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Abstract. We prove Bloch’s conjecture for correspondences on powers of complex abelian

varieties, that are “generically defined”. As an application we establish vanishing results for
(skew-)symmetric cycles on powers of abelian varieties and we address a question of Voisin

concerning (skew-)symmetric cycles on powers of K3 surfaces in the case of Kummer surfaces.

We also prove Bloch’s conjecture in the following situation. Let γ be a correspondence
between two abelian varieties A and B that can be written as a linear combination of products

of symmetric divisors. Assume that A is isogenous to the product of an abelian variety

of totally real type with the power of an abelian surface. We show that γ satisfies the
conclusion of Bloch’s conjecture. A key ingredient consists in establishing a strong form of

the generalized Hodge conjecture for Hodge sub-structures of the cohomology of A that arise

as sub-representations of the Lefschetz group of A. As a by-product of our method, we use a
strong form of the generalized Hodge conjecture established for powers of abelian surfaces to

show that every finite-order symplectic automorphism of a generalized Kummer variety acts

as the identity on the zero-cycles.

Introduction

Throughout this note, Chow groups are with rational coefficients. Let X be a smooth pro-
jective complex variety of dimension d and let γ be a correspondence in CHd(X ×X) such that
γ∗CH0(X) = 0. The Bloch–Srinivas argument [14] implies that γ∗H∗(X,Q) is supported on
a divisor, which in turn implies that γ∗Hi,0(X) = 0 for all integers i. The Bloch conjecture
stipulates that, conversely, should γ∗Hi,0(X) vanish for all integers i, then γ acts nilpotently on
CH0(X). (In fact, the conjecture predicts that γ should act as zero on the graded pieces of the
conjectural Bloch–Beilinson filtration on CH0(X).)

More generally, if γ∗CHr(X) = 0 for all r < n, then the Bloch–Srinivas argument implies
that γ∗H∗(X,Q) is supported on a subscheme of codimension n, which in turn implies that
γ∗Hi,j(X) = 0 for all integers i and j < n. The generalized Bloch conjecture is the following
converse assertion :

Conjecture 1 (Generalized Bloch conjecture). Let X be a smooth projective complex variety of

dimension d, and let γ ∈ CHd(X ×X) be a correspondence. Suppose that γ∗Hi,j(X) = 0 for all
j < n, or, equivalently in terms of the Hodge coniveau filtration, γ∗H∗(X,Q) ⊆ Nn

HH∗(X,Q).
Then γ∗ acts nilpotently on CHr(X) for all r < n.

The conjecture is wide open, but has notably been established for surfaces with H2,0 = 0
not of general type [13], for certain surfaces with H2,0 = 0 of general type [52, 55], and for
finite-order symplectic automorphisms of K3 surfaces [54, 28].

Conjecture 1 follows from the combination of (a) the generalized Hodge conjecture (for smooth
projective varieties, and not just for X) and (b) the existence of the conjectural Bloch–Beilinson
filtration. Indeed, if γ∗Hi,j(X) = 0 for all j < n, then the generalized Hodge conjecture for X
implies that γ∗H∗(X,Q) is supported on a closed subscheme X of codimension n. By [7], the

Date: July 8, 2019.
2010 Mathematics Subject Classification. 14C25, 14C15, 14C30, 14K10.

Key words and phrases. Algebraic cycles, Abelian varieties, Motives, Chow groups, Bloch–Beilinson
filtration, Bloch conjecture, Lefschetz group, generalized Hodge conjecture, generalized Kummer varieties,

symplectomorphisms.

1



2 CHARLES VIAL

standard conjectures (for Z̃ × X, where Z̃ → Z is a desingularization) then provide a self-

correspondence p ∈ CHd(X × X) supported on Z × X such that p induces in cohomology a
projector with image γ∗H∗(X,Q) (see Conjecture 1.6). It follows that γ ◦ (∆X −p) acts trivially
on H∗(X,Q), i.e., that γ ◦ (∆X − p) is homologically trivial. In particular, if F• denotes the
conjectural Bloch–Beilinson filtration, γ∗ ◦ (∆X − p)∗ sends FlCHr(X) to Fl+1CHr(X) for all l
and all r. Since conjecturally Fr+1CHr(X) = 0 for all r, we find that γ∗ ◦(∆X−p)∗ is nilpotent.
(Alternately, the conjectural Kimura–O’Sullivan finiteness for X implies that γ ◦ (∆X − p) is
nilpotent). Finally, for support reasons, p∗ acts as zero on CHr(X) for r < n, and we conclude
that γ∗ acts nilpotently on CHr(X) for r < n.

We note that by applying Conjecture 1 to γ = ∆X−
∑
i π

2i
alg, where the π2i

alg are projectors on

the degree-2i Hodge classes (which conjecturally exist), one recovers the more classical version
of the generalized Bloch conjecture stated e.g. in [56, Conj. 1.9]. We also note that one cannot
conclude in general that γ∗ acts as zero on CHr(X) for r < n. Consider indeed a smooth
projective curve C of positive genus and the correspondence γ = C × α, where α is a non-zero
degree-0 0-cycle on C ; then γ∗H∗(C,Q) = 0 and (γ ◦γ)∗CH0(C) = 0, but γ∗CH0(C) = Qα 6= 0.

Our main results are Theorem 2.15 and Theorem 3.14. We establish the generalized Bloch
conjecture for certain correspondences between abelian varieties, that are of two types : either
“generically defined”, or belong to the sub-algebra generated by symmetric divisors (with some
further assumptions on the abelian varieties). In both cases, the strategy consists in first show-
ing that the Hodge sub-structure γ∗H∗(X,Q) is supported in codimension n in a strong sense

(existence of a cycle p ∈ CHd(X ×X) as in the discussion above with additional properties), in
particular that the generalized Hodge conjecture for γ∗H∗(X,Q) holds ; see Propositions 2.13
and 3.12. For that matter, we formulate in Conjecture 1.6 a strong (but equivalent, when
considered for all complex smooth projective varieties) version of the generalized Hodge conjec-
ture. This information on the cohomological support of γ is then lifted to rational equivalence
thanks either to Kimura-O’Sullivan finite-dimensionality (Theorem 1.1) or to a recent result of
O’Sullivan (Theorem 1.2). In the latter case, that is, when γ is in addition symmetrically distin-
guished (see §1.2), then one can conclude that γ∗CHr(X) = 0 for all r < n (see Theorems 2.15(2)
and 3.14).

0.1. Generically defined cycles. A generically defined cycle on the m-fold power of a polar-
ized complex abelian variety A of degree d2 and dimension g is a cycle (with rational coefficients)
in CH∗(Am) that is the restriction, for some integer N ≥ 3 (in fact, by Remark 2.2, for any
integer N ≥ 3), of a cycle on the m-fold power of the universal polarized abelian variety of
degree d2 and dimension g with level-N structure ; see Definition 2.1. A generically defined
self-correspondence on the m-fold power of complex polarized abelian varieties of degree d2 and
dimension g is a generically defined cycle of codimension mg on the 2m-fold power of polarized
complex abelian varieties of degree d2 and of dimension g.

Our first main result is Theorem 2.15, a special instance of which is the following :

Theorem 1. Suppose that γ is a generically defined correspondence on the m-fold power of
polarized complex abelian varieties. Assume that γ∗Hi,j(Am) = 0 for all j < n for some (equiv-
alently, for all) polarized complex abelian variety A of dimension g and degree d2. Then γ∗ acts
nilpotently on CHr(A

m) for all r < n.

The proof consists in first establishing Theorem 1 for a very general complex abelian variety A.
For such a variety, a strong form of the generalized Hodge conjecture (as in Conjecture 1.6) holds
(Hazama’s Theorem 2.12) and makes it possible to interpret the n-th Hodge coniveau part (see
Definition 1.4) Nn

HH∗(Am,Q) as a “generically defined” sub-motive of Am whose Tate twist by n
is effective and, in fact, isomorphic to a direct summand of a finite direct sum of motives of Am ;
see the key Proposition 2.13. One can conclude by using the Kimura finite-dimensionality [29] of
motives of abelian varieties. One establishes Theorem 1 for all abelian varieties by specialization.
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Recall from Beauville [11] that the Chow group of zero-cycles on an abelian variety A of
dimension g splits into eigenspaces as

CH0(A) = CH0(A)(0) ⊕ · · · ⊕ CH0(A)(g),

where CH0(A)(i) = {a ∈ CH0(A) : [n]∗a = nia for all n ∈ Z} with [n] : A → A the
multiplication-by-n homomorphism. As an application of Theorem 1, we obtain :

Corollary 1 (Theorem 4.1). Let A be an abelian variety of dimension g, and let i be a non-
negative integer. Let N >

(
g
i

)
and suppose that aj, 1 ≤ j ≤ N , are zero-cycles on A such that

[n]∗aj = niaj for all integers n. Then the following holds.

• For i odd, the symmetrization of a1 × · · · × aN vanishes, i.e.∑
σ∈SN

aσ(1) × · · · × aσ(N) = 0 in CH0(AN ).

• For i even, the anti-symmetrization of a1 × · · · × aN vanishes, i.e.∑
σ∈SN

sgn(σ) aσ(1) × · · · × aσ(N) = 0 in CH0(AN ).

0.2. Lefschetz sub-representations. Let A be an abelian variety. We define

R∗(A) ⊆ CH∗(A)

to be the sub-algebra of CH∗(A) generated by symmetric divisors. Note that if B is another
abelian variety, then the class of the graph of any homomorphism A→ B belongs to R∗(A×B)
(see Proposition 3.11). As a link to Theorem 1, we note that all generically defined cycles on the
m-fold power of an abelian variety A that we consider in explicit examples belong to R∗(Am) ;
see however Question 2.8. We can prove the generalized Bloch conjecture for correspondences
that belong to R∗ on certain abelian varieties (which are not necessarily very general).

Definition 1 (Abelian varieties of totally real type). An abelian variety A is said to be of
totally real type if the center of its endomorphism ring End0(A) := End(A)⊗ZQ is isomorphic
to a product of totally real fields. Equivalently, A is of totally real type if it is isogenous to
Am1

1 × · · · ×Amss with the Ai simple of type I, II, or III (see §3.2).

Our second main result is Theorem 3.14, a special instance of which is the following :

Theorem 2. Let A and B be two abelian varieties, and let γ be a cycle in R∗(A×B). Suppose
that A is of totally real type. If γ∗Hi,j(B) = 0 for all j < n, then γ∗CHr(A) = 0 for all r < n.

There are two main arguments entering the proof of Theorem 2. First, as explained in §3.1,
the fact that γ belongs to R∗(A×B) implies that the Hodge sub-structure γ∗H∗(B,Q) is a sub-
representation of the Lefschetz group of A acting on H∗(A,Q). The first step does not consist in
establishing the generalized Hodge conjecture for A but, instead, consists in showing that any
sub-representation of the Lefschetz group of A acting on H∗(A,Q) satisfies a strong form of the
generalized Hodge conjecture (as in Conjecture 1.6) ; see Proposition 3.12. We note that if A is
a very general complex abelian variety, then End0(A) = Q and, by coincidence of the Lefschetz
group of A with its Hodge group, every Hodge sub-structure of H∗(Am,Q) is a Lefschetz sub-
representation. The generalized Hodge conjecture for self-powers of the very general complex
abelian variety was established by Hazama [26] (see Theorem 2.12). By shifting our attention to
Lefschetz sub-representations, we can generalize the aforementioned result of Hazama (we refer
to Theorem 3.7 for a more precise statement) :

Theorem 3 (strong GHC for Lefschetz sub-representations of abelian varieties of totally real
type). Let A be a complex abelian variety, and let H ⊆ Hk(A,Q) be a Lefschetz sub-representation
of Hodge level ≤ k− 2n. Suppose that A is of totally real type. Then H satisfies the strong gen-
eralized Hodge conjecture 1.6, in particular, H is supported on a closed subset of codimension n.



4 CHARLES VIAL

In the second step, instead of using Kimura’s finite-dimensionality which would only yield that
γ acts nilpotently on CHr(A) for all r < n, we utilize a recent powerful result of O’Sullivan [41]
which in particular implies that the ring R∗(A) injects into cohomology for all abelian varieties A.
We refer to the proof of Theorem 3.14 for the details.

Unfortunately, our method for establishing (a strong form of) the generalized Hodge conjec-
ture for Lefschetz sub-representations of Hi(Am,Q) for A of totally real type does not seem to
extend in a direct way to the interesting case of abelian varieties of type IV or even to that of
abelian varieties of CM type ; see Remark 3.9. As far as we know, the conjecture is still open
for the product of four pairwise non-isogenous CM elliptic curves.

Nonetheless, the generalized Hodge conjecture was established by Abdulali [1] for powers of
a simple abelian surface of CM type (see Theorem 3.10). Abdulali’s proof yields a strong form
of the generalized Hodge conjecture (as in Conjecture 1.6) for powers of abelian varieties of
dimension ≤ 2 (see Corollary 3.13). Using Abdulali’s theorem, we establish in Theorem 3.14 a
slightly more general version of Theorem 2 by allowing A to be isogenous to the product of an
abelian variety of totally real type with either the power of a CM abelian surface or a product
of powers of three CM elliptic curves. Again the key input consists in establishing a strong
form of the generalized Hodge conjecture for Lefschetz sub-representations (Proposition 3.12).
Since the case of powers of abelian surfaces is particularly telling due to the link with so-called
generalized Kummer varieties, we single out the following statement from Theorem 3.14 :

Theorem 4. Let A and B be two abelian varieties, and let γ be a cycle in R∗(A×B). Suppose
that A is isogenous to a power of an abelian variety of dimension ≤ 2. If γ∗Hi,j(B) = 0 for all
j < n, then γ∗CHr(A) = 0 for all r < n.

0.3. Applications. Section 4 is concerned with concrete applications of the above results.
Specifically, Theorems 4.1, 4.3 and 4.4 provide vanishing results for (skew)-symmetric cycles
on powers of abelian varieties and generalized Kummer varieties, while Theorem 4.6 settles a
conjecture of Voisin about K3 surfaces in the case of Kummer surfaces. All these results are
proved as consequences of Theorem 1, so that the reader interested only in those can skip read-
ing Section 3 entirely. Finally, in §4.4 we establish a variant of Theorem 4 (Theorem 4.7) which
we use in §4.5 to show that a finite-order symplectic automorphism of a generalized Kummer
variety acts as the identity on the Chow group of zero-cycles (see also Proposition 4.11) :

Theorem 5 (Theorem 4.10). Let A be an abelian surface. If f is a finite-order symplectic au-
tomorphism of the generalized Kummer variety Kn(A), then f∗ : CH0(Kn(A)) → CH0(Kn(A))
is the identity map.

Acknowledgments. I would like to thank Robert Laterveer for bringing to my attention the
questions posed by Voisin in [53, §3], and Giuseppe Ancona for very useful discussions.

1. Preliminaries

1.1. Polarized abelian varieties, and level structures. A polarization L on a complex
abelian variety A of dimension g is by definition the first Chern class of an ample line bundle
L. We denote Â = Pic0(A) the dual abelian variety and PA the Poincaré line-bundle on A× Â.

Let φL : A→ Â be the morphism given on points by a 7→ t∗aL ⊗ L−1. By definition, the degree

of the polarization L is the degree of the isogeny φL : A → Â ; it is a square since we have
deg(L) = χ(L)2. We will often view the Poincaré line-bundle PA as a line-bundle on A×A, by

pulling back along idA × φL the Poincaré line-bundle on A× Â. The Fourier–Mukai transform
of L is the sheaf F(L) := p2,∗(PA ⊗ p∗1L) ; it is a vector-bundle on Â. The dual polarization L̂

on Â is the first Chern class of det(F(L))−1 ; see [12].
Denote ι∆ : A→ A×A the diagonal embedding. We define a correspondence ΛiA in CHi(A×

A) as follows :

(1) ΛiA =

{
ι∆,∗L

g−i if i ≤ g ;

F̂ ◦ (ι∆,∗L̂
i−g) ◦ F if i > g.
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Note that ΛiA induces an isomorphism Hi(A,Q)
'−→ H2g−i(A,Q).

Following [38, §6], for a projective abelian scheme A → S over a Noetherian scheme S,

we define its dual Â → S to be the projective scheme that is the open sub-group-scheme of
Pic(A/S) whose geometric points correspond to the invertible sheaves some power of which are

algebraically equivalent to zero, and we define a polarization on Â → S to be a S-homomorphism
A → Â such that, for all geometric points s̄ of S, the induced As̄ → Âs̄ is of the form φL for
some ample line-bundle L on As̄.

Let A → S be a projective abelian scheme of relative dimension g over a Noetherian scheme
S, and let N be an integer ≥ 2. Assume that the characteristics of the residue fields of all closed
points of S do not divide N . A level-N structure on A → S consists of 2g sections σ1, . . . , σ2g of
A → S such that their restriction to any geometric point s̄ of S provide a basis of the N -torsion
of the fiber of A → S over s̄, and such that [N ] ◦ σi = 0A for all i, where [N ] denotes the
multiplication-by-N morphism and where 0A is the identity section of A → S.

1.2. Motives of abelian varieties, symmetrically distinguished cycles. We will use freely
the language of Chow motives, as is described for instance in [8]. The unit motive is denoted 1
and the motive of a smooth projective variety is denoted h(X). Our convention for the Tate
twist is such that h(P1) = 1⊕ 1(−1).

The Chow motives of abelian varieties have particularly nice properties. First they are finite-
dimensional in the sense of Kimura [29]. Without going into the details of Kimura’s notion of
finite-dimensionality, let us only mention the following property :

Theorem 1.1 (Kimura [29]). Let A be a complex abelian variety of dimension g, and let Γ ∈
CHg(A × A) be a self-correspondence on A. Assume that Γ is numerically trivial. Then Γ is
nilpotent, i.e., there exists a positive integer N such that Γ◦N = 0 in CHg(A×A).

Second, O’Sullivan [41] has recently identified a sub-algebra of CH∗(A) consisting of cycles
that are called symmetrically distinguished (see [41, p.2] for a definition), with the following
property :

Theorem 1.2 (O’Sullivan [41]). Let A be a complex abelian variety. The symmetrically dis-
tinguished cycles in CH∗(A) form a graded Q-sub-algebra, denoted DCH∗(A), that contains
symmetric divisors and that is stable under pull-backs and push-forwards along homomorphisms
of abelian varieties. Moreover the composition

DCH∗(A) ↪→ CH∗(A) � CH
∗
(A)

is an isomorphism of Q-algebras. Here, CH
∗
(A) denotes the Chow ring of A modulo numerical

equivalence. In particular, a symmetrically distinguished cycle that is homologically trivial is
rationally trivial.

The following definition will be relevant to our work concerned with Lefschetz representations ;
see e.g. Lemma 3.4.

Definition 1.3. For a complex abelian variety A, we denote

R∗(A) ⊂ CH∗(A)

the Q-sub-algebra generated by symmetric divisors and we denote R
∗
(A) its image in CH

∗
(A),

or equivalently, since homological and numerical equivalence agree on complex abelian varieties,
its image in H∗(A,Q) under the cycle class map.

By O’Sullivan’s Theorem 1.2, R∗(A) is a sub-algebra of DCH∗(A) that maps isomorphically

onto R
∗
(A) via the cycle class map1. Note that a polarization of A is a symmetric divisor on A,

and that the first Chern class of the Poincaré line-bundle is a symmetric divisor on A× Â. We
note that by Proposition 3.11 below the cycles ΛiA of (1) belong to R∗(A×A).

1That R∗(A) maps isomorphically onto R
∗
(A) was also established independently by Ancona [5] and Moo-

nen [37].
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1.3. Hodge structures and the generalized Hodge conjecture. A Q-Hodge structure H
is a rational vector space of finite dimension together with a decomposition of HC := H⊗QC as

a direct sum of complex linear subspaces Hp,q for integers p, q such that Hp,q = Hq,p and such
that the grading by p + q, called the weight grading, is defined over Q. The level of a Hodge
structure H is defined as

`(H) := max{|p− q| : Hp,q 6= 0},
with the convention that we declare H = 0 to have level −∞. A Hodge structure H is said to
be effective if Hp,q = 0 for p < 0.

Definition 1.4. Let H be a rational Hodge structure of weight k. The Hodge coniveau filtration
is

Nn
HH = the largest Hodge sub-structure of H of level ≤ k − 2n.

In other words, Nn
HH is the largest Hodge sub-structure H ′ of H such that H ′⊗Q(n) is effective.

Here Q(n) denotes the 1-dimensional Hodge structure of weight −2n and level 0.

Conjecture 1.5 (Grothendieck’s generalized Hodge conjecture). Let X be a complex smooth
projective variety. If H is a sub-Hodge structure of Hk(X,Q) of level ≤ k − 2n, i.e. H ⊆
Nn
HHk(X,Q), then H is supported in codimension n, i.e. there exists a closed subscheme

Z ⊆ X of codimension n such that H is mapped to zero under the restriction homomorphism
Hk(X,Q)→ Hk(X\Z,Q).

Combining the above with the standard conjectures, a theorem of Yves André [7] on motivated
cycles allows us to formulate the following conjecture (see e.g. the proof of [4, Prop. 4.1]).

Conjecture 1.6 (Strong form of the generalized Hodge conjecture). Let X be a complex smooth
projective variety of dimension d. If H is a sub-Hodge structure of Hk(X,Q) of level ≤ k − 2n,
i.e. H ⊆ Nn

HHk(X,Q), then there exists a closed subscheme Z ⊆ X of codimension n and a

correspondence p ∈ CHd(X × X) supported on Z × X such that p∗ : H∗(X,Q) → H∗(X,Q) is
an idempotent with image H.

We note that the standard conjectures are implied by the (generalized) Hodge conjecture.
Therefore, the generalized Hodge conjecture 1.5 for all complex smooth projective varieties
implies the validity of Conjecture 1.6. In particular, Conjectures 1.5 and 1.6 are equivalent
when considered for all complex smooth projective varieties. This stronger formulation of the
generalized Hodge conjecture will be crucial to our main results ; see Propositions 2.13 and 3.12.

2. Generically defined cycles

2.1. Generically defined cycles on self-products of abelian varieties. A fundamental
result of Grothendieck and Mumford [38, Theorem 7.9] is that, for N ≥ 3, the fine moduli
scheme Ag,d,N for polarized abelian varieties of degree d2 and dimension g with level-N structure
exists, and that it is moreover quasi-projective over SpecZ.

Definition 2.1 (Generically defined cycles on abelian varieties). Let m, g and d be positive
integers. A generically defined cycle on the m-fold power of a polarized complex abelian variety
A of degree d2 and dimension g is a cycle in CH∗(Am) that is the restriction, for some integer
N ≥ 3, of a cycle on the m-fold power of the universal polarized abelian variety of degree d2

and dimension g with level-N structure.

For the sake of this paper we only consider cycles with rational coefficients, but of course the
definition of generically defined cycles on abelian varieties makes sense for Chow groups with
integral coefficients. However, with rational coefficients, the definition is independent of the
choice of a level structure :

Remark 2.2. By considering the natural finite étale morphism Ag,d,M → Ag,d,N for integers
M,N ≥ 3 such that N divides M , we see that generically defined cycles on the m-fold power of a
polarized complex abelian variety A are in fact the restriction, for all integers N ≥ 3, of a cycle
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on the m-fold power of the universal polarized abelian variety of degree d2 and dimension g with
level-N structure. In particular, generically defined cycles on the m-fold power of a polarized
complex abelian variety A form a Q-sub-algebra of CH∗(Am).

Remark 2.3 (Universally defined cycles on abelian varieties). In our applications, the gener-
ically defined cycles that we are going to consider will actually satisfy the following stronger
condition. Let m and g be nonnegative integers. A universally defined cycle on the m-fold
power of polarized abelian varieties of dimension g consists, for every polarized abelian scheme
A → B of relative dimension g over a smooth quasi-projective complex variety B, of a cycle
zA ∈ CH∗(Am/B) such that for every morphism f : B′ → B of smooth quasi-projective complex

varieties zA restricts to zA×BB′ under the natural morphism (A ×B B′)m/B′ → A
m
/B . Here the

abelian scheme A ×B B′ → B′ is understood to be equipped with the polarization induced by
that of A.

Remark 2.4. It is clear that, when restricted to the mn-fold powers of polarized abelian
varieties of dimension g, a cycle that is generically defined for m-fold powers of polarized abelian
varieties of dimension ng is generically defined for mn-fold powers of polarized abelian varieties
of dimension g.

Example 2.5. The polarization of a polarized abelian variety is generically defined. Likewise,
the first Chern class of the Poincaré line-bundle (see §1.1) and the correspondences ΛiA of (1)
are generically defined on 2-fold products of polarized abelian varieties.

For future use, let us give the following examples of generically defined self-correspondences
on abelian varieties :

Lemma 2.6. Suppose that (A,L) is a polarized complex abelian variety of dimension g. Then
there exist, for all integers k and n, idempotent correspondences pk,n ∈ DCHg(A× A) that are
generically defined for 2-fold products of abelian varieties, and whose action in cohomology are
the orthogonal projectors

pk,n : H∗(A,Q)→ LnHk−2n(A,Q)prim → H∗(A,Q).

In particular, the Chow–Künneth projectors πkA :=
∑
n p

k,n are generically defined.

Proof. Kleiman [30, Proposition 2.3] showed that the orthogonal projectors pk,n are algebraic
for all smooth projective complex varieties that satisfy Grothendieck’s Lefschetz standard con-
jecture. In fact, given a polarized abelian variety (A,L) it is shown in [30, Proposition 1.4.4]
that the projectors pk,n are the classes of cycles (denoted abusively also pk,n) that belong to the
sub-algebra of CH∗(A×A) generated by the ΛiA for 0 ≤ i ≤ 2g (see (1)). Since the cycles ΛiA are
generically defined for 2-fold products of abelian varieties (Example 2.5), so are the cycles pk,n.
Finally, note that the cycles ΛiA belong to DCH∗(A × A) by O’Sullivan’s Theorem 1.2 so that
the cycles pk,n belong to DCHg(A×A) ; these are idempotents by O’Sullivan’s Theorem. �

Remark 2.7. The cycles pk,n can be defined explicitly in terms of the ΛiA by carrying coho-
mological computations similar to [10, Proposition 1] or [44, Proposition 7.3] (note that in [44,
Proposition 7.3] there is a sign error : (−1)i should read (−1)i+g). Moreover, since the Chow–
Künneth projectors πkA :=

∑
n p

k,n of Lemma 2.6 are symmetrically distinguished, they coincide
with the ones of Deninger–Murre [17]. In particular, writing hk(A) for the direct summand of
the Chow motive h(A) corresponding to the Chow–Künneth projector πkA, we have the Beauville
decomposition [11] :

(2) CHi(A)(j) := CHi(hi−2j(A)) = {a ∈ CHi(A) : [n]∗a = ni−2ja for all n ∈ Z}.
Here, [n] : A→ A is the multiplication-by-n homomorphism.

Question 2.8 (generically defined cycles and symmetrically distinguished cycles). It is tempt-
ing to ask whether generically defined cycles on powers of abelian varieties are symmetrically
distinguished in the sense of O’Sullivan [41], in particular whether generically defined cycles
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are invariant under the multiplication by −1 homomorphism. (All the explicit cycles that we
consider that are generically defined are also symmetrically distinguished.) Since the Q-sub-
algebra of CH∗(Am) consisting of symmetrically distinguished cycles injects in cohomology, and
since Hodge classes on Am consist of polynomials in p∗iL and p∗i,jc1(PA) for A very general (see
Theorem 2.12), this would imply that generically defined cycles on m-fold powers of abelian
varieties are polynomials in p∗iL and p∗i,jc1(PA) ; see also Proposition 3.11(a) below. This would
constitute a generalization (with rational coefficients) of the Franchetta conjecture for abelian
varieties ; see the recent [19] where it is shown in particular that a generically defined cycle (with
rational coefficients) of codimension 1 on polarized abelian varieties is a rational multiple of the
polarization.

Given the fact that a general complex principally polarized abelian threefold is isomorphic
to the Jacobian of a smooth projective curve of genus, one could be led to think that the
Ceresa cycle (which for a very general such abelian threefold is not symmetrically distinguished)
provides a generically defined cycle for principally polarized threefolds. This is however not the
case. Indeed, the morphism C3,N → A3,N from the moduli space of genus 3 curves with level N
structure to the moduli space of principally polarized abelian threefolds with level N structure
(N ≥ 3) is a degree 2 morphism, due to the fact that a general curve of genus 3 has no non-trivial
automorphism whereas an abelian variety always admits an involution. Since the Ceresa cycle
is sent to minus itself under the multiplication by −1 homomorphism, we see that the Ceresa
cycle is in fact fiberwise zero over A3,N . We refer to [40] for more details.

Question 2.9 (generically defined cycles on hyperKähler varieties). It is also tempting to ask
whether the sub-ring of the Chow ring consisting of generically defined cycles on polarized hy-
perKähler varieties of a fixed deformation type injects into cohomology ; see [21] for precise state-
ments and some evidence. Note that contrary to the case of abelian varieties, we do not expect
generically defined cycles to be sums of intersections of divisors or even Chern classes ; for in-
stance, for hyperKähler varieties that are deformations of Hilbn(K3), the Beauville–Bogomolov–
Fujiki class defines a generically defined Hodge class on the 2-fold product, and we expect the
existence of a generically defined cycle L in 2-fold powers of such varieties whose cohomology
class is the Beauville–Bogomolov–Fujiki class ; see [44].

2.2. The generalized Hodge conjecture for very general abelian varieties. We recall
the well-known fact that for a very general abelian variety the Hodge coniveau filtration coincides
with the primitive filtration.

Definition 2.10. Let (X,L) be a smooth projective complex variety of dimension d, equipped
with a polarization L. The primitive filtration (with respect to L) is

PjHk(X,Q) =
⊕
r≥j

LrHk−2r(X,Q)prim,

where Hi(X,Q)prim = ker
(
Ld−i+1 : Hi(X,Q)→ H2d−i+2(X,Q)

)
for i ≤ d, and is 0 for i > d.

Note that when A is a very general abelian variety, there is up to scalar only one symmetric
ample divisor on A. In particular, in this case, the primitive filtration does not depend on the
choice of a polarization. The following theorem is folklore.

Theorem 2.11 (Generalized Hodge conjecture for very general abelian varieties). Let A be a
very general polarized complex abelian variety. Then

P∗Hk(A,Q) = N∗HHk(A,Q)

for all k ≥ 0.

Proof. Since A is very general, its Hodge group is dense in the symplectic group Sp(H1(A,Q)).
The proof thus reduces to a representation-theoretic argument. We refer to Hain’s argument in
[18, Prop. 4.4], or to [26, p. 135]. �
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2.3. The generalized Hodge conjecture for self-powers of very general abelian va-
rieties. A crucial step towards the proof of Theorem 1 is the following generalization due to
Hazama [26] of Theorem 2.11 to self-powers of A.

Theorem 2.12 (Hazama). Let A be a very general polarized complex abelian variety. Then,
denoting ι∆ : Am → Am ×Am the diagonal embedding, we have

Nn
HHk(Am,Q) =

∑
Q

((ι∆)∗Q)∗H
k−2n(Am,Q)

for all m, k ≥ 0, where the sum runs through all cycles Q ∈ CHn(Am) which are products of
cycles of the form (pi)

∗L, (pi,j)
∗P . Here pi : Am → A and pi,j : Am → A2 are the natural

projections, and P ∈ CH1(A×A) is the first Chern class of the Poincaré line-bundle (see §1.1).

Proof. This is due to Hazama [26, Th. 5.1]. (Note that a very general abelian variety is such
that End0(A) = Q (hence of type I), and is such that its Hodge group coincides with its Lefschetz
group (and hence stably nondegenerate in the terminology of [26])). The proof is representation-
theoretic and involves understanding the irreducible representations of Sp(H1(A,Q)) that ap-

pear as direct summands of the representations
∧k1 H1(A,Q) ⊗ · · · ⊗

∧kr H1(A,Q) with k1 +
· · · + kr = k. For a proof, we also refer to Theorem 3.7, where we will generalize Hazama’s
theorem. �

As a consequence, we can prove (a finer version of) Conjecture 1.6 for powers of a very general
abelian variety :

Proposition 2.13. Let A be a very general polarized complex abelian variety of dimension g, and
let m be an integer. Then for every integers k and n there exists an idempotent correspondence
qk,n ∈ CHgm(Am × Am) inducing the projection H∗(Am,Q) → Nn

HHk(Am,Q) → H∗(Am,Q),
which is a linear combination of correspondences of the form

h(Am)
ρ−→ h(Am)(n)

ζ−→ h(Am),

where ρ and ζ are both symmetrically distinguished cycles and generically defined cycles on
2m-fold powers of abelian varieties of dimension g. Moreover, such a correspondence is unique
modulo homological equivalence.

Proof. By Theorem 2.12, we have

Nn
HHk(Am,Q) = Γ∗H

k−2n(B,Q),

where B :=
∐
QA

m is the disjoint union of copies of Am indexed by the correspondences Q, and

Γ :=
∑
Q(ι∆)∗Q ∈ CHgm+n (B ×Am) . Since the correspondences Q are symmetrically distin-

guished and generically defined for 2m-fold products of abelian varieties, the correspondence Γ
is symmetrically distinguished and generically defined for 2m-fold products of abelian varieties.
We view Γ as a morphism of Chow motives h(B)(n) → h(Am). In the proof below, we are go-
ing to construct idempotent correspondences qk,n, with the factorization property stated in the
proposition, whose action on cohomology is the orthogonal projector on Γ∗H

k−2n(B,Q), for all
abelian varieties A (the hypothesis that A is very general is only used to compare Γ∗H

k−2n(B,Q)
with Nn

HHk(Am,Q) ; these coincide when A is very general by Theorem 2.12).
By Lemma 2.6, the endomorphisms pj,r ∈ End(H∗(A′,Q)) are induced by cycles that belong

to DCHmg(A′ × A′) and are generically defined on 2-fold products of abelian varieties A′ of
dimension mg. Restricting to 2m-fold products of abelian varieties of dimension g, we see by
Remark 2.4 that the pj,r ∈ End(H∗(Am,Q)) are in fact induced by generically defined cycles
on 2m-fold products of abelian varieties of dimension g. Hence, the endomorphisms sj :=∑
r(−1)rpj,r ∈ End(h(Am)) and the Chow–Künneth projectors πj :=

∑
r p

j,r ∈ End(h(Am))
are cycles that belong to DCHmg(Am×Am) and are generically defined on 2m-fold products of
abelian varieties of dimension g.
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Denote s :=
⊕

Q sk−2n ∈ End(h(B)) and ΛB =
∐
Q Λ2mg+2n−k

Am . Since the Hodge structure

H2gm−k+2n(B,Q) (=
⊕

Q H2gm−k+2n(Am,Q)), equipped with the pairing α ⊗ φ 7→
∫
B
α ∪ (s ◦

ΛB)∗φ, is polarized, we have (see e.g. [50, Lemma 1.6])

im
((

Γ ◦ s ◦ ΛB ◦ tΓ ◦ ΛkAm
)
∗

)
= im (Γ∗) = Nn

HHk(Am,Q).

Moreover the correspondence s ◦ ΛB ◦ tΓ ◦ ΛkAm acts as zero on the orthogonal complement
of Γ∗H

k−2n(B,Q). By the theorem of Cayley–Hamilton, we may thus express the orthogo-
nal projector on Γ∗H

k−2n(B,Q) as a polynomial (with zero constant term) in the endomor-
phism

(
Γ ◦ s ◦ ΛB ◦ tΓ ◦ ΛkAm

)
∗ ∈ End(H(Am,Q)). This shows that the orthogonal projector on

Γ∗H
k−2n(B,Q) is induced by a cycle that is a linear combination of cycles with the factorization

property stated in the proposition.
Finally, concerning the uniqueness of qk,n modulo homological equivalence, let us prove more

generally that an endomorphism of a Hodge structure H of weight k, with image Nn
HH is unique.

Assume q and q′ are two such endomorphisms. By definition of the Hodge coniveau filtration, q
and idH − q′ are mutually orthogonal projectors. Therefore q and q′ commute ; we conclude by
using the elementary fact that two idempotent endomorphisms of a vector space coincide when
they commute with one another and have the same image. �

Remark 2.14 (Refined Chow–Künneth decompositions). Without going into the details, we
simply note that Proposition 2.13 shows that the refined Chow–Künneth projectors of [50]
can be constructed unconditionally for the powers of a very general abelian variety. Due to
Proposition 3.12 and Corollary 3.13 below, the same holds for self-powers of elliptic curves or
abelian surfaces. In particular, since generalized Kummer varieties are motivated by an abelian
surface (see §4.4), they admit a refined Chow–Künneth decomposition in the sense of [50].

2.4. Generically defined cycles and the generalized Bloch conjecture. Our main result
concerning generically defined cycles is the following slight generalization of Theorem 1 :

Theorem 2.15. Let γ ∈ CH∗(Al×Am) be a generically defined cycle on the (l+m)-fold power of
a polarized complex abelian variety A of dimension g. Assume that γ∗H∗(Am,Q) ⊆ Nn

HH∗(Al,Q)
for some (equivalently, for all) polarized complex abelian variety A of dimension g and degree
d2. We have :

(1) If l = m and γ ∈ CHmg(Am ×Am), then γ∗ acts nilpotently on CHr(A
m) for all r < n.

In particular, if γ is an idempotent correspondence, then γ∗CHr(A
m) = 0 for all r < n.

(2) If γ is a symmetrically distinguished correspondence, then γ∗CHr(A
m) = 0 for all r < n.

Proof. The notations are those of Proposition 2.13 and its proof. First assume that A is very
general. By assumption, tγ has same homology class as

∑
k q

k,n ◦ tγ. In particular, after
transposing the above equality, γ is a linear combination of morphisms that factor through the
morphism of homological motives tΓ : hhom(Am)→ hhom(B)(−n) =

⊕
Q hhom(Am)(−n). Since

all the cycles considered in the proof of Proposition 2.13 are generically defined for 2m-fold
powers of abelian varieties of dimension g, the above conclusion in fact holds without assuming
that the abelian variety A is very general.

(1) We are assuming that γ is a self-correspondence on Am of degree 0 ; i.e., that it is a
morphism h(Am)→ h(Am). By finite-dimensionality of the motive of abelian varieties [29], some
power of γ, say γ◦N , factors through the morphism of Chow motives tΓ : h(Am) → h(B)(−n).
Therefore the action of γ◦N on CHr(A

m) factors through CHr−n(B) ; the group CHr−n(B) is
obviously zero for r < n.

(2) Finally, in order to see that γ∗CHr(A
m) = 0 for all r < n if γ is assumed to be sym-

metrically distinguished, it suffices to note that all the cycles appearing in Proposition 2.13 and
its proof are symmetrically distinguished, so that tγ is equal to

∑
k q

k,n ◦ tγ modulo rational
equivalence, and hence is a linear combination of morphisms that factor through the morphism
of motives tΓ : h(Am)→ h(B)(−n) =

⊕
Q h(Am)(−n). �
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3. Lefschetz representations

3.1. The Lefschetz group. In this paragraph, we fix definitions and notations as well as
recall the basic properties of the Lefschetz group. A rational Hodge structure H of pure weight
k can be described as a Q-vector space of finite dimension with a homomorphism of R-groups
ResC/RGm → GL(HR), where Res denotes restriction of scalars à la Weil. The Mumford–Tate
group MT(H) of a rational Hodge structure H is the Q-Zariski closure of the image of this
homomorphism ; it is connected. If H is of pure weight, we will be interested in a smaller group
called the Hodge group of H : Hdg(H) is the Q-Zariski closure of the image of the circle group
Ker

(
ResC/RGm → Gm

)
→ GL(HR). (Concretely, a Hodge structure H of weight k determines

a homomorphism λH : S1 → GL(HR) where S1 is the unit circle in the complex plane, such that
λH(z) acts on Hp,q by multiplication by zp−q, and conversely such a homomorphism induces an
eigenspace decomposition of HC that satisfies the Hodge symmetry Hp,q = Hq,p). The Hodge
group is a connected group characterized by the property that its invariants in Hm ⊗ (H∨)n

are precisely the Hodge classes for all non-negative integers m and n. Moreover the Hodge sub-
structures of Hm ⊗ (H∨)n are precisely the sub-representations of the Hodge group of H. The
element C := λH(i) is called the Weil operator. A polarization of H is a morphism of Hodge
structures φ : H ⊗Q H → Q(−k) such that φ(x,Cy) is symmetric and positive definite on HR.
When H admits a polarization, then its Mumford–Tate and Hodge groups are reductive.

Let A be a complex abelian variety. Cup-product defines an isomorphism of gradedQ-algebras∧∗
H1(A,Q)→ H∗(A). Via the isomorphism

(3) H2(A,Q) ' Hom(

2∧
V (A),Q(1)),

the cohomology class of a divisor D on A defines a skew-symmetric pairing φD : V (A) ×
V (A)→ Q(1), where V (A) := H1(A,Q). When D is ample, φD is non-degenerate and defines a
polarization on the Q-Hodge structure V (A). We let ρD denote the involution of the Q-algebra
EndQ(V (A)), which to an endomorphism of V (A) associates its adjoint with respect to φD ; its
restriction to

End0(A) := End(A)⊗Z Q
is the Rosati involution defined by D. By definition, the Hodge group Hdg(A) of a complex
abelian variety A is the Hodge group attached to the polarized Q-Hodge structure

V (A) := H1(A,Q).

Due to the semi-simplicity of the category of polarized Q-Hodge structures, the Mumford–Tate
group and the Hodge group of a polarized Hodge structure are reductive groups.

Definition 3.1. For a complex abelian variety A endowed with a polarization L, the Lefschetz
group L(A) is defined to be the algebraic subgroup of GL(V (A)) such that, for all commutative
Q-algebras R,

L(A)(R) = {γ ∈ C(A)⊗Q R : ρL(γ)γ = 1}.
Here C(A) is the centralizer of End0(A) in EndQ(V (A)). The Lefschetz group can also be viewed

as the centralizer of End0(A) in Sp(V (A), φL).

The Lefschetz group does not depend of the choice of a polarization : given any two ample
line-bundles L and L′, there is an element η ∈ End0(A) and a positive integer m such that
mφL = φL′η. In what follows, the polarization will usually be understood from the context, and
we will therefore write simply ρ for the Rosati involution, and φ for the skew-symmetric form.
In general, we have the inclusions

Hdg(A) ⊆ L(A) ⊆ Sp(V (A), φ).

The Lefschetz group of A naturally acts on the Q-vector spaces V (A)⊗n ⊗ (V (A)∨)⊗m, and we
will refer to these as Lefschetz representations. While the Hodge group doesn’t behave well with
respect to products, the Lefschetz group enjoys the following property :



12 CHARLES VIAL

Lemma 3.2 (Murty [39]). If A is isogenous to a product Am1
1 × · · · ×Amss , with the Ai simple

and pairwise non-isogenous, then

L(A) ∼= L(A1)× · · · × L(As)

with the factor L(Ai) acting diagonally on H1(Ai,Q)⊕mi and acting as zero on H1(Aj ,Q)⊕mj

for j 6= i.

Recall that R∗(A) ⊂ CH∗(A) denotes the Q-sub-algebra generated by symmetric divisors

and that it maps isomorphically onto its image R
∗
(A) in H∗(A,Q) via the cycle class map by

O’Sullivan’s Theorem 1.2. The statement of the following theorem is taken from Milne [35,
Thm. 3.2] where it is proved more generally for abelian varieties defined over any algebraically
closed fields, but its origin can be traced back to work of Tankeev [48], Ribet [43], Murty [39],
and Hazama [25].

Theorem 3.3. The Lefschetz group L(A) of a complex abelian variety A is such that R
s
(Ar) =

H2s(Ar,Q)L(A) inside H2s(Ar,Q) for all non-negative integers r and s. �

Since the Hodge classes in H2s(Ar,Q) are precisely the invariant classes under the action of
the Hodge group Hdg(A), it follows from the Lefschetz (1, 1)-theorem that the Hodge conjecture
holds for powers of abelian varieties for which the inclusion Hdg(A) ⊆ L(A) is an equality. This
is for example the case for elliptic curves, and abelian varieties of prime dimension ; see [48] and
[43].

3.2. Lefschetz groups and the Albert classification. Let A be a complex abelian variety.
The proof of Theorem 3.3 proceeds through the computation of the Lefschetz group L(A). We
start this paragraph by reviewing how the Lefschetz group of a simple complex abelian variety
can be computed via the characterization of the possible algebras End0(A) ; for this we follow
Murty [39], and we refer to Shimura [46] for the classification of such algebras via the Albert
classification of division algebras with a positive involution. Set D := End0(A) = End(A)⊗ZQ.
The Rosati involution ρ of the semi-simple Q-algebra D induced by a polarization of A defines
a positive involution of D in the sense that D has finite dimension over Q and the reduced trace
trD/Q(xρ(x)) is positive for all non-zero x ∈ D. From now on, we assume that A is simple ;
in that case, D is a division algebra. The involution ρ restricts to a positive involution of the
center Z of D, and we denote F the set of elements z ∈ Z such that ρ(z) = z. As we have
tr(z2) > 0 for every non-zero element z of F , the field F must be a totally real field. We set
d := [D : Z]1/2 and f := [F : Q]. According to Albert the following possibilities can occur for
division algebras endowed with a positive involution :

Type I. D = F is a totally real field ;
Type II. D is a central division algebra over F such that D⊗QR is isomorphic to the product

of f copies of the matrix algebra M2(R) ;
Type III. D is a central division algebra over F such that D⊗QR is isomorphic to the product

of f copies of the quaternion algebra H ;
Type IV. D is a central division algebra over a totally imaginary quadratic extension F0 of F .

Accordingly a simple abelian variety A is said to have type I, II, III, or IV, if D = End0(A) has
type I, II, III, or IV, respectively. For endomorphism rings of simple complex abelian varieties
of dimension g, there are further dimension restrictions on the division algebras, coming from
that fact that D acts faithfully on the 2g-dimensional vector space V (A) = H1(A,Q) (and the
fact that the action of D commutes with the complex structure for type I), namely f |g for type
I, 2f |g for types II and III, and fd2|2g for type IV. Shimura [46] showed that every division
algebra with a positive involution occurs as the endomorphism algebra of a simple complex
abelian variety, except in 5 exceptional cases ; in particular [46, Prop. 15], for a simple abelian
variety of type III, 2f must divide g strictly.
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We now fix a skew-symmetric non-degenerate pairing φ : V (A)×V (A)→ Q determined by a
polarization of A, via (3). For each type, there exist a unique non-degenerate F -bilinear form2

B : V (A)× V (A)→ D

such that φ(x, y) = trD/QB(x, y), B(ax, by) = aB(x, y)b, and B(y, x) = −ρ ◦ B(x, y) for all
x, y ∈ V (A) and all a, b ∈ D. The Lefschetz group is then the restriction of scalars, from F to
Q, of the unitary group of B :

L(A) = ResF/Q U(B) = ResF/Q AutD(V (A), B).

Let S be the set of embeddings of F into R. We can then write

V (A)R =
⊕
λ∈S

Vλ,

where Vλ := V (A)⊗F,λ R = {v ∈ V (A)R : f(v) = λ(f)v for all f ∈ F} is a real vector space of
dimension 2g/f . In fact, since D commutes with Hdg(A)R, Vλ is a real Hodge sub-structure of
V (A)R. Since L(A) commutes with the action of F , we have L(A)R ⊆

∏
GL(Vλ) and thus

L(A)R =
∏
λ∈S

Lλ, with Lλ = AutDλ(Vλ, Bλ),

where Lλ acts trivially on Vλ′ unless λ = λ′. Here Dλ := D⊗F,λR and Bλ is the non-degenerate
real bilinear form that is the restriction of B ⊗Q R to Vλ × Vλ.

For types II and III, there exists an F -basis 1, α, β, αβ for D, with α2 totally negative, β2

totally positive for type II and totally negative for type III, and αβ = −βα. Denoting E := F [α],
we have D = E ⊕ Eβ, and we can write

B(x, y) = B1(x, y) +B2(x, y)β, with B1(x, y), B2(x, y) ∈ E.
Then B1 : V (A)×V (A)→ E is a non-degenerate skew-Hermitian form, and B2 : V (A)×V (A)→
E is a non-degenerate skew-symmetric form for type II and a non-degenerate symmetric form
for type III. Given an embedding λ : F ↪→ R, we denote σ, σ̄ : E ↪→ C the conjugate extensions
of λ to E. We define Vσ := V ⊗E,σ C, and we remark that B1,σ := (B1 ⊗Q C)|Vσ×Vσ = 0, while
B2,σ := (B2 ⊗Q C)|Vσ×Vσ is non-degenerate (and similarly with σ̄ in place of σ).

The group Lλ and its action on Vλ are given as follows (see [39], but also [35]) :

Type I. Lλ = Sp 2g
f

(Vλ, Bλ) is a symplectic group acting via its standard representation on

Vλ ;
Type II. Lλ⊗R C = Sp g

f
(Vσ, B2,σ) is a symplectic group acting on Vλ⊗R C = Vσ ⊕ Vσ̄ as one

copy of the standard representation and one copy of its contragredient representation
(which is isomorphic to the standard representation).

Type III. Lλ⊗RC = O g
f

(Vσ, B2,σ) is an orthogonal group acting on Vλ⊗RC = Vσ⊕Vσ̄ as one

copy of the standard representation and one copy of its contragredient representation
(which is isomorphic to the standard representation).3

Type IV. Lλ⊗RC = GL g
df

(C) acts on Vλ⊗RC as the direct sum of the standard representation

and its contragredient representation.

In particular, the Lefschetz group L(A) is a reductive group. The Lefschetz group L(A) was
first computed by Ribet [43] for type I and IV in the case D = F . It was computed in general
by Murty [39]4.

Here is a useful basic fact (which is made more precise in the proof of [6, Théorème 6.1]) that
can be derived from the reductiveness of the Lefschetz group :

2The trace pairing D×D → Q, (a, b) 7→ trD/Q(ab) is non-degenerate, and B(x, y) is the unique element in D

satisfying trD/Q(aB(x, y)) = φ(ax, y) for all a ∈ D.
3In that case g

f
is an even number ≥ 4 by [46, Prop. 15].

4For type III Murty finds that Lλ ⊗R C is a special orthogonal group ; this is because, contrary to the

convention we adopted here, he considers the connected component of the identity of the Lefschetz group.
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Lemma 3.4. Let A be a complex abelian variety, and let H ⊆ H∗(A,Q) be a Hodge sub-
structure. Then H ⊆ H∗(A,Q) is a L(A)-sub-representation if and only if there exists a pro-
jector H∗(A,Q) → H∗(A,Q) with image H that is induced by an idempotent correspondence in
RdimA(A×A).

Proof. Thanks to the fact that L(A) is reductive, H is a L(A)-sub-representation of H∗(A,Q)
if and only if there exists a L(A)-invariant projector H∗(A,Q) → H∗(A,Q) with image H.
By Theorem 3.3 a L(A)-invariant projector H∗(A,Q) → H∗(A,Q) with image H is induced

by an idempotent correspondence in R
dimA

(A × A), and by O’Sullivan’s theorem 1.2 such an
idempotent correspondence can be lifted to an idempotent correspondence in RdimA(A×A). �

Finally, we observe that, since D ⊗Q C ∼= EndHdg(A)C(H1(A,C)), the action of D ⊗Q C on
V (A)C = H1(A,C) commutes with the Hodge decomposition. In particular, if E is a field sitting
inside D, the decomposition VC = ⊕σ:E↪→CVσ is compatible with the Hodge decomposition, so
that writing V 1,0

σ = V 1,0 ∩ Vσ and similarly for V 0,1
σ , we have

(4) Vσ = V 1,0
σ ⊕ V 0,1

σ .

We note also that

V 1,0
σ = V 0,1

σ .

The following lemma will be crucial to the proof of Theorem 3.7. Since it does not hold in
general for simple abelian varieties of type IV (e.g. CM elliptic curves), our focus until §3.5 will
be on abelian varieties of totally real type.

Lemma 3.5. Let A be a simple complex abelian variety of type I, II or III. Let E be a maximal
subfield of End0(A), which we choose as above to be a CM field for types II and III. Let Vσ :=
V (A)⊗E,σ C for an embedding σ : E ↪→ C. Then the decomposition (4) is a decomposition into
isotropic subspaces for the non-degenerate form5

Bσ := BC|Vσ×Vσ : Vσ × Vσ → D ⊗Q C.

In particular, Vσ is “numerically Hodge symmetric”, meaning that

dimC V
1,0
σ = dimC V

0,1
σ .

Proof. Recall that, for x, y ∈ VC, BC(x, y) is the unique element in D ⊗Q C such that

trD⊗QC/C(aBC(x, y)) = φC(ax, y), for all a ∈ D ⊗Q C.

Since V 1,0 and V 0,1 are isotropic subspaces for the form φC and since the action ofD⊗QC on VC is
compatible with the Hodge decomposition, we deduce that BC(x, y) = 0 for all x, y ∈ V 1,0 (resp.
for all x, y ∈ V 0,1). The lemma follows by restricting to the σ-component in the decomposition
VC = ⊕σ:E↪→CVσ. �

In summary, for simple abelian varieties of totally real type, Lemma 3.5 provides the following
relations between the Hodge decomposition and the decomposition of the Lefschetz group after
base-change :

Type I. The Hodge decomposition Vλ ⊗R C = V 1,0
λ ⊕ V 0,1

λ is a decomposition into isotropic
subspaces for the non-degenerate skew-symmetric form φλ ⊗R C ;

Type II. The Hodge decomposition Vσ = V 1,0
σ ⊕ V 0,1

σ is a decomposition into isotropic sub-
spaces for the non-degenerate skew-symmetric form B2,σ ;

Type III. The Hodge decomposition Vσ = V 1,0
σ ⊕ V 0,1

σ is a decomposition into isotropic sub-
spaces for the non-degenerate symmetric form B2,σ.

5Note that for types II and III, Bσ = B2,σ .
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3.3. Around Weyl’s construction. Let V denote the standard representation of one of the
classical groups Sp2n or O2n. Precisely, given a basis (e1, . . . , en, e−1, . . . , e−n) of V , we will be
interested in the representations of the following groups :

(a) G = Sp2n(V,Q), where Q is the skew-symmetric bilinear form dual to

ψ =

n∑
i=1

ei ⊗ e−i − e−i ⊗ ei ∈ V ⊗ V.

(b) G = O2n(V,Q), where Q is the symmetric bilinear form dual to

ψ =

n∑
i=1

ei ⊗ e−i + e−i ⊗ ei ∈ V ⊗ V.

For each pair I = {p < q} of integers between 1 and d, the skew-symmetric form Q (resp. the
symmetric form Q) determines a contraction

ΦI : V ⊗d → V ⊗(d−2),

v1 ⊗ · · · ⊗ vd 7→ Q(vp, vq)v1 ⊗ · · · ⊗ v̂p ⊗ · · · ⊗ v̂q ⊗ · · · ⊗ vd,
where a ‘hat’ means that the term is omitted. Denote V 〈d〉 the intersection of the kernels of all
these contractions, i.e.,

V 〈d〉 :=
⋂
I

ker(ΦI).

We can also define

ΨI : V ⊗(d−2) → V ⊗d

by inserting ψ in the p, q factors. We have a direct sum of G-representations (see [24, Ex. 17.13]
for the case G = Sp2n ; the case G = O2n is similar)

(5) V ⊗d = V 〈d〉 ⊕
∑
I

im (ΨI).

By considering the action of the symmetric group Sd on V ⊗d, we also have a direct sum
decomposition of Sd-representations [24, Ex. 4.50]

(6) V ⊗d =
⊕
λad

SλV.

Here the direct sum runs through all standard Young tableaux in d entries, and SλV is the Schur
symmetrizer attached to the underlying Young diagram. Moreover, for each standard Young
tableau λ, there is an idempotent pλ ∈ Q[Sd] (a rational multiple of the Young symmetrizer
cλ) such that SλV = pλ · V ⊗d, and these idempotents are mutually orthogonal meaning that
pλpµ = 0 for two distinct standard Young tableaux λ and µ.

Clearly a permutation σ ∈ Sd commutes with the decomposition (5), and hence so do the
idempotents pλ. It follows that V 〈d〉 further decomposes into a direct sum of G-representations
as

(7) V 〈d〉 =
⊕
λad

S〈λ〉V, where S〈λ〉V := SλV ∩ V 〈d〉.

In order to state the next proposition, we need to introduce some notations. We follow
Bourbaki [15, Chap. VIII, §13.3 & §13.4]. Let Ei,j be the 2n× 2n matrix expressed in the basis
(e1, . . . , en, e−1, . . . , e−n) whose entries are all zero except for the (i, j)-th entry which is 1. For
1 ≤ i ≤ n, we define

Hi := Ei,i − E−i,−i
and we let (ε1, . . . , εn) be the dual basis of (H1, . . . ,Hn).

Given a standard Young tableau λ on d entries, we denote (λ1 ≥ λ2 ≥ · · · ≥ λd) the underlying
partition of d. Subsequently, the number d =

∑
i λi will also be referred to as the length of λ

and will be denoted `(λ).



16 CHARLES VIAL

Proposition 3.6. Assume that G is either Sp2n, or O2n with n > 1. Then S〈λ〉V is an
irreducible representation of G.

(a) If G = Sp2n, then S〈λ〉V 6= 0 if and only if λn+1 = 0 ; in that case S〈λ〉V is the irreducible
representation of sp2n with highest weight λ1ε1 + · · ·+ λnεn.

(b) If G = O2n, then S〈λ〉V 6= 0 if and only if the sum of the lengths of the first two columns of

the Young tableau λ is at most 2n.6

• If λ = (λ1 ≥ · · · ≥ λn = 0), then S〈λ〉V is the irreducible representation of so2n with
highest weight λ1ε1 + · · ·+ λnεn.
• If λ = (λ1 ≥ · · · ≥ λn > 0), then S〈λ〉V is the direct sum of the two irreducible

representations of so2n with highest weight λ1ε1 + · · ·+ λn−1εn−1 + λnεn, and λ1ε1 +
· · ·+ λn−1εn−1 − λnεn.

Proof. If G = Sp2n, this is [24, Thm. 17.11 and Cor. 17.21]. If G = O2n, this is [24, Thm. 19.19
and Thm. 19.22]. �

3.4. Lefschetz representations and the generalized Hodge conjecture for abelian va-
rieties of totally real type. The generalized Hodge conjecture was established by Hazama [26]
for abelian varieties whose simple factors are of type I or II and whose Hodge group coincides
with their Lefschetz group, for n-dimensional simple abelian varieties of type I with n/e odd
(e = dimQ End0(A)) by Tankeev [49] (and in particular for odd-dimensional simple abelian va-
rieties of type I), for certain simple abelian varieties of CM-type by Tankeev [49]. Abdulali [1]
and Hazama [27] showed that the generalized Hodge conjecture for abelian varieties of CM-type
is implied by the Hodge conjecture for the same class of abelian varieties. Here we take a dif-
ferent approach and establish a strong form of the generalized Hodge conjecture for Lefschetz
sub-representations of abelian varieties of totally real type.

Theorem 3.7 (GHC for Lefschetz sub-representations of abelian varieties of totally real type).
Let A be a complex abelian variety, and let H ⊆ Hk(A,Q) be a Lefschetz sub-representation of
Hodge level ≤ k − 2n. Suppose that A is of totally real type, i.e., that the simple factors of the
isogeny class of A have type I, II, or III. Then

(8) H ⊆ Im
(

R
n
(A)⊗Hk−2n(A,Q)

∪−→ Hk(A,Q)
)
.

In fact, we are going to show a stronger statement, namely that the conclusion of Theorem 3.7
holds, after tensoring with C, for L(A)C-sub-representations of Hk(A,C) ; see (9).

The key point towards the proof of Theorem 3.7 consists in computing the “Hodge level” of
the representations S〈λ〉V for G = Sp2n or O2n. Strictly speaking, the spaces V we are going
to deal with are not Hodge structures. Rather, as described in Section 3.2, they are complex
vector spaces Vσ endowed with a basis (e1, . . . , en, e−1, . . . , e−n) and a (skew-)symmetric form
ψ =

∑n
i=1(ei ⊗ e−i ± e−i ⊗ ei), together with an action of GL1 given by z · ei = zei and

z · e−i = z−1e−i for 1 ≤ i ≤ n. Since the action of GL1 on ψ is the identity and since
it commutes with the action of permutations in Sd on V ⊗d, the decompositions (5) and (6)
commute with the action of GL1. In particular, for a Young tableau λ of length d, we have a
decomposition

S〈λ〉V =
⊕
p+q=d

(S〈λ〉V )p,q,

where
(S〈λ〉V )p,q := {w ∈ S〈λ〉V : z · w = zp−qw for all z ∈ GL1(C)}.

Our Theorem 3.7 generalizes Hazama’s [26, Theorem 5.1] by taking into account Lefschetz
sub-representations and by including factors of type III. The proof is inspired by loc. cit., but
differs from it in that we focus on the representations S〈λ〉V : on the one hand, by Weyl’s

6Representations of associated partitions restricted to SO2n are isomorphic. Two partitions (each with the
sum of the first two column lengths at most 2n) are said to be associated if the sum of the lengths of their first

columns is 2n and the other columns of their Young diagram have the same lengths.
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construction outlined in §3.3, we completely avoid resorting to understanding the irreducible
sub-representations of tensor products as in [26, Lemma 5.1.2] ; on the other hand, as explained
before Lemma 3.5, these representations S〈λ〉V are not in general the complexifications of sub-
Hodge structures, as seems to be assumed in [26, Prop. 4.3]. However, an important feature will
be that these irreducible sub-representations are numerically Hodge symmetric.

Lemma 3.8. Let V be an even-dimensional complex vector space with basis
(e1, . . . , en, e−1, . . . , e−n), and assume that G is one of the following groups :

(a) G = Sp(V, ψ), where ψ =
∑n
i=1(ei ⊗ e−i − e−i ⊗ ei) ;

(b) G = O(V, ψ), where ψ =
∑n
i=1(ei ⊗ e−i + e−i ⊗ ei) and n > 1.

Consider the action of the torus GL1 on V given by z · ei = zei and z · e−i = z−1e−i for
1 ≤ i ≤ n. Let λ be a Young tableau of length d. Then S〈λ〉V is numerically Hodge symmetric,
that is, dimC(S〈λ〉V )p,q = dimC(S〈λ〉V )q,p for all integers p and q. Moreover, if S〈λ〉V 6= 0, then

(S〈λ〉V )d,0 6= 0.

Proof. Our strategy of proof is taken from Hazama’s proof of [26, Prop. 4.3] where the case
G = Sp2n was treated. Contrary to Hazama, we do not assume that V is the complexification
of a Hodge structure (since when extending scalars to C the irreducible representations of the
Lefschetz group that arise are not Hodge structures).

We view S〈λ〉V as a representation of the Lie algebra g. In both cases (g = sp2n or so2n), let
us recall that, as in Bourbaki [15, Chap. VIII, §13.3 & §13.4], we let Ei,j be the 2n× 2n matrix
expressed in the basis (e1, . . . , en, e−1, . . . , e−n) whose entries are all zero except for the (i, j)-th
entry which is 1. For 1 ≤ i ≤ n, the elements

Hi := Ei,i − E−i,−i
define a basis of a Cartan sub-algebra h of g, and we let (ε1, . . . , εn) be the dual basis of
(H1, . . . ,Hn).

Viewing S〈λ〉V as a subspace of V ⊗d, we have the description

(S〈λ〉V )p,q := {w ∈ S〈λ〉V : H0(w) = (p− q)w}, where H0 :=
∑
i

Hi.

In particular, we have
(
(S〈λ〉V )p,q

)∨
= (S〈λ〉V

∨)q,p, and since V ' V ∨ as g-representations for
our Lie algebras g = sp2n or so2n, this immediately yields that S〈λ〉V is numerically Hodge
symmetric. We also find that max{p − q : (S〈λ〉V )p,q 6= 0} is equal to the maximum of the
eigenvalues of H0 acting on S〈λ〉V . We are going to show that if S〈λ〉V 6= 0, then max{p − q :
(S〈λ〉V )p,q 6= 0} = d.

First consider an irreducible representation W of g = sp2n or so2n with highest weight ω. Let
v ∈ W denote one of its dominant vectors. Then for any element H in the Cartan sub-algebra
h of g, we have

H(v) = ω(H)v.

Denote αi the simple roots of g. Specifically, if g = so2n, then α1 = ε1 − ε2, . . . , αn−1 =
εn−1 − εn, αn = 2εn, and if g = sp2n, then α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = εn−1 + εn.
Since the weights of W are of the form

ω −
n∑
i=1

piαi

for some nonnegative integers pi, we find that

max{p− q : (S〈λ〉V )p,q 6= 0} = max

{(
ω −

∑
i

piαi

)
(H0) : p1, . . . , pn ≥ 0

}
= ω(H0).

In our case, by Proposition 3.6, S〈λ〉V corresponds either to an irreducible representation of g
with highest weight λ1ε1+· · ·+λnεn, or in case g = so2n and λn > 0 to the sum of two irreducible
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representations with highest weight λ1ε1 + · · ·+λnεn and λ1ε1 + · · ·+λn−1εn−1−λnεn. In any
case, we find that max{p− q : (S〈λ〉V )p,q 6= 0} is equal to ω(H0), where ω = λ1ε1 + · · ·+ λnεn,
and hence is equal to d :=

∑
i λi. �

Proof of Theorem 3.7. We first note that it is enough to establish the theorem with complex
coefficients. Precisely, we are going to show that for H ⊆ Hk(A,C) a L(A)C-sub-representation
of Hodge level ≤ k − 2n, we have that H is numerically Hodge symmetric and that

(9) H ⊆ Im
(

R
n
(A)C ⊗Hk−2n(A,C)

∪−→ Hk(A,C)
)
.

Here, by Hodge level we mean the following : since L(A)C contains the circle group (defining
the Hodge structure on H1(A,Q)), a L(A)C-sub-representation H of Hk(A,C) has an eigenspace
decomposition

⊕
p+q=kH

p,q, and the Hodge level is then `(H) := max{|p− q| : Hp,q 6= 0}. For

ease of notation, we write from now on H∗(−)C for H∗(−,C).
Second, by considering the surjective homomorphism of Lefschetz representations

H1(A)⊗k → Hk(A) given by cup-product, we note that we may assume that H is an irreducible

Lefschetz sub-representation of H1(A)⊗kC ⊆ Hk(Ak)C.
Suppose then that A is isogenous to Am1

1 × · · · × Amss , where the Ai are pairwise non-
isogenous, simple abelian varieties. The L(A)C-representation H1(A)C is isomorphic to the
(L(A1)C × · · · × L(As)C)-representation H1(A1)⊕m1

C ⊕ · · · ⊕ H1(As)
⊕ms
C , where each L(Ai)C

acts diagonally on H1(Ai)
⊕mi
C . If H is an irreducible Lefschetz sub-representation of H1(A)⊗kC ,

then up to permutation of the factors we may view H as an irreducible sub-representation of
H1(A1)⊗k1C ⊗ · · · ⊗H1

C(As)
⊗ks for some non-negative integers ki such that

∑
ki = k. Since H is

a (L(A1)C × · · · × L(As)C)-sub-representation, H must be of the form

H = H1 ⊗ · · · ⊗Hs

for some irreducible L(Ai)C-sub-representations Hi ⊆ H1(Ai)
⊗ki
C .

With notations as in §3.2, L(Ai)C is isomorphic to f := [F : Q] copies of the group G, which
is either the symplectic group (types I and II) or the orthogonal group (type III), and H1(Ai)C
splits as the direct sum of f copies of the standard representation V of G (type I) or as the
direct sum of 2f copies of the standard representation V of G (types II and III). Thus Hi is an

irreducible sub-representation of V ⊗d11 ⊗ · · · ⊗V ⊗dtt , where the j-th factor of G×t = G× · · · ×G
acts on Vj as the standard representation and where the other factors act trivially. Hence, Hi

is of the form

Hi = Hi,1 ⊗ · · · ⊗Hi,t

for some irreducible G-sub-representations Hi,j ⊆ V
⊗dj
j .

Now, by Proposition 3.6, each Hi,j must be of the form

Hi,j = ΨI1 ◦ · · · ◦ΨIki,j
(S〈λi,j〉Vj)

for some Young tableau λi,j and some pairs of integers I1, . . . , Iki,j . From Lemma 3.5, we know

that Vj decomposes as V 1,0
j ⊕ V 0,1

j in such a way that both V 1,0
j and V 0,1

j are isotropic for the

non-degenerate bilinear form on Vj (which is skew-symmetric for types I and II, and symmetric
for type III). The assumptions of Lemma 3.8 are thus met for Vj , and we therefore see that
Hi,j is numerically Hodge symmetric and satisfies (Hi,j)

di,j ,0 6= 0, where di,j is the length of the
Young tableau λi,j . We deduce that H is numerically Hodge symmetric and satisfies

`(H) =
∑
i,j

di,j .

Now we can conclude, because composing with ΨI amounts to cupping with a divisor with
complex coefficients. �

Remark 3.9. Our method for establishing the generalized Hodge conjecture for Lefschetz sub-
representations of abelian varieties of totally real type, which in fact consists in establishing it
after extending the scalars to C, is too crude to work for powers of simple abelian varieties of
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type IV. Let us briefly describe a simple example. Beforehand, on a positive note, we simply
mention that the method works for powers of a CM elliptic curve. Let then A be a simple
abelian surface of type IV ; it is known that A must be of CM type, so that its Lefschetz
group is GL(1) × GL(1) after extending the scalars to C and we may write H1(A,C) = (V ⊕
V ∨) ⊕ (W ⊕W∨), where V = V 1,0 and W = W 1,0 and GL(1) × GL(1) acts on V via the first
projection and on W via the second projection. Consider then for instance the 1-dimensional
L(A)C-sub-representation V ⊗W∨ inside H2(A,Q) =

∧2
H1(A,Q). On the one hand, it has

Hodge type (1, 1) but is not acted upon trivially by L(A)C and thus is not spanned by a Hodge
class. That type of phenomenon does not occur for abelian varieties of totally real type because
their Lefschetz representations are numerically Hodge symmetric (Lemma 3.5). On the other
hand, we deduce that the Galois orbit of V ⊗W∨ inside H2(A,Q) has Hodge length 2 ; this
suggests that it is not straightforward to read the Hodge length of the Galois closure of a
L(A)C-sub-representation from its Hodge length without resorting to a detailed Galois analysis.

3.5. Lefschetz representations and the generalized Hodge conjecture II. In this sec-
tion, we would like to improve slightly on Theorem 3.7 by allowing our abelian varieties to be
isogenous to the product of an abelian variety of totally real type with some power of an abelian
surface of CM type, or with the product of powers of three elliptic curves. Our main result is
Proposition 3.12. In particular, we recall a strong version of the generalized Hodge conjecture
for self-powers of abelian surfaces ; see Corollary 3.13.

Let us start with the case where our abelian varieties have no factor of totally real type. The
following theorem is due to Abdulali [1, Examples 2 & 3] :

Theorem 3.10 (Abdulali [1], strong GHC for powers of CM abelian surfaces and certain
products of CM elliptic curves). Let A be an abelian variety that is isogenous to either

(i) Ek11 × E
k2
2 × E

k3
3 for some CM elliptic curves Ei, or

(ii) the power of a CM abelian surface S.

Let H ⊆ Hk(A,Q) be a Hodge sub-structure of Hodge level ≤ k − 2n. Then

H ⊆
∑
B

Im
(
RdimB+n(A×B)⊗Hk−2n(B,Q) −→ Hk(A,Q)

)
,

where Γ⊗ γ 7→ Γ∗(γ) and where the sum runs over all abelian varieties B.

Proof. For a proof, we refer to Abdulali [1]. Let us mention that in case (i) the sum can be
taken over abelian varieties of the form Em1

1 × Em2
2 × Em3

3 , and in case (ii) over powers of S,
unless S is an abelian surface with CM by a field E not Galois over Q, in which case, denoting
S′ the other abelian surface with CM by E, the sum runs through abelian varieties of the form
Si × (S′)j . That the correspondences in the sum can be chosen to be in R∗ is due to the fact
that for abelian varieties of the form Em1

1 ×Em2
2 ×Em3

3 , or Si× (S′)j as above, the Hodge group
coincides with the Lefschetz group, so that all Hodge classes on Em1

1 ×Em2
2 ×Em3

3 or Si× (S′)j

belong in fact to R
∗
. �

Proposition 3.11. We have the following three statements :

(a) Let A be an abelian variety and let m be a positive integer. Then any symmetrically dis-
tinguished cycle on Am that is generically defined for m-fold powers of polarized abelian
varieties belongs to R∗(Am).

(b) Let A, B and C be abelian varieties, and let γ ∈ R∗(A × B) and γ′ ∈ R∗(B × C) be two
correspondences. Then γ′ ◦ γ belongs to R∗(A× C).

(c) Let f : A→ B be a homomorphism of abelian varieties. Then the graph Γf of f belongs to
R∗(A×B).

Proof. By O’Sullivan’s Theorem 1.2, a symmetrically distinguished cycle in DCH∗(A) whose

cohomology class belongs to R
∗
(A) belongs to R∗(A) for any abelian variety A. Thus (a)

follows from the fact that the cohomology class of a generically defined cycle on the m-fold
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power of a polarized abelian variety A belongs to R
∗
(Am) ; see Theorem 2.12. (More precisely,

Hodge classes on Am, with A a very general polarized abelian variety, consist of polynomials in
p∗iL and p∗i,jc1(PA), where L is the polarization of A.)

For (b), observe that the composition of two correspondences in R
∗

yields a correspondence

in R
∗

; indeed a correspondence belongs to R
∗

if and only if it commutes with the action of the
Lefschetz group. Case (b) then follows from this fact together with the fact that by O’Sullivan’s
Theorem γ′ ◦ γ is symmetrically distinguished (since γ and γ′ are).

For (c), since Γf = (f, idB)∗∆B , it suffices to show that ∆B ∈ R∗(B×B). This can be found
in [47, §5]. �

As a consequence of Theorems 3.7 and 3.10, we have the following analogue of Proposi-
tion 2.13, which in particular establishes Conjecture 1.6 for Lefschetz sub-representations of
certain abelian varieties :

Proposition 3.12. Let A be a complex abelian variety of dimension g, and let H ⊆ Hk(A,Q) be
a Lefschetz sub-representation of Hodge level ≤ k− 2n. Assume that A is isogenous to A0 ×A1

with

• A0 isomorphic to Ek11 × E
k2
2 × E

k3
3 for some CM elliptic curves Ei, or to the power of

a CM abelian surface ;
• A1 isomorphic to an abelian variety of totally real type ( cf. Definition 1).

Then there exists an idempotent correspondence pH ∈ Rg(A × A) inducing the projection
H∗(A,Q)→ H → H∗(A,Q), which is a linear combination of correspondences of the form

h(A)
ρ−→ h(B)(n)

ζ−→ h(A),

for some abelian varieties B and some correspondences ρ and ζ that belong to R∗(A × B) and
R∗(B ×A), respectively.

Proof. First we show a strong version of the generalized Hodge conjecture for Lefschetz sub-
representations of A ; namely, we show that

(10) H ⊆
∑
B

Im
(
RdimB+n(A×B)⊗Hk−2n(B,Q) −→ Hk(A,Q)

)
,

where Γ ⊗ γ 7→ Γ∗(γ) and where the sum runs over all abelian varieties B. As outlined after
the proof of [2, Prop. 4] in the context of Hodge sub-structures, there is a slight subtlety :
one needs to use the stronger statement of Theorem 3.7 described in its proof, namely, that
for H1 ⊆ Hk1(A1,C) a L(A1)C-sub-representation of level7 ≤ k1 − 2n1, we have that H1 is
numerically Hodge symmetric and that

(11) H1 ⊆ Im
(

R
n1

(A1)C ⊗Hk1−2n1(A1,C)
∪−→ Hk1(A1,C)

)
.

Let H be an irreducible Lefschetz sub-representation of Hk(A0 × A1,Q). Then H is a sub-
representation of L(A0×A1) ∼= L(A0)×L(A1) acting on some Künneth component Hk0(A0,Q)⊗
Hk1(A1,Q) for some k0+k1 = k. Let then V be an irreducible sub-representation of L(A0×A1)C
acting on HC. It is of the form V0⊗CV1 for some L(A0)C-sub-representation V0 ⊆ Hk0(A0,C) and
some L(A1)C-sub-representation V1 ⊆ Hk1(A1,C). Moreover the Galois conjugates of V0 ⊗C V1

span HC ; indeed, the span is defined over Q and defines a non-trivial sub-representation of the
irreducible L(A0×A1)-representation H. The subspace spanned by the Galois conjugates of V0

inside Hk0(A0,C) is defined over Q ; we denote it W0. Then W0 is a L(A0)-sub-representation
of Hk0(A0,Q).

7See the proof of Theorem 3.7 for the notion of level of a L(A1)C-sub-representation.
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We note from Theorem 3.7 and its proof that V1 and its Galois conjugates V σ1 are Hodge
symmetric of same level. We find

`(H) = max
σ

`(V σ0 ⊗ V σ1 )

= max
σ

(`(V σ0 ) + `(V σ1 ))

= max
σ

`(V σ0 ) + `(V1)

= `(W0) + `(V1).

Here the maximum is taken over all elements σ ∈ AutQ(C), and the second equality holds
because V σ1 is Hodge symmetric. Let us then write

`(W0) = k0 − 2n0 and `(V1) = k1 − 2n1, for n1 + n2 = n.

By the above (11), there are an integer s and correspondences Γr,1 ∈ R∗(A1×A1)C, 1 ≤ r ≤ s,
such that

V1 ⊆
∑
r

Γr,1,∗H
k1−2n1(A1,C).

Since each Γr,1 is a C-linear combination of elements in R∗(A1 × A1), up to increasing s, we
may assume that each Γr,1 is in fact in the image of R∗(A1 ×A1) ↪→ R∗(A1 ×A1)C, so that for
every σ ∈ Aut(C), we have

V σ1 ⊆
∑
r

Γr,1,∗H
k1−2n1(A1,C).

On the other hand, there are finitely many non-zero correspondences ΓB,0 ∈ R∗(B×A0) indexed
by abelian varieties B, such that

W0 ⊆
∑
B

ΓB,0,∗H
k0−2n0(B,Q).

Since V0 ⊆W0,C, we have

HC =
∑

σ∈Aut(C)

(V0 ⊗C V1)σ ⊆
∑

σ,τ∈Aut(C)

(V σ0 ⊗C V τ1 ) = W0,C ⊗
∑

τ∈Aut(C)

V τ1

⊆
(∑
B

ΓB,0,C,∗H
k0−2n0(B,C)

)
⊗
(∑

r

Γr,1,C,∗H
k1−2n1(A1,C)

)
⊆
∑
B,r

(
ΓB,0 ⊗ Γr,1

)
C,∗H

k0+k1−2(n0+n1)(B ×A1,C).

This establishes (10).
Now, since H is a Lefschetz sub-representation of Hk(A,Q), there exists by Lemma 3.4

an idempotent πH ∈ Rg(A × A) such that (πH)∗H
k(A,Q) = H. Composing πH with the

correspondence
∑

ΓB,0 ⊗ Γr,1, we see that

H =
(
πH ◦

∑
B,r

ΓB,0 ⊗ Γr,1

)
∗
Hk−2n(B ×A1,Q).

In order to conclude the proof of Proposition 3.12, we observe that we may proceed as in the
proof of Proposition 2.13 ; indeed, all the correspondences appearing there are compositions of
correspondences in R∗, and therefore thanks to Proposition 3.11 belong to R∗. �

As a corollary, let us mention the following result, cf. [3, 8.1(2)].

Corollary 3.13 (strong GHC for self-powers of elliptic curves, or abelian surfaces). Let A be
an abelian variety of dimension ≤ 2, and let m be a positive integer. Let H ⊆ Hk(Am,Q) be a
Hodge sub-structure of Hodge level ≤ k − 2n. Then

H ⊆
∑
B

Im
(
RdimB+n(Am ×B)⊗Hk−2n(B,Q) −→ Hk(Am,Q)

)
,

where Γ⊗ γ 7→ Γ∗(γ) and where the sum runs over all abelian varieties B.
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Proof. The case where A has CM was covered in Abdulali’s Theorem 3.10, while the case where
A is without CM is covered by Theorem 3.7 (recall that in these cases, Hdg(A) = L(A)). Thus
it only remains to treat the case where A = E × E′, where E is an elliptic curve without CM
and E′ is an elliptic curve with CM. In that case, we still have Hdg(A) = L(A) (see e.g. [36])
and one concludes with Proposition 3.12. �

3.6. Lefschetz representations and the generalized Bloch conjecture. We are now in a
position to prove the theorem announced in §0.2 of the introduction.

Theorem 3.14. Let A and A′ be two abelian varieties, and let γ be a cycle in R∗(A × A′).
Assume that A is isogenous to A0 ×A1 with

• A0 isomorphic to Ek11 × E
k2
2 × E

k3
3 for some CM elliptic curves Ei, or to the power of

a CM abelian surface ;
• A1 isomorphic to an abelian variety of totally real type ( cf. Definition 1).

If γ∗Hi,j(A′) = 0 for all j < n, then γ∗CHr(A) = 0 for all r < n.

Proof. Since γ is a cycle in R∗(A×A′), we have that γ∗H∗(A′,Q) is a Lefschetz sub-representation
H of H∗(A,Q). By the assumption γ∗Hi,j(A′) = 0 for all j < n and by Proposition 3.12, we see
that, modulo homological equivalence, γ = γ ◦pH is a linear combination of cycles in R∗(A×A′)
that factor as

h(A)
ρ−→ h(B)(n)

ζ−→ h(A′),

for some abelian varieties B and some correspondences ρ and ζ that belong to R∗(A× B) and
R∗(B × A′), respectively. Since all the correspondences involved belong to R∗(−), O’Sullivan’s
Theorem 1.2 tells us that the latter in fact holds modulo rational equivalence. It follows that
γ factors through a morphism h(A) →

⊕
B h(B)(n), where the direct sum runs through the

abelian varieties that appeared above. In particular, the map γ∗ : CHr(A) → CH∗(A
′) factors

through a map CHr(A) →
⊕

B CHr−n(B), and hence γ∗ : CHr(A) → CH∗(A
′) is zero for

r < n. �

Remark 3.15. In the case where A is isogenous to the power of an abelian variety of dimension
≤ 2, we will use Corollary 3.13 to prove in Theorem 4.7 that if γ is a cycle in CH∗(A×A) such
that γ∗Hi,j(A) = 0 for all j < n, then γ∗ acts nilpotently on CHr(A) for all r < n.

4. Applications

The simplest form of Bloch’s conjecture predicts that if a smooth projective complex variety
X satisfies hi,0(X) = 0 for all positive integers i, then CH0(X) = Q. If now S is a smooth

projective complex surface that satisfies h1,0(S) = 0 and h2,0(S) = 1, then since
∧2

h2,0(S) = 0
one would expect that a× b = b× a in CH0(S × S) for all zero-cycles a, b ∈ CH0(S)num, where
CH0(S)num denotes the zero-cycles of degree zero. This expectation was studied by Voisin in
[53] who conjectured it for K3 surfaces, and established it for Kummer surfaces and for a certain
10-dimensional family of K3 surfaces ; see also [31, 32]. Another prediction of Bloch’s conjecture
is the following. Let f : X → X be an automorphism of a smooth projective variety such that
f∗ acts as the identity on H0(ΩiX) for all i ; then f should act unipotently on CH0(X). This
was checked for finite-order automorphisms of K3 surfaces by Voisin [54] and Huybrechts [28].

In this section, we answer questions of that type for curves, abelian varieties, Kummer surfaces
and generalized Kummer varieties. In §§4.1, 4.2 and 4.3, we use our results on generically defined
cycles, while in §§4.4 and 4.5, we use the strong form of the generalized Hodge conjecture for
powers of abelian surfaces.

4.1. Symmetric and skew-symmetric cycles on powers of curves or of abelian vari-
eties. Recall from Shermenev [45] and Deninger–Murre [17] that the Chow motive of an abelian
variety A of dimension g admits a weight decomposition

h(A) =

2g⊕
i=0

hi(A)
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with the property that

(12) CHj(hi(A)) = {a ∈ CHi(A) : [n]∗a = nia for all n ∈ Z},

where [n] : A→ A is the multiplication-by-n homomorphism, and the property that the diagonal
embedding A ↪→ Ai induces a canonical isomorphism

hi(A) ∼= Sih1(A),

where the right-hand term denotes the i-th symmetric power of the motive h1(A), seen as a
direct summand of the motive of Ai.

The following result generalizes to integers i 6= g a result of Voisin [56, Example 4.40]. Note
that in the proof of loc. cit., one has to check that σ sends hg(A) ⊗ hg(A) into hg(A) ⊗ hg(A)
(a priori σ sends hg(A)⊗ hg(A) into h2g(A×A) =

⊕
i h
i(A)⊗ h2g−i(A)).

Theorem 4.1. Let A be an abelian variety of dimension g. Let i be a nonnegative integer.

• For i odd, we have CH0

(
SNh2g−i(A)

)
= 0 for all N >

(
g
i

)
.

• For i even, we have CH0

(∧N
h2g−i(A)

)
= 0 for all N >

(
g
i

)
.

In particular, if N >
(
g
i

)
and if aj, 1 ≤ j ≤ N , are zero-cycles on A such that [n]∗aj = niaj for

all integers n, then the following holds.

• For i odd, we have
∑
σ∈SN aσ(1) × · · · × aσ(N) = 0 in CH0(AN ).

• For i even, we have
∑
σ∈SN sgn(σ) aσ(1) × · · · × aσ(N) = 0 in CH0(AN ).

Proof. The reason for considering symmetric or anti-symmetric powers when i is odd or even,
respectively, is because the cohomology ring of a smooth variety is graded-commutative. As for
the second part of the theorem, this follows simply from the description (12) of CH0(h2g−i(A)).

Given a permutation σ ∈ SN , let us denote Γσ ∈ CHNg(AN×AN ) the graph of the morphism
(x1, . . . , xn)→ (xσ−1(1), . . . , xσ−1(n)). The symmetric projector and the alternate projector are
respectively

(13) pSN :=
1

n!

∑
σ∈SN

Γσ and p∧N :=
1

n!

∑
σ∈SN

sgn(σ) Γσ ;

they are generically defined idempotent correspondences for N -fold products of polarized abelian
varieties of dimension g. For i odd, the generically defined correspondence pSN ◦ (π2g−i

A ⊗
· · · ⊗ π2g−i

A ) acts trivially on HN(2g−i),0(AN ) for N >
(
g
i

)
. For i even, the generically defined

correspondence p∧N ◦ (π2g−i
A ⊗ · · · ⊗ π2g−i

A ) acts trivially on HN(2g−i),0(AN ) for N >
(
g
i

)
. In

both case, we conclude by invoking Theorem 1. �

Remark 4.2. Of course, one can state and prove many variants of Theorem 4.1. For example,
given integers n ≤ i with say i odd, since the Hodge numbers

hN(2g−i),0, hN(2g−i)−1,1, . . . , hN(2g−i)−n,n

of SNh2g−i(A) vanish for N >
∑n
j=0

(
g
j

)(
g
i−j
)
, we can prove that CHr(S

Nh2g−i(A)) = 0 for

all r ≤ n. One could also consider the motives
∧M

SNh2g−i(A), various images under Schur
functors, etc. Via the Abel–Jacobi map, one also recovers the fact that for a smooth projective
curve C of genus g we have∑

σ∈SN

aσ(1) × · · · × aσ(N) = 0 in CH0(CN ),

for any integer N > g and any degree-0 zero-cycles a1, . . . , aN ∈ CH0(C). This is originally
due independently to Voisin [53, p.267] and Voevodsky [51] ; since algebraically trivial cycles
are parametrized by curves, this establishes that, for any smooth projective variety X, any
algebraically trivial cycle a ∈ CHr(X) is smash-nilpotent, that is, a× · · · × a = 0 ∈ CHrN (XN )
for some N > 0.



24 CHARLES VIAL

4.2. Zero-cycles on generalized Kummer varieties. Let A be an abelian surface. The
n-th generalized Kummer variety Kn(A) associated to A is a fiber of the isotrivial fibra-
tion Hilbn+1(A) → A that is the composite of the Hilbert–Chow morphism Hilbn+1(A) →
An+1/Sn+1 with the sum morphism Σ : An+1/Sn+1 → A. The variety Kn(A) is known to be
a hyperKähler variety [9], in particular h2i,0(Kn(A)) = 1 for 0 ≤ i ≤ n, and h2i+1,0(Kn(A)) = 0
for all i. A generalized Kummer variety of dimension 2 is nothing but a Kummer surface.

In [22], we established that the Chow ring CH∗(Kn(A)) of generalized Kummer varieties
admits a grading that splits the conjectural Bloch–Beilinson filtration. We write

CH∗(Kn(A)) =
⊕
j

CH∗(Kn(A))(j).

In the case of zero-cycles, this grading has the following simple description (see [33]). The
restriction of the Hilbert–Chow morphism provides a birational morphism from Kn(A) to the
variety An+1

0 /Sn+1, where An+1
0 is the fiber over 0 of the sum morphism Σ : An+1 → A and

the action of the symmetric group Sn+1 is the one induced from the action on An+1 permuting
the factors. Then CH0(Kn(A))(j) identifies with (CH0(An+1

0 )(j))
Sn+1 via the restriction of the

Hilbert–Chow morphism, where CH0(An+1
0 )(j) is defined in (2). Let us identify An+1

0 with An,
and let us write

p :=
1

(n+ 1)!

∑
σ∈Sn+1

Γσ

for the projector on the Sn+1-invariant part of the motive of An ; it is a generically defined
correspondence for n-fold products of polarized abelian surfaces. Then we have

CH0(Kn(A))(j) = p∗CH0(An)(j) = (πjAn ◦ p)
∗CH0(An),

where πjAn is a Chow–Künneth projector as in Lemma 2.6, in particular generically defined.

The following theorem is due to Hsueh-Yung Lin. We provide a short proof based on our
Theorem 1.

Theorem 4.3 (Lin [33, 34]). CH0(Kn(A))(2j+1) = 0 for all integers j.

Proof. We know that p∗H2j+1,0(An) = H2j+1,0(Kn(A)) = 0 for all integers j, so that (π2j+1
An ◦

p)∗H∗(An,Q) ⊆ N1
HH∗(An,Q). The theorem is then a straightforward application of Theorem 1.

�

The following theorem generalizes a result of Voisin [53, Proposition 3.2] for Kummer surfaces
to the higher dimensional case of generalized Kummer varieties.

Theorem 4.4. Let a and b be two cycles in CH0(Kn(A))(2j). Then

a× b = b× a in CH0(Kn(A)×Kn(A)).

Proof. Let p∧2 be the generically defined idempotent ∆An−Γτ ∈ CH2n(An×An) where τ : An×
An → An×An is the morphism permuting the factors. Since H2j,0(An)Sn+1 = H2j,0(Kn(A)) =

1, we have (p∧2 ◦ π2j
An ◦ p)∗H∗(An,Q) ⊆ N1

HH∗(An,Q). We may now conclude by invoking
Theorem 1. �

4.3. On a conjecture of Voisin. Let N ≥ 2 be an integer, and let S be a K3 surface. Denote
pr : SN → SN−1 the projection to the first N − 1 factors ; it induces for all l ≥ 0 a morphism

pr∗ : (p∧N )∗CHl(S
N ) −→ (p∧N−1)∗CHl(S

N−1),

where p∧N is the anti-symmetrization projector defined in (13). As a consequence of the Bloch–
Beilinson philosophy, Voisin [53, Conjecture 3.9] stated :

Conjecture 4.5 (Voisin). The anti-symmetrization projector p∧N+1 acts as zero on ker(pr∗)⊗
CH0(S)num for all l < N .
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Voisin established this conjecture for N = 2 in the case where S is a Kummer surface by a
lengthy calculation ; see [53, Theorem 3.10]. A variant of our Theorem 1 makes it possible to
prove (a stronger form of) Voisin’s conjecture for Kummer surfaces for all values of N .

Theorem 4.6. Conjecture 4.5 is true for Kummer surfaces for all integers N ≥ 2.

Proof. Let A be a polarized abelian surface, and let S be the Kummer surface attached to A.

We view S as the quotient of the blow-up Ã of A along its 2-torsion points by the involution

induced by the multiplication-by-(−1) map on A. In particular, since the cohomology of Ã
differs from that of A only by Hodge classes, we have the analogue of Theorem 2.12 for the
very general polarized abelian surface as long as we allow the sum to run through all cycles
Q ∈ CHn(Am) which are products of cycles of the form (pi)

∗L, (pi)
∗Er, (pi,j)

∗P , where Er
denote the exceptional curves of Ã. As a consequence, one can show that the conclusion of

Theorem 1 holds for Ã by working with the universal polarized abelian surface of degree d2 with
level-4 structure. (We avoid working with level-2 structure in order to avoid having to deal with
stacks.) In fact, quotienting by the action of multiplication-by-(−1) fiber-wise, the conclusion
of Theorem 1 holds for the induced universal family of Kummer surfaces.

Since pr, p∧N and p∧N−1 are generically defined, arguing as in the proof of Proposition 2.13,
we may construct a generically defined idempotent correspondence q ∈ CH2N (SN × SN ) such
that

q∗H
∗(SN ,Q) = ker

(
pr∗ : (p∧N )∗H

∗(SN ,Q)→ (p∧N−1)∗H
∗(SN−1,Q)

)
.

More precisely, there is a generically defined correspondence γ on SN−1 × SN such that q =
id− γ ◦ p∧N−1 ◦ pr∗ ◦ p∧N . In particular, we see that

q∗CHl(S
N ) ⊇ ker

(
pr∗ : (p∧N )∗CHl(S

N )→ (p∧N−1)∗CHl(S
N−1)

)
.

On the other hand, defining π2
S to be the generically defined idempotent ∆S− [0]×S−S× [0] ∈

CH2(S × S), we have

CH0(S)num = (π2
S)∗CH0(S).

Therefore, in order to prove the theorem, it is enough to establish that(
p∧N+1 ◦ (q ⊗ π2

S)
)
∗

(
CHl(S

N )⊗ CH0(S)
)

= 0 for all l < N.

A cohomological calculation (as performed by Voisin [53, p. 274]) shows that(
p∧N+1 ◦ (q ⊗ π2

S)
)∗

Hi,j(SN+1,Q) = 0 for all i < N.

Therefore, by Theorem 1 applied to polarized abelian surfaces of degree d2 with level-4 structure
we obtain the stronger result that(

p∧N+1 ◦ (q ⊗ π2
S)
)
∗CHl(S

N+1) = 0 for all l < N.

This concludes the proof of the theorem. �

4.4. Varieties motivated by an abelian surface. Here, we say that a smooth projective
variety is motivated by an abelian variety A if its Chow motive is isomorphic to an object in
the full, thick and rigid subcategory of Chow motives generated by A. In other words, X is
motivated by A if h(X) is isomorphic to a direct summand of a motive of the form

⊕
i h(Ami)(ni)

for some integers mi ≥ 0 and ni ∈ Z. In particular, by Corollary 3.13, a strong form of the
generalized Hodge conjecture holds for the powers of X ; i.e.,

(14) Nr
HHk(Xm,Q) = Γ∗H

k−2r(B,Q),

where B is a disjoint union of abelian varieties and where Γ is a correspondence between B
and Xm. Examples of varieties motivated by an abelian surface include generalized Kummer
varieties (see [57], and also [22, Corollary 6.3]). In particular, the following theorem applies to
generalized Kummer varieties.
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Theorem 4.7. Let X be a smooth projective variety of dimension d and let γ ∈ CHd(X×X) be
a correspondence. Assume that the motive of X is motivated by the motive of an abelian variety
A of dimension ≤ 2. If γ∗Hi,j(X) = 0 for all j < n, then there exists an integer N ≥ 1 such
that (γ◦N )∗CHr(X) = 0 for all r < n. In particular, if in addition γ is an idempotent, then
γ∗CHr(X) = 0 for all r < n.

Proof. By Corollary 3.13, any Hodge sub-structure of H∗(X,Q) is a L(A)-sub-representation.
One can then proceed as in the proof of Theorem 3.14 by invoking Proposition 3.12 to show
that the cohomology class of γ is a linear combination of cycles in CH∗(X ×X) that factor as

h(X)
ρ−→ h(B)(n)

ζ−→ h(X),

for some abelian varieties B and some correspondences ρ and ζ that belong to CH∗(X×B) and
CH∗(B×X), respectively. One concludes by Kimura finite-dimensionality as for instance in the
proof of Theorem 2.15(1). �

Remark 4.8. In the case where X is a generalized Kummer variety, one can be more precise.
By [23, §4.5], one can define, for all integers m ≥ 0, Q-sub-algebras DCH∗(Xm) ⊆ CH∗(Xm)

consisting of distinguished cycles that map isomorphically to CH
∗
(Xm) and that are compatible

with pushforwards and pullbacks along projections. In particular, the composition of distin-
guished correspondences is distinguished. As such, in Theorem 4.7, if one chooses γ to be a
correspondence in DCH∗(X ×X) such that γ∗Hi,j(X) = 0 for all j < n, then Proposition 3.12
shows that γ is a linear combination of cycles in DCH∗(X ×X) that factor as

h(X)
ρ−→ h(B)(n)

ζ−→ h(X),

for some abelian varieties B and some correspondences ρ and ζ that belong to DCH∗(X × B)
and DCH∗(B ×X), respectively. One concludes that γ∗CHr(X) = 0 for all r < n.

Remark 4.9. The results of Sections 4.2 and 4.3 could have been established by referring to
Theorem 4.7 instead of Theorem 1. We chose to refer to Theorem 1 (which is concerned with
generically defined cycles) because it is more elementary and does not appeal to Abdulali’s
theorem on the generalized Hodge conjecture for powers of CM abelian surfaces. Moreover
the approach using generically defined cycles seems more natural and is probably better suited
to adapt to other situations. Nonetheless, Theorem 4.10 below will use the full strength of
Theorem 4.7.

4.5. Finite-order symplectomorphisms on generalized Kummer varieties. Let (X,ω)
be a symplectic variety, that is, a smooth projective variety equipped with a nowhere degen-
erate 2-form ω. A symplectomorphism of (X,ω) is an automorphism f : X → X such that
f∗ω = ω. If X is irreducible symplectic, it is expected as part of the Bloch conjectures that
symplectomorphisms act unipotently on the Chow group of 0-cycles, and, due to the probable
distinguishedness of symplectomorphisms in the sense of [23], it is in fact expected that sym-
plectomorphisms act as the identity on the Chow group of 0-cycles. Most notably, this was
established for symplectic involutions on K3 surfaces by Voisin [54] and extended to finite-order
symplectomorphisms on K3 surfaces by Huybrechts [28]. This was also established for polarized
symplectomorphisms of Fano varieties of lines on smooth cubic fourfolds by Fu [20], that is,
for symplectomorphisms that preserve a given polarization. We extend that type of results to
generalized Kummer varieties.

Theorem 4.10. Let A be an abelian surface and let f be a symplectomorphism of the generalized
Kummer variety Kn(A). Then f∗ : CH0(Kn(A))→ CH0(Kn(A)) is unipotent. In particular, if
f is a finite-order symplectomorphism, then f∗ : CH0(Kn(A))→ CH0(Kn(A)) is the identity.

Proof. Since H2i,0(Kn(A)) = H0(Ω2i
Kn(A)) = Cωi, and by definition of a symplectomorphism, f∗

acts as the identity on H2i,0(Kn(A)) for all i. Therefore, by Theorem 4.7, f − id acts nilpotently
on CH0(Kn(A)). Suppose now that f has finite order. In particular a positive power of f acts
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as the identity on CH0(Kn(A)). Since the gcd of the polynomials Xn−1 and (X−1)N is X−1,
we find that f − id acts as zero on CH0(Kn(A)). �

Finally we note that if f is a symplectomorphism of the generalized Kummer variety Kn(A)
induced by a symplectomorphism of A, then Pawar [42] showed that f∗ acts as the identity on
CH0(Kn(A))(2n) (as defined in §4.2). We can extend Pawar’s result and show that f∗ acts as
the identity on the whole of CH0(Kn(A)) :

Proposition 4.11. Suppose f is a symplectomorphism of the generalized Kummer variety
Kn(A) induced by a symplectomorphism of A. Then f∗ acts as the identity on CH0(Kn(A)).

Proof. One uses Remark 4.8 and notes that the graph of a symplectomorphism induced by a
symplectomorphism of A belongs to the sub-algebra DCH∗(Kn(A) × Kn(A)) defined in [23,
§5.5]. �
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