiplicative Chow–Künneth relation (3) for cubic
fourfolds (Theorem 3.1).

To make the analogy with our previous work [FV21] even more transparent, we also investigate
the case of cubic fourfolds with associated (twisted) K3 surfaces, resulting in the following
strengthening of [Bül20, Theorem 0.4].

Theorem 3 (Theorem 7.2). Let X be a smooth cubic fourfold over a field K and let S be a
K3 surface over K equipped with a Brauer class α. Assume that AX and Db(S, α) are Fourier–
Mukai equivalent. Then the transcendental motives h4

tr(X)(2) and h2
tr(S)(1) are isomorphic as

quadratic space objects in the category of rational Chow motives over K.

Note that by Orlov’s result, any equivalence between AX and Db(S, α) is a Fourier–Mukai
equivalent, at least when α = 0.

In a similar vein to Corollary 1, one obtains from Theorem 2 and Theorem 3 respectively,
after passing to any Weil cohomology theory H∗ (e.g., Betti, `-adic, crystalline), isomorphisms

H∗tr(X)
∼−→ H∗tr(X

′),

H∗tr(X)
∼−→ H∗tr(S)

that are compatible with the natural extra structures (e.g., Hodge, Galois, Frobenius) and with
the quadratic form (α, β) 7→

∫
X α ^ β.

Conventions. From §3 onwards, CH∗(−) denotes the Chow group with rational coefficients,

CH
∗
(−) denotes its reduction modulo numerical equivalence, and motives are with rational

coefficients.

Acknowledgments. We thank Xiaolei Zhao for helpful discussions and we thank the referee
for their thoughtful remarks.

2. Chow motives and Frobenius algebra objects

In this section, we fix a commutative ring R.

2.1. Chow motives. We refer to [And04, §4] for more details. Briefly, a Chow motive, or
motive, over a field K with coefficients in R, is a triple (X, p, n) consisting of a smooth projective
variety X over K, an idempotent correspondence p ∈ CHdimX(X ×K X) ⊗ R, and an integer
n ∈ Z. The motive of a smooth projective variety X over K is the motive h(X) := (X,∆X , 0),
where ∆X is the class of the diagonal inside X ×K X. A morphism Γ : (X, p, n) → (Y, q,m)
between two motives is a correspondence Γ ∈ CHdimX−n+m(X×K Y )⊗R such that q◦Γ◦p = Γ.
The composition of morphisms is given by the composition of correspondences (as in [Ful98,
§16]). The category of Chow motives M(K)R over K with coefficients in R forms a R-linear
rigid ⊗-category with unit 1 = h(SpecK), with tensor product given by (X, p, n)⊗ (Y, q,m) =
(X ×K Y, p × q, n + m) and with duality given by (X, p, n)∨ = (X, tp,dimX − n), where tp
denotes the transpose of the correspondence p.

Fix a homomorphism R→ F to a field F and fix a Weil cohomology theory H∗ with field of
coefficients F , i.e., a ⊗-functor H∗ : M(K)R → GrVecF to the category of Z-graded F -vector
spaces such that Hi(1(−1)) = 0 for i 6= 2 ; see [And04, Proposition 4.2.5.1]. We also call such a
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⊗-functor an H-realization. One thereby obtains the category of homological motivesMH(K)R
(or Mhom(K)R, when H is clear from the context).

2.2. Algebra structure. We consider the general situation where C is an R-linear ⊗-category
with unit 1 ; cf. [And04, §2.2.2]. An algebra structure on an object M in C is the data consisting
of a unit morphism ε : 1 → M and a multiplication morphism µ : M ⊗M → M satisfying the
associativity axiom µ ◦ (idM ⊗ µ) = µ ◦ (µ ⊗ idM ) and the unit axiom µ ◦ (idM ⊗ ε) = idM =
µ ◦ (ε⊗ idM ). The algebra structure is said to be commutative if it satisfies the commutativity
axiom µ ◦ τ = µ where τ : M ⊗M →M ⊗M is the morphism permuting the two factors.

In case C is the category of Chow motives over K, then the Chow motive h(X) of a smooth
projective variety X over K is naturally endowed with a commutative algebra structure : the
multiplication µ : h(X)⊗ h(X)→ h(X) is given by pulling back along the diagonal embedding
δX : X ↪→ X × X, while the unit morphism η : 1 → h(X) is given by pulling back along the
structure morphism εX : X → SpecK. Taking the H-realization, this algebra structure endows
H∗(X) with the usual super-commutative algebra structure given by cup-product.

2.3. Quadratic space structure. We now consider the general situation where C is an R-
linear rigid ⊗-category with unit 1 and equipped with a ⊗-invertible object denoted 1(1). Let
d be an integer. A degree-d quadratic space structure, or by abuse a quadratic space structure,
on an object M of C consists of a morphism, called quadratic form,

q : M ⊗M → 1(−d),

which is commutative q ◦ τ = q, where τ : M ⊗M →M ⊗M is the switching morphism. We say
that an object M equipped with the quadratic form q above is a degree-d quadratic space object
in C, or by abuse a quadratic space object. The quadratic form q : M ⊗M → 1(−d) is said to be
non-degenerate if the induced morphism M(d) → M∨ is an isomorphism. Here the morphism
M(d) → M∨ is obtained by tensoring q with idM∨(d) and pre-composing with idM(d) ⊗ coev,
where coev : 1→M ⊗M∨ is the co-evaluation map.

In case C is the category of Chow motives over K, then the Chow motive h(X) of a smooth
projective variety X of dimension d over K is naturally endowed with a non-degenerate degree-d
quadratic space structure : the quadratic form qX : h(X) ⊗ h(X) → 1(−d) is simply given by
the class of the diagonal ∆X . In relation to the natural algebra structure on h(X), we have

qX : h(X)⊗ h(X) h(X) 1(−d),
µ ε

where ε : h(X) → 1(−d) is the dual of the unit morphism η : 1 → h(X). Taking the H-
realization, this degree-d quadratic structure endows H∗(X), as a super-vector space, with the
usual quadratic structure given by

qX : H∗(X)⊗H∗(X) H∗(X) F (−d).^ deg
(1)

Note that when d is odd the form is anti-symmetric on Hd(X), while when d is even, the form
is symmetric on Hd(X).

In what follows, if M = (X, p, d) is a Chow motive with dimX = 2d, we view M as a quadratic
space object via

qM : M ⊗M h(X)(d)⊗ h(X)(d) h(X)(2d) 1.
µ ε

Proposition 2.1. Let M = (X, p, d) and M ′ = (X ′, p′, d′) be Chow motives inM(K)R. Assume
that p = tp, p′ = tp′, dimX = 2d and dimX ′ = 2d′, so that M = M∨ and M ′ = M ′∨. The
following are equivalent :
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(i) M and M ′ are isomorphic as quadratic space objects ;

(ii) There exists an isomorphism Γ : M
∼−→M ′ of Chow motives with Γ−1 = tΓ.

Proof. The quadratic forms qM and qM ′ are the (non-degenerate) quadratic forms associated to
the identifications M = M∨ and M ′ = M ′∨, respectively. By definition, a morphism Γ : M →
M ′ is a morphism of quadratic space objects if and only if qM ′ ◦ (Γ⊗Γ) = qM . The latter is then
equivalent to tΓ ◦Γ = idM , where we have identified Γ∨ with tΓ via the identifications M = M∨

and M ′ = M ′∨. This shows that a morphism Γ : M → M ′ is a morphism of quadratic space
objects if and only if Γ is split injective with left-inverse tΓ. This proves the proposition. �

2.4. Frobenius algebra structure. This notion was introduced in [FV21, §2], as a generaliza-
tion of the classical Frobenius algebras (cf. [Koc04]). Consider again the general situation where
C is an R-linear rigid ⊗-category with unit 1 and equipped with a ⊗-invertible object denoted
1(1). Let d be an integer. A degree-d (commutative) Frobenius algebra structure on an object M
of C consists of a unit morphism ε : 1→M , a multiplication morphism µ : M ⊗M →M and a
non-degenerate degree-d quadratic form q : M ⊗M → 1(−d) such that (M,µ, ε) is an algebra
object, and the following compatibility relation, called the Frobenius condition, holds:

(idM ⊗ µ) ◦ (δ ⊗ idM ) = δ ◦ µ = (µ⊗ idM ) ◦ (idM ⊗ δ),

where δ : M →M ⊗M(d) is the dual of the multiplication µ, via the identification M(d) 'M∨
provided by the non-degenerate quadratic form q.

In case C is the category of Chow motives over K, then the Chow motive h(X) of a smooth
projective variety X of dimension d over K is naturally endowed with a degree-d Frobenius
algebra structure. That the unit, multiplication and quadratic form given in §§2.2-2.3 above do
define such a structure on h(X) is explained in [FV21, Lemma 2.7]. Taking the H-realization
and forgetting Tate twists, this degree-d Frobenius algebra structure endows H∗(X) with the
usual Frobenius algebra structure (consisting of the cup-product together with the quadratic
form qX of (1)) ; see [FV21, Example 2.5].

3. The Chow ring of powers of cubic fourfolds

In this section, we gather the cycle-theoretic results needed about cubic fourfolds ; Propo-
sition 3.2 is used to obtain isomorphisms as quadratic space objects as in Theorem 2, and
Theorem 3.1 is used in addition to upgrade those isomorphisms to isomorphisms of algebra
objects as in Theorem 1.

From now on, we fix a field K with algebraic closure K̄, Chow groups and motives are with
rational coefficients (R = Q), and we fix a Weil cohomology theory H∗ with coefficients in a field
of characteristic zero.

Recall that a Chow–Künneth decomposition, or weight decomposition, for a motive M is
a finite grading M =

⊕
i∈ZM

i such that H∗(M i) = Hi(M). This notion was introduced by
Murre [Mur93], who conjectured that every motive admits such a decomposition. Now, if M is a
Chow motive equipped with an algebra structure (e.g., M = h(X) equipped with the intersection
pairing), then we say that a Chow–Künneth decomposition M =

⊕
i∈ZM

i is multiplicative if it

defines an algebra grading, i.e., if the composition M i ⊗M j ↪→ M ⊗M → M factors through
M i+j for all i, j. This notion was introduced in [SV16, §8], where it was conjectured that the
motive of any hyper-Kähler variety admits a multiplicative Chow–Künneth decomposition.

Let B be the open subset of PH0(P5,O(3)) parameterizing smooth cubic fourfolds, let X → B
be the universal family of smooth cubic fourfolds and ev : X → P5 be the evaluation map. If



6 LIE FU AND CHARLES VIAL

H := ev∗(c1(OP5(1))) ∈ CH1(X ) denotes the relative hyperplane section, then

π0
X =

1

3
H4 ×B X , π2

X =
1

3
H3 ×B H, π6

X =
1

3
H ×B H3, π8

X =
1

3
X ×B H4 (2)

and π4
X = ∆X/B − π0

X − π2
X − π6

X − π8
X

defines a relative Chow–Künneth decomposition, in the sense that its specialization to any fiber
Xb over b ∈ B gives a Chow–Künneth decomposition of Xb. Given a smooth cubic fourfold X,
we denote hX the restriction of H to X and we denote {π0

X , π
2
X , π

4
X , π

6
X , π

8
X} the restriction of

the above projectors to the fiber X.

In our previous work [FLV21b], we established the following two results :

Theorem 3.1. The Chow–Künneth decomposition {π0
X , π

2
X , π

4
X , π

6
X , π

8
X} is multiplicative. Equiv-

alently, in CH8(X ×X ×X), we have

δX =
1

3

(
p∗12∆X · p∗3h4

X + p∗13∆X · p∗2h4
X + p∗23∆X · p∗1h4

X

)
+ P

(
p∗1hX , p

∗
2hX , p

∗
3hX

)
, (3)

where P is an explicit symmetric rational polynomial in 3 variables.

Proof. That the Chow–Künneth decomposition {π0
X , π

2
X , π

4
X , π

6
X , π

8
X} is multiplicative is [FLV21b,

Corollary 1]. The identity (3) is due to Diaz [Dia21]. That the two formulations are equivalent
is [FLV21a, Proposition 2.8]. The proof in loc. cit. is over C, but one can extend the result to
arbitrary base fields as follows. By the Lefschetz principle, (3) holds for any algebraically closed
field of characteristic zero. Since the pull-back morphism CH(X3) → CH(X3

Ω) associated with
the field extension from K to a universal domain Ω is injective, and all the terms in (3) are
defined over K, we have the result in characteristic zero. If char(K) > 0, take a lifting X/W
over some discrete valuation ring W with residue field K and fraction field of characteristic zero.
Then by specialization, the validity of (3) on the generic fiber implies the same result on the
special fiber. �

Proposition 3.2. Let X → B be the above-defined family of smooth cubic fourfolds and let
X = Xb be a fiber. For a positive integer n, define GDCH∗B(Xn), which stands for generically
defined cycles, to be the image of the Gysin restriction ring homomorphism

CH∗(X n/B)→ CH∗(Xn).

Then the map GDCH∗B(Xn) ↪→ CH∗(Xn) � CH ∗(Xn) is injective for n ≤ 2. We say that X n/B
has the Franchetta property for n ≤ 2.

Proof. This was established in [FLV21b, Proposition 5.6]. The proof in loc. cit. is given for
K = C but holds for any field K. �

Remark 3.3. Proposition 3.2 was extended to n ≤ 4 in [FLV21a, Theorem 2]. However, the
cases n = 3 and n = 4 are not needed for the proof of Theorem 1 and, besides, their proofs are
significantly more involved.

4. Kuznetsov components and primitive motives

4.1. Kuznetsov component and projectors. For the basic theory of Fourier–Mukai trans-
forms, we refer to the book [Huy06]. Let X ⊂ P5 be a smooth cubic fourfold defined over a
base field K. Following [Kuz10], the Kuznetsov component AX of X is defined to be the right-
orthogonal complement of the triangulated subcategory generated by the exceptional collection
〈OX ,OX(1),OX(2)〉 in the bounded derived category of coherent sheaves Db(X):

AX := {E ∈ Db(X) | Hom(OX(i), E[k]) = 0, for all i = 0, 1, 2 and k ∈ Z}.
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By Serre duality, AX is also the left-orthogonal complement of the triangulated subcategory
generated by the exceptional collection 〈OX(−3),OX(−2),OX(−1)〉 in Db(X):

AX = {E ∈ Db(X) | Hom(E[k],OX(i)) = 0, for all i = −1,−2,−3 and k ∈ Z}.
In other words, we have semi-orthogonal decompositions

Db(X) = 〈AX ,OX ,OX(1),OX(2)〉 and Db(X) = 〈OX(−3),OX(−2),OX(−1),AX〉.
As is pointed out by Kuznetsov [Kuz10] (see also [Kuz16, Proposition 1.4]), AX is a K3-

like category (or sometimes called a non-commutative K3 surface), in the sense that its Serre
functor SAX

= [2] (see for example [Kuz19]) and its Hochschild homology, which is HH∗(AX) =
K[2] ⊕ K22 ⊕ K[−2], agrees with the Hochschild homology of a K3 surface, at least when
char(K) 6= 2 or 3. The latter, which will not be used in this work, can be established by using
the additivity of Hochschild homology, the HKR isomorphism [Yek02, AV20] applied to the
cubic fourfold, and the computation of Hodge numbers of cubic fourfolds.

As AX is an admissible subcategory ([Bon89, BK89]), the inclusion functor iX : AX ↪→ Db(X)
has both left and right adjoint functors ; these are denoted by i∗X and i!X : Db(X) → AX ,
respectively. In addition, since iX is fully faithful, the adjunction morphisms

i∗X ◦ iX idAX
i!X ◦ iX

' '

are isomorphisms. We then have the following basic property.

Proposition 4.1. The functors pLX := iX ◦ i∗X and pRX := iX ◦ i!X are idempotent endo-functors

of Db(X), that is, {
pLX ◦ pLX ' pLX ;

pRX ◦ pRX ' pRX .
Moreover, we have {

pLX ◦ pRX ' pRX ;

pRX ◦ pLX ' pLX .

Note that pLX and pRX are mutation functors in the sense of Bondal [Bon89]. More precisely,

pLX = L〈OX ,OX(1),OX(2)〉 = LOX
◦ LOX(1) ◦ LOX(2)

is the left mutation through 〈OX ,OX(1),OX(2)〉 and

pRX = R〈OX(−3),OX(−2),OX(−1)〉 = ROX(−1) ◦ ROX(−2) ◦ ROX(−3)

is the right mutation through 〈OX(−3),OX(−2),OX(−1)〉.
We denote PLX and PRX the respective Fourier–Mukai kernels in Db(X ×K X) of the functors

pLX and pLX . Recall that, given E ∈ Db(X) an exceptional object, the Fourier–Mukai kernel of
the left mutation functor LE is given by cone

(
E∨ � E → O∆

)
, while the Fourier–Mukai kernel

of the right mutation functor RE is given by cone
(
O∆ → RH om(E,ωX [d]) � E

)
[−1]. Here, d

is the dimension of X and E1 � E2 := p∗E1 ⊗ q∗E2 with p, q : X ×K X → X the two natural
projections. Therefore the Fourier–Mukai kernel of pLX is given by the convolution of the kernels
of the mutation functors :

PLX ' cone
(
OX×KX → O∆

)
∗ cone

(
OX(−1) �OX(1)→ O∆

)
∗ cone

(
OX(−2) �OX(2)→ O∆

)
.

(4)
The Fourier–Mukai kernel PRX of pRX admits a similar description.

Remark 4.2. Consider the universal family of smooth cubic fourfolds X → B as in Section 3.
Since objects of the form OX(i) are defined family-wise for X → B, by the formula (4), the
Fourier–Mukai kernels PLX (and similarly PRX) are defined family-wise.
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Now we turn to the study of cohomological or Chow-theoretic Fourier–Mukai transforms.
Recall that for E ∈ Db(X), its Mukai vector is defined as v(E) := ch(E)

√
td(TX) ∈ CH∗(X), and

we denote its cohomology class by [v(E)] ∈ H∗(X) and its numerical class by v̄(E) ∈ CH
∗
(X),

where CH
∗
(X) := CH∗(X)/≡ is the Q-algebra of cycles on X modulo numerical equivalence.

The Mukai pairing on CH∗(X) is given as follows: for any v, v′ ∈ CH∗(X),

〈v, v′〉 :=

∫
X
v∨ · v′ · exp(c1(X)/2), (5)

where v∨ :=
∑dimX

i=0 (−1)ivi, where vi ∈ CHi(X) is the codimension i component of v. The

same formula defines the Mukai pairing on H∗(X) and CH
∗
(X). Note that the Mukai pairing is

bilinear but in general not symmetric, hence we need to distinguish between the notions of left
and right orthogonal complements. Recall that for a vector space V equipped with a bilinear
form 〈−,−〉, the left (resp. right) orthogonal complement of a subspace U is by definition
⊥U := {v ∈ V | 〈v, u〉 = 0, for all u ∈ U}, resp. U⊥ := {v ∈ V | 〈u, v〉 = 0, for all u ∈ U}.
When the bilinear form is non-degenerate, we define the orthogonal projection from V onto ⊥U
(resp. U⊥) as the projection with respect to the decomposition V = U⊕⊥U (resp. V = U⊥⊕U).

Lemma 4.3. The cohomological (resp. numerical) Fourier–Mukai transform

[v(PLX)]∗ : H∗(X)→ H∗(X),

v̄(PLX)∗ : CH
∗
(X)→ CH

∗
(X)

are respectively the orthogonal projections onto 〈v(O), v(O(1)), v(O(2))〉⊥, which is the right
orthogonal complement of the linear subspace spanned by the cohomological (resp. numerical)
Mukai vectors of OX ,OX(1), and OX(2), with respect to the Mukai pairing.

Proof. We only show the statement for the cohomology. The proof for CH
∗

is the same. We first
show a general result : for a smooth projective variety X and an exceptional object E in Db(X),
the cohomological action of the left mutation functor LE on H∗(X) is the orthogonal projection
onto the subspace [v(E)]⊥, with respect to the Mukai pairing. Indeed, the Fourier–Mukai kernel
of LE , denoted by F ∈ Db(X ×X), fits into the distinguished triangle:

E∨ � E → O∆ → F
+1−−→ .

Hence v(F ) = v(O∆)− v(E∨ � E) = ∆X − v(E∨)× v(E). Thus, for any α ∈ H∗(X),

[v(F )]∗(α) = ∆X,∗(α)−
(∫

X
[v(E∨)] ^ α

)
[v(E)] = α− 〈[v(E)], α〉[v(E)],

which is exactly the orthogonal projector to [v(E)]⊥, where we used in the last step the relation
v(E∨) = v(E)∨ ^ exp(c1(X)/2) ; see [Huy06, Lemma 5.41]. Now back to the case of cubic
fourfolds : since PLX is the composition of the kernels of three left mutations (4), applying the
above general result three times, we see that the cohomological transform [v(PLX)]∗ on H∗(X)

is the successive orthogonal projections onto [v(OX(2))]⊥, [v(OX(1))]⊥ and [v(OX)]⊥. Since
〈[v(OX(i))], [v(OX(j))]〉 = 0 for all 0 ≤ j < i ≤ 2, the composition of the three projections is
the orthogonal projection onto 〈[v(OX)], [v(OX(1))], [v(OX(2))]〉⊥. �

Definition 4.4. The cohomology and the Chow group modulo numerical equivalence of the
Kuznetsov component AX are defined, respectively, as the vector spaces

H(AX) := Im
(

[v(PLX)]∗ : H∗(X)→ H∗(X)
)
,

CH(AX) := Im
(
v̄(PLX)∗ : CH

∗
(X)→ CH

∗
(X)

)
= {v̄(E) | E ∈ AX}.
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Unlike the Mukai pairing on H∗(X) or CH
∗
(X), the restriction of the Mukai pairing to the

above spaces becomes symmetric. This holds essentially because the Serre functor SAX
of AX

is the double shift: 〈v̄(E), v̄(E′)〉 = χ(E,E′) = χ(E′,SAE) = χ(E′, E) = 〈v̄(E′), v̄(E)〉, see
[AT14, pp.1891-1892]. This can also be checked directly by applying the Mukai pairing to the
projections of two vectors. Thus the Mukai pairing endows both H(AX) and CH(AX) with a
non-degenerate quadratic form.

4.2. Kuznetsov components and primitive classes.

Definition 4.5. Let X be a smooth cubic fourfold with hyperplane class hX . The primitive
cohomology and the primitive Chow group modulo numerical equivalence of X are defined,
respectively, to be

H4
prim(X) := 〈h2

X〉⊥ ⊆ H4(X),

CH 2
prim(X) := 〈h2

X〉⊥ ⊆ CH 2(X).

Here, 〈h2
X〉⊥ denotes the orthogonal complement of h2

X inside H4(X) with respect to the inter-
section product. We also have the following alternative description for the space of primitive
classes as the right orthogonal complement of all powers of the hyperplane class :

H4
prim(X) = 〈1X , hX , h2

X , h
3
X , h

4
X〉⊥ ⊂ H

∗
(X),

CH 2
prim(X) = 〈1X , hX , h2

X , h
3
X , h

4
X〉⊥ ⊂ CH ∗(X).

The restriction of the Mukai pairing on H4
prim(X) and on CH 2

prim(X) endows those spaces with

a non-degenerate quadratic form that coincides with the intersection pairing. (As can readily
be observed from (5), the Mukai pairing and the intersection pairing already agree on H4(X)
and on CH 2(X).)

Proposition 4.6. We have the inclusions :

H4
prim(X) ⊂ H(AX), (6)

CH 2
prim(X) ⊂ CH(AX). (7)

Proof. We only prove (6) as the proof of (7) is similar. By Lemma 4.3, the right-hand side of (6)
coincides with the right orthogonal complement of the Mukai vectors of OX ,OX(1), and OX(2),
with respect to the Mukai pairing on H∗(X). Therefore, it suffices to check that H4

prim(X) is

right orthogonal to [v(OX)], [v(OX(1))] and [v(OX(2))]. As the Mukai vector of the sheaf OX(i)
and exp(c1(X)/2) are all polynomials in the hyperplane section class hX , we have that for any
i there is some rational number λi such that

〈[v(OX(i))], α〉 =

∫
X
α ^ λih

2
X = 0, ∀α ∈ H4

prim(X).

The inclusion (6) is proved. �

Remark 4.7. Over the complex numbers (K = C), following Addington–Thomas [AT14], define
the Mukai lattice of AX as its topological K-theory :

H̃(AX ,Z) := Ktop(AX) := {α ∈ Ktop(X) | 〈[OX(i)], α〉 = 0 for i = 0, 1, 2},
where 〈−,−〉 is the Mukai pairing on Ktop(X) given by 〈v, v′〉 := χ(v, v′). A weight-2 Hodge

structure on H̃(AX ,Z) is induced from the isomorphism v : Ktop(X) ⊗ Q → H∗(X,Q) given
by the Mukai vector. The cohomological action of the projector PLX recovers the Mukai lattice
rationally :

H̃(AX ,Q) = Im
(
[v(PLX)]∗ : H∗(X,Q)→ H∗(X,Q)

)
. (8)
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Hence Proposition 4.6 says that H4
prim(X,Q) ⊂ H̃(AX ,Q). See [AT14, Proposition 2.3] for an

alternative argument.

The following relation between CH
2
prim(X) and CH(AX) is essentially due to Addington–

Thomas [AT14, Proposition 2.3].

Proposition 4.8. There are canonical polynomials λ1, λ2 ∈ Q[T ] such that we have orthogonal
decompositions

〈λ1([hX ]), λ2([hX ])〉 H4
prim(X) = H(AX), (9)

〈λ1(hX), λ2(hX)〉 CH 2
prim(X) = CH(AX). (10)

with respect to (the restriction of) the Mukai pairing (5). Moreover, the Z-lattice 〈λ1(hX), λ2(hX)〉
equipped with the Mukai pairing is an A2-lattice.

Proof. The decomposition (9) is established in [AT14, Proposition 2.3]. We sketch the proof
of (10) for the convenience of the reader. We define the polynomials (see [Huy19, pp. 176-177])

λ1 = 3 +
5

4
T − 7

32
T 2 − 77

384
T 3 +

41

2048
T 4 ;

λ2 = −3− 1

4
T +

15

32
T 2 +

1

384
T 3 − 153

2048
T 4.

We write λi for λi(hX) in the sequel ; λi clearly defines an algebraic cycle defined over K. Let
us mention that, geometrically (after a finite base-change), λi agrees with the Mukai vector of
pLX(Ol(i)), where l is any line contained in X. It is easy to compute that λ2

1 = λ2
2 = −2 and

〈λ1, λ2〉 = 1. Now for any element in CH(AX), which is necessarily of the form v̄(E) for some
E ∈ AX , the condition that 〈λ1, λ2〉 ⊥ v̄(E) is equivalent to v̄(E) being right orthogonal in

CH
∗
(X) to

〈v̄(OX), v̄(OX(1)), v̄(OX(2)), λ1, λ2〉
=〈v̄(OX), v̄(OX(1)), v̄(OX(2)), v̄(OX(3)), v̄(OX(4))〉
=〈1X , hX , h2

X , h
3
X , h

4
X〉.

However, 〈1X , hX , h2
X , h

3
X , h

4
X〉⊥ = CH2

prim(X). �

4.3. Kuznetsov components and primitive motives. Let X → B be the universal family
of smooth cubic fourfolds. We may refine the relative Chow–Künneth decomposition (2) and
define the relative idempotent correspondence

π4
X ,prim := π4

X −
1

3
H2 ×B H2.

We have π4
X ,prim ◦ π4

X = π4
X ◦ π4

X ,prim = π4
X ,prim and the restriction of π4

X ,prim to any fiber X

defines an idempotent π4
prim ∈ CH4(X ×K X) which cohomologically defines the orthogonal

projector on the primitive cohomology H4
prim(X).

Using the Franchetta property for X ×X of Proposition 3.2, we can show that the Fourier–
Mukai kernels PLX and PRX enjoy the following property relatively to the projector π4

prim. For an

object F ∈ Db(X ×X), we denote by v(F) := ch(F) ·
√

td(X ×X) its Mukai vector and vi(F)

the component of v(F) in CHi(X ×X), for all 0 ≤ i ≤ 8.

Lemma 4.9. The following relations hold in CH4(X ×X) :

π4
prim ◦ v4(PLX) ◦ π4

prim = π4
prim and π4

prim ◦ v4(PRX) ◦ π4
prim = π4

prim.



CUBIC FOURFOLDS, KUZNETSOV COMPONENTS AND CHOW MOTIVES 11

Proof. We only prove the relation involving PLX ; the proof of the relation involving PRX is similar.
We have to show that the composition

h4
prim(X) h(X)

⊕
i h(X)(i) h4

prim(X)
v(PL

X)
(11)

is the identity map. Observe that π4
prim is defined family-wise (which is the reason for focusing on

π4
prim, rather than on π4

tr, in this section) and the Fourier–Mukai kernel PLX is also defined family-

wise (Remark 4.2), by the Franchetta property for X ×K X in Proposition 3.2, we are reduced
to showing that the composition (11) is the identity map modulo homological (or numerical)
equivalence. This follows directly from Proposition 4.6. �

Remark 4.10. It is maybe possible to prove Lemma 4.9 by a direct but tedious computation
without using the Franchetta property. We leave the details to the interested reader.

5. Equivalent Kuznetsov components and transcendental motives

5.1. Rational and numerical equivalence on codimension-2 cycles on cubic fourfolds.
Recall that a universal domain is an algebraically closed field of infinite transcendence degree
over its prime subfield. The following lemma applies in particular to cubic fourfolds :

Lemma 5.1. Let X be a smooth projective variety over a field K and let Ω be a universal
domain containing K. Assume that CH0(XΩ) is supported on a curve and that H3(XK̄ ,Q`) = 0
for some prime ` 6= charK. Then rational and numerical equivalence agree on Z2(X), where Z2

denotes the group of algebraic cycles of codimension 2 with rational coefficients.

Proof. By a push-pull argument, we may assume that K is algebraically closed. The proof is
classical and goes back to [BS83]. By [BS83, Proposition 1], there exists a positive integer N , a
1-dimensional closed subscheme C ⊆ X, a divisor D ⊂ X and cycles Γ1,Γ2 in CHdimX

Z (X×KX)
with respective supports contained in C ×X and X ×D, such that

N∆X = Γ1 + Γ2 ∈ CHdimX
Z (X ×K X),

where CH∗Z denotes the Chow group with integral coefficients. Let D̃ → D be an alteration, say

of degree d, with D̃ smooth over K. The multiplication by Nd map on CH2
Z(X) then factors as

CH2
Z(X) CH1

Z(D̃) CH2
Z(X) (12)

where the arrows are induced by correspondences with integral coefficients. Since numerical and

algebraic equivalence agree for codimension-1 cycles on D̃, we find that numerical and algebraic
equivalence agree on CH2

Z(X). It remains to show that the group of algebraically trivial cycles
CH2

Z(X)alg is zero after tensoring with Q. For that purpose, we consider the diagram (12)
restricted to algebraically trivial cycles. We obtain a commutative diagram

CH2
Z(X)alg CH1

Z(D̃)alg CH2
Z(X)alg

Ab2
X(K̄) Pic0

D̃
(K̄) Ab2

X(K̄)

'

where the composition of the horizontal arrows is given by multiplication by Nd, and where the
vertical arrows are Murre’s algebraic representatives [Mur85] (these are regular homomorphisms
to abelian varieties that are universal). A diagram chase shows that CH2

Z(X)alg → Ab2
X(K̄) is

injective after tensoring with Q. We conclude with [Mur85, Theorem 1.9] which gives the upper
bound dim Ab2

X ≤ 1
2 dimQ`

H3(XK̄ ,Q`). �
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5.2. Refined Chow–Künneth decomposition. Fix a smooth cubic fourfold X over K. We
are going to produce a refined Chow–Künneth decomposition for X that is similar to that for
surfaces constructed in [KMP07, §7.2.2], and extending the construction in [BP20] to arbitrary
base fields. Refining the primitive motive to the transcendental motive is an essential step to-
wards the proof of Theorem 1 as it makes it possible to use the “weight argument” of Lemma 5.5

below. For that purpose, recall from Lemma 5.1 that CH2(XK̄) = CH
2
(XK̄). This way we can

complete 〈h2
X〉 ⊂ CH2(X) to an orthogonal basis {h2

X , α1, . . . , αr} of CH2(XK̄) with respect to
the intersection product. The correspondence

π4
alg :=

1

3
h2
X × h2

X +
r∑
i=1

1

deg(αi · αi)
αi × αi (13)

then defines an idempotent in CH4(XK̄ ×K̄ XK̄). On the one hand, the correspondence π4
alg

comes from CH2(XK̄) ⊗ CH2(XK̄) and is Galois-invariant as it defines the intersection pairing
on CH2(XK̄), and the latter is obviously Galois-invariant. Since we are working with rational
coefficients, by [Ful98, Example 1.7.6] and the fact that any cycle is defined over a finite Galois
extension of K, it follows that π4

alg is defined over K, i.e., is in the image of CH4(X ×K X) after

base-change to K̄. On the other hand, π4
alg commutes with π4

X and π4
prim and is cohomologically

the orthogonal projector on the subspace Im
(
CH2(XK̄) → H4(X)

)
spanned by K̄-algebraic

classes. In addition, we have π4
alg ◦ π4

X = π4
X ◦ π4

alg = π4
alg.

We then define

π4
tr := π4

X − π4
alg.

It is an idempotent correspondence in CH4(X ×K X) which cohomologically is the orthogonal
projector on the transcendental cohomology H4

tr(X), i.e., by definition of transcendental co-
homology, the orthogonal projector on the orthogonal complement to the K̄-algebraic classes
in H4(X). In addition, π4

tr commutes with π4
prim and we have

π4
prim ◦ π4

tr = π4
tr ◦ π4

prim = π4
tr. (14)

Note that, while π4
prim is defined family-wise for the universal cubic fourfold X → B, π4

tr and

π4
alg are not.

Denote by hi(X), h4
tr(X) and h4

alg(X) the Chow motives (X,πiX), (X,π4
tr), and (X,π4

alg)
respectively. From the above, we get the following refined Chow–Künneth decomposition :

h(X) = h0(X)⊕ h2(X)⊕ h4
alg(X)⊕ h4

tr(X)⊕ h6(X)⊕ h8(X), (15)

where h2i(X) ' 1(−i) for i = 0, 1, 3, 4, the base-change to K̄ of h4
alg(X) is a direct sum of copies

of 1(−2), and h4
tr(X) is a direct summand of h4

prim(X).

As an immediate consequence of (14), we have the following consequence of Lemma 4.9.

Lemma 5.2. The following relations hold in CH4(X ×K X) :

π4
tr ◦ v4(PLX) ◦ π4

tr = π4
tr and π4

tr ◦ v4(PRX) ◦ π4
tr = π4

tr.

In other words, the correspondences v4(PLX) and v4(PRX) act as the identity on the transcendental
motive h4

tr(X). �
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5.3. A weight argument. One defines a notion of weight on the Chow motives appearing
in the decomposition (15) in the following way: for any i ∈ Z, the Tate motive 1(−i) has
weight 2i; h4

tr(X)(−i) and h4
alg(X)(−i) have weight 4 + 2i. As a first step towards our weight

argument below (Lemma 5.5), we need the following property of the refined Chow–Künneth
decomposition (15).

Proposition 5.3. Let X and X ′ be two smooth cubic fourfolds over a field K.

(i) There is no non-zero morphism from a motive of given weight to a motive of strictly bigger
weight among the motives 1, h4

tr(X), h4
alg(X), h4

tr(X
′) and h4

alg(X ′) and their Tate twists.

(ii) 1(−2) and h4
tr(X) are orthogonal: Hom

(
h4

tr(X),1(−2)
)

= 0 and Hom
(
1(−2), h4

tr(X)
)

= 0.

(ii′) h4
alg(X ′) and h4

tr(X) are orthogonal:

Hom
(
h4

tr(X), h4
alg(X ′)

)
= 0 and Hom

(
h4

alg(X ′), h4
tr(X)

)
= 0.

Proof. Since pull-back by base-change of fields gives injective maps on Chow groups with rational
coefficients (by a push-pull argument ; see, e.g., [Ful98, Example 1.7.4]), we may assume h4

alg(X)

and h4
alg(X ′) are a direct sum of copies of 1(−2).

The proposition is straightforward to check if one of the motives involved is a Tate motive :
since CHl(X) = CHl(h2l(X)) for l = 0, 1 and CH2(X) = CH2(h4

alg(X)) by construction, we

deduce that for l ≤ 2, the group CHl(h4
tr(X)) vanishes, i.e., Hom(1(−l), h4

tr(X)) = 0. Since
h4

tr(X)∨ = h4
tr(X)(4), we deduce by dualizing that Hom(h4

tr(X),1(−l)) = 0 for l ≥ 2.
It remains to deal with the case where both motives are Tate twists of h4

tr(X) and h4
tr(X

′).
Since CH0(h4

tr(XΩ)) = 0 and π4
tr = tπ4

tr, we get from [Via15, Corollary 2.2] that h4
tr(X)(1) is

isomorphic to a direct summand N of the Chow motive of a surface S. Similarly, h4
tr(X

′)(1)
is isomorphic to a direct summand of the Chow motive of a surface S′. As such, we have
Hom

(
h4

tr(X), h4
tr(X

′)(−l)
)

= Hom (1(l − 2), N ⊗N ′). Since N⊗N ′ is effective with cohomology
concentrated in degree 4, we can then conclude thanks to Lemma 5.4 below, which is a more
general version of [FV21, Theorem 1.4(ii)] (which states that Hom

(
h2(S), h2(S′)(−l)

)
= 0 for

all l > 0). �

Lemma 5.4. Let H∗ be `-adic cohomology with ` 6= char(K). Let M be an effective Chow motive
such that Hi(M) = 0 for i ≤ 1 and such that HomMhom

(1(−1),M) = 0 (e.g., H2(M) = 0). Then

CHl(M) := HomM(1(−l),M) = 0 for l < 2.

Proof. By definition of an effective motive, there exists a smooth projective variety X and
an idempotent r ∈ EndM(h(X)) such that M ' (X, r, 0). By assumption, r acts as zero on
H0(X), so that CH0(M) := r∗CH0(X) = 0. Further, we have CH1(M) := r∗CH1(X) = 0
since by assumption r acts as zero both on Im(CH1(X) → H2(X)) and on H1(X) (hence on
Pic0

X(K)). �

We will need the following simple observation, which is an abstraction of [FV21, §1.2.3].

Lemma 5.5 (Weight argument). Let S := {Ni, i ∈ I} be a collection of Chow motives whose
objects Ni are all equipped with an integer ki called weight such that any morphism from an
object of smaller weight to an object of larger weight is zero. For r = 0, . . . , n, let Mr be a Chow
motive isomorphic to a direct sum of objects in S. Suppose we have a chain of morphisms of
Chow motives

M = M0 →M1 →M2 → · · · →Mn = M ′, (16)

such that M and M ′ are both of (pure) weight k for some integer k, i.e., such that M and M ′

are direct sums of objects of S all of weight k. Then the composition of morphisms in (16) is
equal to the following composition

M = M0 →Mw=k
1 →Mw=k

2 → · · · →Mw=k
n−1 →Mn = M ′,
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where Mw=k
i means the direct sum of the summands (in S) of Mi of weight k.

Proof. The composition in (16) is clearly the sum of all compositions of the form

M = M0 →Mw=k1
1 →Mw=k2

2 → · · · →M
w=kn−1

n−1 →Mn = M ′,

for ki ∈ Z. However, this composition is non-zero only if k ≥ k1 ≥ k2 ≥ · · · ≥ kn−1 ≥ k by
assumption. Therefore the only non-zero contribution is given by the case where ki = k for all
1 ≤ i ≤ n− 1. �

5.4. Main result. Let X and X ′ be two smooth cubic fourfolds over a field K. Assume that
their Kuznetsov components AX and AX′ are Fourier–Mukai equivalent, this means there exists
an object E ∈ Db(X ×K X ′) such that

F : AX Db(X) Db(X ′) AX′
iX ΦE i∗

X′

is an equivalence. Here ΦE : Db(X)→ Db(X ′) is the Fourier–Mukai transform associated to the
Fourier–Mukai kernel E ; explicitly,

ΦE(E) := pX′,∗(p
∗
X(E)⊗ E),

where pX and pX′ are the natural projections from X×KX ′ to X and X ′ respectively. Note that
by Li–Pertusi–Zhao [LPZ23a], over K = C, any equivalence of triangulated categories between
AX and AX′ is a Fourier–Mukai equivalence.

Adding the right adjoints, we get a diagram

F : AX Db(X) Db(X ′) AX′ : FR
iX

i!X

ΦE

ΦER

i∗
X′

iX′

where FR := i!X ◦ ΦER ◦ iX′ denotes the right adjoint functor of F := i∗X′ ◦ ΦE ◦ iX and where

ER = E∨ ⊗L p∗XωX [4] denotes the right adjoint of E . Since F is an equivalence by assumption,
FR is in fact the inverse of F , hence we have FR ◦ F ' idAX

and F ◦ FR ' idAX′ . More
explicitly,

i!X ◦ ΦER ◦ iX′ ◦ i∗X′ ◦ ΦE ◦ iX ' idAX
;

i∗X′ ◦ ΦE ◦ iX ◦ i!X ◦ ΦER ◦ iX′ ' idAX′ .

These imply that

iX ◦ i!X ◦ ΦER ◦ iX′ ◦ i∗X′ ◦ ΦE ◦ iX ◦ i∗X ' iX ◦ i∗X ;

iX′ ◦ i∗X′ ◦ ΦE ◦ iX ◦ i!X ◦ ΦER ◦ iX′ ◦ i!X′ ' iX′ ◦ i!X′ .
By definition of the projection functors pLX and pRX in Section 4, we have(

pRX ◦ ΦER ◦ pRX′
)
◦
(
pLX′ ◦ ΦE ◦ pLX

)
' pLX ; (17)(

pLX′ ◦ ΦE ◦ pLX
)
◦
(
pRX ◦ ΦER ◦ pRX′

)
' pRX′ , (18)

where we have used the isomorphisms pRX′ ◦ pLX′ ' pLX′ and pLX ◦ pRX ' pRX of Proposition 4.1.

Recall that we have defined in §§4.3-5.2 the projectors π4
prim, π

4
tr, π

4
alg ∈ CH4(X ×K X) for a

cubic fourfold X. In the sequel, when dealing with two cubic fourfolds X and X ′, we keep the
same notation for X and use π4

prim′ , π
4
tr′ , π

4
alg′
∈ CH4(X ′×KX ′) for the corresponding projectors

for X ′. The following is the key step of our proof.
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Theorem 5.6. The correspondence Γtr := π4
tr′ ◦ v4(E) ◦ π4

tr in CH4(X ×K X ′) defines an iso-
morphism

Γtr : h4
tr(X) h4

tr(X
′)'

with inverse given by its transpose. In other words, via Proposition 2.1, the transcendental
motives h4

tr(X) and h4
tr(X

′) are isomorphic as quadratic space objects.

Proof. From the isomorphism of Fourier–Mukai functors (17), it is not clear whether one can
deduce an isomorphism between their Fourier–Mukai kernels in Db(X × X), i.e., whether one
has an isomorphism

(
PRX ∗ER ∗PRX′

)
∗
(
PLX′ ∗E ∗PLX

)
' PLX , where ∗ stands for the convolution of

Fourier–Mukai kernels. Nonetheless, by Canonaco–Stellari [CS12, Theorem 1.2], the two sides
have the same cohomology sheaves, and hence have the same class in K0(X × X). By taking
Mukai vectors, one obtains the following equality in CH∗(X ×K X) :

v(PRX) ◦ v(ER) ◦ v(PRX′) ◦ v(PLX′) ◦ v(E) ◦ v(PLX) = v(PLX). (19)

The above equality implies that the composition

h4
tr(X) ↪→ h(X)

v(PL
X)

−−−−→
⊕
i

h(X)(i)
v(E)−−→

⊕
i

h(X ′)(i)
v(PL

X′ )−−−−→
⊕
i

h(X ′)(i)

v(PR
X′ )−−−−→

⊕
i

h(X ′)(i)
v(ER)−−−→

⊕
i

h(X)(i)
v(PR

X)
−−−−→

⊕
i

h(X)(i) � h4
tr(X)

is equal to the composition

h4
tr(X) ↪→ h(X)

v(PL
X)

−−−−→
⊕
i

h(X)(i) � h4
tr(X).

Here the ranges of the (finite) direct sums are not specified since they are irrelevant.
By the “weight argument” Lemma 5.5, combined with Proposition 5.3(i), we obtain that the

composition

h4
tr(X) ↪→ h4(X)

v4(PL
X)

−−−−→ h4(X)
v4(E)−−−→ h4(X ′)

v4(PL
X′ )−−−−−→ h4(X ′)

v4(PR
X′ )−−−−−→ h4(X ′)

v4(ER)−−−−→ h4(X)
v4(PR

X)
−−−−→ h4(X) � h4

tr(X) (20)

is equal to the composition h4
tr(X) ↪→ h4(X)

v4(PL
X)

−−−−→ h4(X) � h4
tr(X), which is the identity map

of h4
tr(X) by Lemma 5.2. Writing h4 = h4

tr ⊕ h4
alg and using Proposition 5.3(ii′), we deduce that

each map in (20) factors through h4
tr or h4

tr′ . In other words, we have the following equality:

π4
tr◦v4(PRX)◦π4

tr◦v4(ER)◦π4
tr′◦v4(PRX′)◦π4

tr′◦v4(PLX′)◦π4
tr′◦v4(E)◦π4

tr◦v4(PLX)◦π4
tr = π4

tr.

By Lemma 5.2, we get

π4
tr ◦ v4(ER) ◦ π4

tr′ ◦ v4(E) ◦ π4
tr = π4

tr. (21)

Similarly, from (18), together with the weight argument, we obtain

π4
tr′ ◦ v4(E) ◦ π4

tr ◦ v4(ER) ◦ π4
tr′ = π4

tr′ . (22)

The equalities (21) and (22) say nothing but that π4
tr′ ◦ v4(E) ◦ π4

tr and π4
tr ◦ v4(ER) ◦ π4

tr′ define

inverse isomorphisms between h4
tr(X) and h4

tr(X
′).

It remains to show that

t
(
π4

tr′ ◦ v4(E) ◦ π4
tr

)
= π4

tr ◦ v4(ER) ◦ π4
tr′ ,



16 LIE FU AND CHARLES VIAL

or equivalently that

π4
tr ◦ v4(E) ◦ π4

tr′ = π4
tr ◦ v4(ER) ◦ π4

tr′ . (23)

We will actually show the following stronger equality

π4
prim ◦ v4(E) ◦ π4

prim′ = π4
prim ◦ v4(ER) ◦ π4

prim′ . (24)

To see that (24) indeed implies (23), it is enough to compose both sides of (24) on the left with
π4

tr and on the right with π4
tr′ , and then to use (14).

Let us show (24). Denoting hX , hX′ ∈ CH1(X×KX ′) the pull-backs of the hyperplane section
classes on X and X ′ via the natural projections, we have (see [Huy06, Lemma 5.41])

v(ER) = v(E∨ ⊗ p∗XωX [4]) = v(E∨) · exp(−3hX) = v(E)∨ · exp

(
3

2
(hX′ − hX)

)
.

This yields the identity

v4(ER) = v4(E) + v3(E) · 3

2
(hX − hX′) + v2(E) ·

(3
2)2

2!
(hX − hX′)2

+ v1(E) ·
(3

2)3

3!
(hX − hX′)3 + v0(E) ·

(3
2)4

4!
(hX − hX′)4.

Therefore, to establish (24), it suffices to show the following lemma.

Lemma 5.7. For any Z ∈ CH3(X×KX ′), we have π4
prim ◦(Z ·hX) = 0 and (Z ·hX′)◦π4

prim′ = 0

Proof. We only show the first vanishing; the second one can be proved similarly. Note that
π4

prim ◦ (Z · hX) = π4
prim ◦ ((∆X)∗(hX)) ◦ tZ. However, by applying the excess intersection

formula [Ful98, Theorem 6.3] to the following cartesian diagram with excess normal bundle
OX(3):

X

��

∆X // X ×K X

��
P5 // P5 ×K P5,

we obtain that (∆X)∗(3hX) = ∆P5 |X×X =
∑

i h
i
X × h

5−i
X , where the latter equality uses the

relation ∆P5 =
∑5

i=0 h
i × hj in CH5(P5 × P5), where h is a hyperplane class of P5. We can

conclude by noting that for any i, we have π4
prim ◦ (hiX × h

5−i
X ) = 0 by construction of π4

prim. �

With Lemma 5.7 being proved, the equality (24), hence also (23), is established. The proof
of Theorem 5.6 is complete. �

6. Proof of Theorem 1

Proposition 6.1 below, in particular, upgrades the quadratic space object isomorphism of
Theorem 5.6 to a quadratic space object isomorphism h(X) ' h(X ′).

Proposition 6.1. Let X and X ′ be two smooth cubic fourfolds over a field K, whose Kuznetsov
components are Fourier–Mukai equivalent. Then their Chow motives are isomorphic. More
precisely, there exists a correspondence Γ ∈ CH4(X ×K X ′) such that Γ∗h

i
X = hiX′ for all i ≥ 0

which in addition induces an isomorphism of Chow motives

Γ : h(X) h(X ′)'

with inverse given by its transpose tΓ.
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Proof. As a first step, we construct an isomorphism Γ4
alg : h4

alg(X)→ h4
alg(X ′) of quadratic space

objects. Let Φ : AX → AX′ be the Fourier–Mukai equivalence. It induces a homomorphism

CH(AXK̄
) CH(AX′

K̄
),' v̄(E) v̄(Φ(E))

which is clearly an isometry with respect to the Mukai pairings (〈v̄(E), v̄(E′)〉 = χ(E,E′) =
χ(Φ(E),Φ(E′)) = 〈v̄(Φ(E)), v̄(Φ(E′))〉) and is equivariant with respect to the action of the
absolute Galois group of K (since the Fourier–Mukai kernel is defined over K). Recall from
Proposition 4.8 that we have an orthogonal decomposition

CH(AXK̄
) = 〈λ1(hX), λ2(hX)〉 CH 2

prim(XK̄)

with respect to the Mukai pairing. Since the planes 〈λ1(hX), λ2(hX)〉 and 〈λ1(hX′), λ2(hX′)〉
consist of Galois-invariant elements and are isometric to one another, we obtain from Theo-
rem A.2, which is an equivariant Witt theorem, a Galois-equivariant isometry

φ : CH 2
prim(XK̄) CH 2

prim(X ′
K̄

).'

(Note that Theorem A.2 is stated for finite groups, but it indeed applies here: all the numerical
Chow groups involved are finitely generated, hence the Galois group action factors through the
Galois group of some common finite extension K ′/K.) Let then {α1, . . . , αr} be an orthogonal
basis of CH 2

prim(XK̄). Having in mind that the Mukai pairing agrees with the intersection

pairing on CH 2(XK̄) and that CH2(XK̄) = CH 2(XK̄), we see, together with the construction
and definition of h4

alg (see (13)), that the correspondence

Γ4
alg :=

1

3
h2
X × h2

X′ +
r∑
i=1

1

deg(α2
i )
αi × φ(αi) ∈ CH4(XK̄ ×K̄ X ′K̄) (25)

is defined over K and defines an isomorphism h4
alg(X)

'−→ h4
alg(X ′) with inverse given by its

transpose tΓ4
alg.

Finally, combining Γ4
alg with Γtr of Theorem 5.6, the cycle

Γ :=
1

3
h4
X ×X ′ +

1

3
h3
X × hX′ + Γ4

alg + Γtr +
1

3
hX × h3

X′ +
1

3
X × h4

X′ ∈ CH4(X ×X ′)

induces an isomorphism between h(X) and h(X ′), and its inverse is tΓ. Furthermore, by con-
struction, we have Γ∗(h

i
X) = hiX′ for all i. �

Remark 6.2. In the case where K = C and H∗ is Betti cohomology, the construction of the
isomorphism Γ4

alg : h4
alg(X)→ h4

alg(X ′) in the proof of Proposition 6.1 is somewhat simpler. As
a consequence of Theorem 5.6, we have a Hodge isometry

H4
tr(X,Q) ' H4

tr(X
′,Q). (26)

(This Hodge isometry can also be obtained by considering the transcendental part of [Huy17,
Proposition 3.4].) Since H4(X,Q) and H4(X ′,Q) are isometric for all smooth complex cubic
fourfolds, there is by Witt’s theorem an isometry

φ : H4
alg(X,Q)

'−→ H4
alg(X ′,Q) (27)

sending h2
X to h2

X′ . Let {h2
X , α1, . . . , αr} be an orthogonal basis of H4

alg(X,Q). The corre-

spondence Γ4
alg of (25) then provides an isomorphism from h4

alg(X) to h4
alg(X ′), whose inverse is

given by its transpose tΓ4
alg. Note that, by combining (26) and (27), we obtain a Hodge isometry

H4(X,Q) ' H4(X ′,Q).

Theorem 1 then follows from combining Proposition 6.1 with the following proposition.
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Proposition 6.3. Let X and X ′ be two smooth cubic fourfolds. Assume that there exists a
correspondence Γ ∈ CH4(X ×K X ′) such that Γ∗h

i
X = hiX′ for all i ≥ 0 which in addition

induces an isomorphism

Γ : h(X) h(X ′)'

with inverse given by its transpose. Then Γ is an isomorphism of Chow motives, as Frobenius
algebra objects.

Proof. Recall in general [FV21, Proposition 2.11] that a morphism Γ : h(X) → h(X ′) between
the Chow motives of smooth projective varieties of same dimension is an isomorphism of Chow
motives, as Frobenius algebra objects, if Γ is an isomorphism of Chow motives, (Γ⊗ Γ)∗∆X =
∆X′ and (Γ ⊗ Γ ⊗ Γ)∗δX = δX′ , where δ denotes the small diagonal. Let now Γ be as in the
statement of the proposition. That Γ defines an isomorphism with inverse given by its transpose
is equivalent to Γ is an isomorphism and (Γ⊗ Γ)∗∆X = ∆X′ . Therefore, we only need to check
that

(Γ⊗ Γ⊗ Γ)∗δX = δX′ .

However, by Theorem 3.1, and using the assumption that Γ∗h
i
X = hiX′ for all i ≥ 0, we have

(Γ⊗ Γ⊗ Γ)∗δX =
1

3

(
p∗12(Γ⊗ Γ)∗∆X · p∗3h4

X′ + perm.
)

+ P
(
p∗1hX′ , p

∗
2hX′ , p

∗
3hX′

)
=

1

3

(
p∗12∆X′ · p∗3h4

X′ + perm.
)

+ P
(
p∗1hX′ , p

∗
2hX′ , p

∗
3hX′

)
= δX′ ,

where in the second equality we have used the identity (Γ⊗ Γ)∗∆X = ∆X′ . �

7. Cubic fourfolds with associated K3 surfaces

Let X be a smooth cubic fourfold over a field K and let AX be the Kuznetsov component
of Db(X) as before. Assume that there exists a K3 surface S endowed with a Brauer class
α ∈ Br(X), such that AX is Fourier–Mukai equivalent to Db(S, α). That is, there exists an
object E ∈ Db(X × S, 1× α), such that the composition

A(X) Db(X) Db(S, α)
iX ΦE

is an equivalence of triangulated categories, where iX is the natural inclusion. The goal of this
section is to prove Theorem 3. The proof is similar to that of Theorem 2 and we will only sketch
the main steps. In the sequel, let us omit α from the notation, since the proof for the twisted
case is the same as the untwisted case.

The right adjoint of the functor ΦE ◦ iX is i!X ◦ ΦER . Hence the hypothesis implies that

i!X ◦ ΦER ◦ ΦE ◦ iX ' idAX
;

ΦE ◦ iX ◦ i!X ◦ ΦER ' idDb(S) .

By the definition of pLX and pRX in Section 4, we obtain

pRX ◦ ΦER ◦ ΦE ◦ pLX ' pLX ; (28)

ΦE ◦ pLX ◦ pRX ◦ ΦER ' idDb(S) . (29)

Recall that PLX ,PRX ∈ Db(X ×K X) are the Fourier–Mukai kernels of the functors pLX and pRX
respectively. As in the proof of Theorem 5.6, using [CS12, Theorem 6.4], we deduce from (28)
that in CH∗(X ×K X),

v(PRX) ◦ v(ER) ◦ v(E) ◦ v(PLX) = v(PLX), (30)
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where v denotes the Chow-theoretic Mukai vector map. Likewise, using [CS12, Theorem 6.4],
or alternately by the uniqueness of the Fourier–Mukai kernel in the twisted version of Orlov’s
Theorem ([CS07, Theorem 1.1]), (29) implies that

v(E) ◦ v(PLX) ◦ v(PRX) ◦ v(ER) = ∆S . (31)

As in Section 5, we define a refined Chow–Künneth decomposition for S. The general case of
a smooth projective surface over K is due to [KMP07, §7.2.2]. Since for a K3 surface rational
and numerical equivalence agree on CH1(SK̄), we can in fact construct such a refined Chow–
Künneth decomposition in a more direct way. First, choose any degree-1 zero-cycle o ∈ CH0(S),
and define the Chow–Künneth decomposition

π0
S := o× S, π4

S := S × o, and π2
S := ∆S − π0

S − π4
S .

Let {β1, . . . , βs} be an orthogonal basis for CH1(SK̄). The correspondence

π2
alg,S :=

s∑
i=1

1

deg(βi · βi)
βi × βi (32)

then defines an idempotent in CH2(SK̄ ×K̄ SK̄) which descends to K, which commutes with π2
S

and which cohomologically is the orthogonal projector on the subspace Im
(
CH1(SK̄)→ H2(S)

)
spanned by K̄-algebraic classes in H2(S). In addition, we have π2

alg,S ◦ π2
S = π2

S ◦ π2
alg,S = π2

alg,S .
We then define

π2
tr,S := π2

S − π2
alg,S .

It is an idempotent correspondence in CH2(S ×K S) which cohomologically is the orthogonal
projector on the transcendental cohomology H2

tr(S), i.e., by definition of transcendental coho-
mology, the orthogonal projector on the orthogonal complement to the K̄-algebraic classes in
H2(S).

Denote by hi(S), h2
tr(S) and h2

alg(S) the Chow motives (S, πiS), (S, π2
tr,S), and (S, π2

alg,S) re-
spectively. From the above, we get the following refined Chow–Künneth decomposition :

h(S) = h0(S)⊕ h2
alg(S)⊕ h2

tr(S)⊕ h4(S),

where h2i(X) ' 1(−i) for i = 0, 2 and the base-change to K̄ of h2
alg(S) is a direct sum of copies

of 1(−1).

Now, as in the case of two cubic fourfolds, we want to apply the weight argument (Lemma 5.5)
to the equalities (30) and (31). To this end, we need the following complement to Proposition 5.3.

Proposition 7.1. Let X be a cubic fourfold and S a projective surface. Then for all l > 1,

Hom
(
h4

tr(X), h2
tr(S)(−l)

)
= 0.

Proof. As is pointed out in the proof of Proposition 5.3, h4
tr(X)(1) is a direct summand of the

motive of a surface. Then we can apply Lemma 5.4 to conclude to the vanishing. �

By the weight argument (Lemma 5.5), combined with Proposition 5.3, [FV21, Theorem 1.4(ii)]
and Proposition 7.1, we can deduce that if we restrict the domain to h4

tr(X), then each step of
(30) factors through h4

tr(X) or h2
tr(S)(−1). In other words,

π4
tr,X ◦ v4(PRX) ◦ π4

tr,X ◦ v3(ER) ◦ π2
tr,S ◦ v3(E) ◦ π4

tr,X ◦ v4(PLX) ◦ π4
tr,X = π4

tr,X .

By Lemma 5.2, we get

π4
tr,X ◦ v3(ER) ◦ π2

tr,S ◦ v3(E) ◦ π4
tr,X = π4

tr,X . (33)



20 LIE FU AND CHARLES VIAL

Similarly, (31) implies

π2
tr,S ◦ v3(E) ◦ π4

tr,X ◦ v3(ER) ◦ π2
tr,S = π2

tr,S . (34)

Note that (33) and (34) together say that we have the following pair of inverse isomorphisms:

h4
tr(X) h2

tr(S)(−1)
π2

tr,S◦v3(E)◦π4
tr,X

π4
tr,X◦v3(ER)◦π2

tr,S

(35)

By the same argument as in the proof of (23), using Lemma 5.7, we can moreover show that the
two inverse isomorphisms in (35) are transpose to each other. To summarize, we have proven
the following :

Theorem 7.2. The correspondence Γtr := π2
tr,S ◦ v3(E) ◦ π4

tr,X in CH3(X × S) induces an
isomorphism

Γtr : h4
tr(X)(2) h2

tr(S)(1)'

whose inverse is its transpose tΓtr. �

Via Proposition 2.1, Theorem 7.2 establishes Theorem 3. �

Appendix A. An equivariant Witt theorem

Throughout the appendix, F is a field of characteristic different from 2 and all the vector
spaces are finite dimensional over F .

Let us first recall the classical Witt theorem. Let V1, V2 be vector spaces equipped with
quadratic forms, whose associated bilinear symmetric pairings are denoted by 〈−,−〉. Suppose
that V1 and V2 are isometric and we have orthogonal decompositions

V1 = U1 W1, V2 = U2 W2,

such that U1 and U2 are isometric. Then W1 and W2 are also isometric. This is often referred
to as Witt’s cancellation theorem, which is clearly equivalent to the following Witt’s extension
theorem : Let V be a non-degenerate quadratic space and let f : U → U ′ be an isometry between
two subspaces of V . Then f can be extended to an isometry of V .

The goal of this appendix is to establish an equivariant version of the Witt theorem, in case
the quadratic spaces are endowed with a group action. For a quadratic space V with a G-action,
we denote OG(V ) the group of G-equivariant isometries, i.e. automorphisms of V that preserve
the pairing and commute with the action of G.

Lemma A.1. Let V be a non-degenerate quadratic space equipped with an isometric action of
a finite group G. Suppose that |G| is invertible in F . Then

(1) The restriction of the quadratic form to V G, the G-fixed space, is non-degenerate.
(2) For any x, y ∈ V G with 〈x, x〉 = 〈y, y〉 6= 0, there exists a G-equivariant isometry

φ ∈ OG(V ) sending x to y.

Proof. For (1), let x ∈ rad(V G), for any y ∈ V ,

〈x, y〉 =
1

|G|
∑
g∈G
〈gx, gy〉 = 〈x, 1

|G|
∑
g∈G

gy〉 = 0,

since 1
|G|
∑

g∈G gy ∈ V G. Therefore, x ∈ rad(V ) = {0}.
For (2), as x and y are anisotropic, it is well-known that there exists φ1 ∈ O(V G), a reflection or
a product of two reflections, which sends x to y. By (1), we have an orthogonal decomposition

V = V G ⊕ (V G)⊥.
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Hence we can take φ := φ1 ⊕ id(V G)⊥ . �

Theorem A.2. Let V1, V2 be two non-degenerate quadratic spaces endowed with actions of a
finite group G by isometries. Assume that |G| is invertible in the base field F . Suppose that we
have orthogonal decompositions preserved by G:

V1 = U1 W1, V2 = U2 W2,

satisfying the following conditions:

• there is a G-equivariant isometry between V1 and V2;
• W1 ⊂ V G

1 and W2 ⊂ V G
2 ;

• W1 and W2 are isometric.

Then there exists a G-equivariant isometry between U1 and U2.

Proof. We only give a proof in the case where W1 and W2 are assumed to be non-degenerate ;
the general case (which we do not use in this paper) is left to the reader. We may and will
identify W1 and W2, and denote both W . Let us first treat the case where W is of dimension 1,
generated by a vector x with 〈x, x〉 6= 0. By hypothesis, there is a G-equivariant isometry

V1 = Fx⊕ U1
φ−→ V2 = Fx⊕ U2.

Denote y = φ(x) and U ′1 = φ(U1). Hence 0 6= 〈x, x〉 = 〈y, y〉 and x, y are both G-invariant.
Applying Lemma A.1, we get a G-equivariant isometry τ ∈ OG(V2) sending x to y. Therefore
τ(U2), being orthogonal to y, must be U ′1. In particular, U2 is G-equivariantly isometric to U ′1,
hence also to U1.

In the general case, we diagonalize W and proceed by induction. �
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