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ABSTRACT. For a complex projective manifold, Walker has defined a regular homomorphism lifting
Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which
admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alter-
nate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction
based on a general lifting property for surjective regular homomorphisms, and prove that the Walker
Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold.
In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle
classes in terms of the coniveau filtration.

Let H be a pure integral Hodge structure of weight-(−1). The Jacobian attached to H is the
complex torus

J(H) := F0HC\HC/Hτ,

where F•HC denotes the Hodge filtration on the complexification HC := H ⊗Z C and where, for
an abelian group G, we denote Gτ its torsion-free quotient. If X is a complex projective manifold,
then the cohomology groups H2p−1(X, Z(p)) are naturally endowed with the structure of a pure
Hodge structure of weight-(−1). In the seminal paper [Gri69], Griffiths defined an Abel–Jacobi
map for homologically trivial cycle classes CHp(X)hom := ker

(
CHp(X)→ H2p(X, Z(p))

)
:

AJ : CHp(X)hom // J2p−1(X) := J
(

H2p−1(X, Z(p))
)
,

which is in particular functorial with respect to the action of correspondences between complex
projective manifolds. Since algebraically trivial cycles in CHp(X) are parametrized by smooth pro-
jective complex curves, and since the Abel map CH1(C)0 → J(C) := J(H1(C, Z(1))) on degree-0
zero-cycle classes on a curve C is an isomorphism, the image of the Abel–Jacobi map restricted to
the subgroup Ap(X) ⊆ CHp(X) of algebraically trivial cycle classes has image a subtorus

J2p−1
a (X) ↪→ J2p−1(X)

which is algebraic, i.e., an abelian variety, and called the algebraic intermediate Jacobian. The result-
ing (surjective) Abel–Jacobi map

ψp : Ap(X) −→ J2p−1
a (X)

defines a regular homomorphism, meaning that for all pointed smooth connected complex varieties
(T, t0) and all families of codimension-p cycles Z ∈ CHp(T × X) the map T(C) → J2p−1

a (X), t 7→
ψp(Zt−Zt0) is induced by a complex morphism T → J2p−1

a (X) of complex varieties. The algebraic
intermediate Jacobian J2p−1

a (X) can also be described Hodge-theoretically. For Λ a commutative
ring, consider the coniveau filtration N• :

Ni H j(X, Λ) := ∑ ker
(

H j(X, Λ)→ H j(X \ Z, Λ)
)
,
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where the sum runs through all closed subvarieties Z of codimension ≥ i in X. Then the alge-
braic intermediate Jacobian J2p−1

a (X) is the subtorus of J2p−1(X) corresponding to the inclusion of
rational Hodge structures Np−1 H2p−1(X, Q(p)) ⊆ H2p−1(X, Q(p)) ; precisely,

J2p−1
a (X) = J

(
H2p−1(X, Z(p)) ∩Np−1 H2p−1(X, C)

)
.

On the other hand, the Walker intermediate Jacobian is the complex torus defined as

J2p−1
W (X) := J

(
Np−1 H2p−1(X, Z(p))

)
.

The inclusion of lattices Np−1 H2p−1(X, Z(p)) ⊆ H2p−1(X, Z(p)) ∩Np−1 H2p−1(X, C) induces an
isogeny of complex tori

α : J2p−1
W (X) // J2p−1

a (X),

which in fact is an isogeny of complex abelian varieties, since the pull-back of an ample line bundle
on J2p−1

a (X) along the finite map α is ample.

Walker has shown that the Abel–Jacobi map on algebraically trivial cycle classes lifts to the
Walker intermediate Jacobian :

Theorem A (Walker, [Wal07]). Let X be a complex projective manifold. There exists a regular homomor-
phism ψ

p
W lifting the Abel–Jacobi map ψp along the isogeny α : J2p−1

W (X) → J2p−1
a (X), i.e., making the

following diagram commute :

J2p−1
W (X)

Ap(X) J2p−1
a (X).

ψ
p
W

ψp

α

The regular homomorphism ψ
p
W : Ap(X) −→ J2p−1

W (X) will be called the Walker Abel–Jacobi map.
It was first constructed by Walker [Wal07] using Lawson homology ; recently, Suzuki [Suz20a]
gave a Hodge-theoretic construction relying solely on Bloch–Ogus theory [BO74]. That ψ

p
W is

regular is [Wal07, Lem. 7.3] or [Suz20a, Cor. 2.6]. In addition, it is shown in [Suz20a, Lem. 2.4] that
ψ

p
W is compatible with the action of correspondences. In the case where p = 1, 2, dim X, the usual

Abel–Jacobi map ψp is universal among regular homomorphisms (see [Mur85, Thm. C]), and so
the Walker Abel–Jacobi map coincides with the usual Abel–Jacobi map (i.e., the isogeny α is an
isomorphism), while in general it differs (see Ottem–Suzuki [OS20, Cor. 4.2]) and hence provides
a finer invariant for algebraically trivial cycles.

The first aim of this paper is to provide a new proof of Walker’s Theorem A ; see §2.3. Our proof
is based on the general lifting Theorem 1.5 for regular homomorphisms (see also Proposition 1.3),
which we hope could prove useful in other situations, especially in positive characteristic.

As our main new result, we show that if X is defined over a field K ⊆ C, then the Walker
intermediate Jacobian descends to K in such a way that the diagram of Theorem A can be made
Aut(C/K)-equivariant :

Theorem B (Distinguished model). Let X be a smooth projective variety variety over a field K ⊆ C.
Then the isogeny α : J2p−1

W (XC)→ J2p−1
a (XC) of complex abelian varieties descends uniquely to an isogeny

J2p−1
W,X/K → J2p−1

a,X/K of abelian varieties over K in such a way that both ψp and ψ
p
W are Aut(C/K)-equivariant.
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The part of Theorem B stated for the algebraic intermediate Jacobian was proved in [ACMV20,
Thm. A] (see also [ACMV19a, Thm. 9.1]). We provide two proofs of Theorem B. The first one is
presented in §2.5 ; it is based on [ACMV20, Thm. A], on the universality of the Walker Abel–Jacobi
map among lifts of the Abel–Jacobi map along isogenies (Theorem 2.3) and on the general descent
statement of our lifting Theorem 1.5. The second one is presented in §3.3 and builds directly
upon [ACMV20]. We note also here that, as in [ACMV20, Thm. A] and [ACMV19b, Prop. 3.1],
which concern the case of the algebraic intermediate Jacobian, the K-structure in Theorem B for
the Walker intermediate Jacobian and Walker Abel–Jacobi map is stable under field extensions
K ⊆ L ⊆ C (Remark 3.4), and independent of the embedding of K into C (Remark 3.5). As a
consequence, the kernel of the Walker Abel–Jacobi map is independent of the choice of embedding
of K into C ; the analogous statement for the Abel–Jacobi map on algebraically trivial cycle classes
is [ACMV19b, Rem. 3.4].

From our second approach to proving Theorem B we obtain two applications.

First, we obtain the following proposition, which provides further arithmetic significance to the
Walker Abel–Jacobi map, by showing that the torsion-free quotient of Np−1 H2p−1

ét (XC, Z`(p)) can
be modeled by an abelian variety independently of ` :

Corollary C (Modeling coniveau integrally). Let X be a smooth projective variety over a field K ⊆ C.
Then for all integers p, the model J2p−1

W,X/K over K of the Walker intermediate Jacobian J2p−1
W (XC) (Theorem B)

has the property that for all primes ` we have canonical isomorphisms of Aut(C/K)-representations

T` J2p−1
W,X/K ' Np−1 H2p−1

ét (XC, Z`(p))τ.

This result is established in §4.1. It was established with Q`-coefficients in [ACMV20, Thm. A]
with the model of the algebraic intermediate Jacobian over K in place of that of the Walker in-
termediate Jacobian. We direct the reader to [ACMV21] for more details, and in particular, the
connection to a question of Mazur [Maz14].

Second, for any smooth projective variety X over an algebraically closed field and for any prime
` invertible in X, Bloch [Blo79] has defined a map λp : CHp(X)[`∞] → H2p−1

ét (X, Q`/Z`(p)) on
`-primary torsion. The `-adic Bloch map T`λ

p : T` CHp(X)→ H2p−1
ét (X, Z`(p))τ is then obtained by

taking Tate modules and making the identification T`Hi
ét(X, Q`/Z`(j)) = Hi

ét(X, Z`(j))τ ; we refer
to [Suw88, (2.6.5)], and to [ACMV21, §A.3.3], for more details. Here, the Tate module associated to
an `-primary torsion abelian group M is the group T`M := lim←−M[`n]. Thanks to our approach to
lifting regular homomorphisms along isogenies, together with the existence of the Walker Abel–
Jacobi map, we determine the image of T`λ

p restricted to algebraically trivial cycle classes :

Corollary D. Let X be a smooth projective variety over a field K of characteristic zero. Then

im
(
T`λ

p : T` Ap(XK) −→ H2p−1
ét (XK, Z`(p))τ

)
= Np−1 H2p−1

ét (XK, Z`(p))τ

for all primes `.

This extends [Suw88, Prop. 5.2] (see also [ACMV21, Prop. 2.1]), where the images of the usual
Bloch map λp and of T`λ

p ⊗Q`, both restricted to algebraically trivial cycle classes, were deter-
mined.

Acknowledgments. We thank Fumiaki Suzuki for mentioning to us that the Walker Abel–Jacobi
map does not lift along non-trivial isogenies (Theorem 2.3), and for bringing [BF84] to our atten-
tion. We also thank the referee for helpful suggestions.
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1. LIFTING REGULAR HOMOMORPHISMS ALONG ISOGENIES

1.1. An elementary fact. We start with the following elementary fact, which will be used recur-
ringly throughout this note.

Fact 1.1. Let f : D → G and α : G′ → G be homomorphisms of abelian groups. Assume D is divisible
and that ker α is finite. Then there exists at most one homomorphism f ′ : D → G′ such that α ◦ f ′ = f ,
i.e., such that the following diagram commutes :

G′

D G.

f ′

f

α

Moreover, if there is a group H acting on D, G, and G′, and f and α are H-equivariant, then f ′, if it exists,
is H-equivariant, as well. �

As a first consequence, note that since for a smooth complex projective variety X one has that
Ap(X) is a divisible group (e.g., [BO74, Lem. 7.10]), there is at most one homomorphism ψ

p
W :

Ap(X)→ J2p−1
W (X) such that α ◦ ψ

p
W = ψp ; i.e., there is at most one lifting of the Abel–Jacobi map

to the Walker intermediate Jacobian.

1.2. Lifting homomorphisms of abelian varieties along isogenies. We have the following ele-
mentary lemma on lifting morphisms of abelian varieties. (Recall that for an abelian variety A
over a field K of positive characteristic, the N-torsion group scheme A[N] may carry strictly more
information than the abstract group of points A[N](K).)

Lemma 1.2. Let f : B → A be a morphism of abelian varieties over a field K, and let α : A′ → A be an
isogeny of abelian varieties over K. The following are equivalent :

(1) There exists a lift f ′ : B→ A′ of f ; i.e., there is a commutative diagram

A′

α
��

B
f

//

f ′
88

A.

(2) There exists a lift of f restricted to torsion schemes ; i.e., for each natural number N there is a
commutative diagram of finite group schemes

A′[N]

α[N]
��

B[N]
f [N]

//

( f [N])′
77

A[N]

(1.1)

such that ( f [MN])′|B[N] = ( f [N])′.

If α is separable (equivalently, étale), and Ω/K is any field extension with Ω algebraically closed, then (1)
and (2) are also equivalent to each of the following conditions :
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(3) There exists a group-theoretic lift ( f (Ω)tors)′ : B(Ω)tors → A′(Ω)tors of f (Ω) restricted to torsion
points ; i.e., there is a commutative diagram of torsion abelian groups

A′(Ω)tors

α(Ω)tors
��

B(Ω)tors
f (Ω)tors

//

( f (Ω)tors)′
66

A(Ω)tors.

(4) For all prime numbers l there exists a group-theoretic lift (Tl f )′ : Tl B → Tl A′ of Tl f , the map on
Tate modules ; i.e., there is a commutative diagram

Tl A′

Tlα

��

Tl B Tl f
//

(Tl f )′
77

Tl A.

(5) For all prime numbers l, we have im(Tl f ) ⊆ im(Tlα).
Finally, if any of the lifts in (1)–(4) exist, they are unique. In particular, ( f ′)tors = ( ftors)′, Tl( f ′) = (Tl f )′
and, for any extension field L/K, ( f (L)tors)′ = f ′(L)tors.

Proof. The uniqueness of the lift f ′ follows from Fact 1.1 ; and (1) clearly implies (2). Moreover, (2)
implies (3), and (3) implies (2) over an algebraically closed field of characteristic zero. Conditions
(3) and (4) are obviously equivalent; (4) and (5) are equivalent because each Tlα is an inclusion.

To show (2) implies (1), suppose there exists a suitable lift of f on torsion schemes. By rigidity
of homomorphisms of abelian varieties, we may assume that K is perfect. Using the uniqueness
of f ′ and Galois descent, we may and do assume K is algebraically closed.

We start by reducing to the case where f is an isogeny. To this end, consider the diagram

A′′ �
� ι′ //

α′
����

A′

α
����

B
fconn
// // B′

ffin
// // B′′ �

� ι // A

where B′′ := im( f ) ⊆ A, the morphisms f : B
fconn→ B′

ffin→ B′′ give the Stein factorization, ι is the
natural inclusion, and A′′ = B′′ ×A A′. Explicitly, B′ = B/((ker f )0

red) is the quotient of B by the
largest sub-abelian variety contained in ker( f ).

Fix a prime l and consider l-primary torsion. Using the lift ( f [l∞])′, we have the diagram:

A′′[l∞] �
� ι′[l∞]

//

α′[l∞]
����

A′[l∞]

α[l∞]
����

B[l∞]
fconn[l∞]

// //

( f [l∞])′ 00

B′[l∞]
ffin[l∞]

// //

hh
B′′[l∞] �

� ι[l∞]
// A[l∞].

The splitting of the map fconn[l∞] is elementary, since whenever one has a short exact sequence
of abelian varieties the induced maps on l-primary torsion give a split exact sequence (taking l-
primary torsion is exact since the kernel is divisible, and then free modules are projective). (If
l = char(K), an appeal to Dieudonné modules gives the same conclusion.)

Thus, we now assume f and α are isogenies. Suppose briefly that char(K) = 0 ; then f and
α are étale. The cover f factors through α if and only if the induced map on étale fundamental
groups f∗ : πét

1 (B, 0B) → πét
1 (A, 0A) factors through α∗ : πét

1 (A′, 0A) → πét
1 (A, 0A). For an abelian
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variety D/K, there is a canonical isomorphism πét
1 (D, 0D) ' lim←

N
D[N](K). By taking the inverse

limit of the maps of finite groups ( f [N])′(K), we see that the condition on fundamental groups is
equivalent to (2).

Now suppose instead that K is algebraically closed of positive characteristic. Then f , while
possibly not étale, is at least a torsor over X under the finite commutative group scheme ker( f ).
Consequently, it is classified by a quotient of Nori’s fundamental group scheme πNori

1 (A) [Nor76].
Moreover, for an abelian variety D/K, we have πNori

1 (D) = lim←
N

D[N] [Nor83]. Consequently,
condition (2) is again equivalent to the hypothesis that the cover f factors through α.

Finally, suppose α is étale by hypothesis and that (3) holds. As noted above, it suffices to
consider the case where K is algebraically closed of positive characteristic and f : B → A is
an isogeny. Now, any isogeny g : D → C of abelian varieties over K admits a canonical fac-
torization g = gét ◦ gi, where gi : D → Di := D/(ker g)0 is purely inseparable and gét is
étale. Since α is étale, f factors through α if and only if fét : Bi → A factors through α. Be-
cause fi is a universal homeomorphism, the map of groups f̃tors(K) descends to a map of groups
f̃ét,tors(K) : Bi,tors(K) → A′tors(K). Now fét and α are étale isogenies and we may argue using fun-
damental groups as before, while recalling that (in all characteristics) πét

1 (D, 0D) ' lim←
N

D[N](K).
The same argument, combined with the canonical isomorphism πét

1 (D, 0D) ' ∏l Tl D, shows that
(4) implies (1), as well. �

1.3. Lifting regular homomorphisms along isogenies. From Lemma 1.2 we get the following
lifting criterion for regular homomorphisms :

Proposition 1.3. Let K be a field, and Ω/K an algebraically closed extension. Let X/K be a smooth
projective variety, let A/K be an abelian variety over K, let φ : Ap(XΩ) → A(Ω) be an Aut(Ω/K)-
equivariant regular homomorphism, and let α : A′ → A be an étale isogeny of abelian varieties over K.
Then the following are equivalent :

(1) The Aut(Ω/K)-equivariant regular homomorphism φ lifts to A′, in the sense that there is a com-
mutative diagram of Aut(Ω/K)-equivariant regular homomorphisms

A′(Ω)

α(Ω)
��

Ap(XΩ) φ
//

φ′
66

A(Ω).

(2) The homomorphism φ lifts on torsion, in the sense that there is a commutative diagram of torsion
abelian groups

A′(Ω)tors

α(Ω)tors
��

Ap(XΩ)tors φtors

//

(φtors)′
55

A(Ω)tors.

(3) For all prime numbers l there exists a group-theoretic lift (Tlφ)
′ : Tl Ap(XΩ) → Tl A′ of Tlφ, the

map on Tate modules ; i.e., there is a commutative diagram

Tl A′

Tlα

��

Tl Ap(XΩ) Tlφ
//

(Tlφ)
′

66

Tl A.
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(4) For all prime numbers l, we have im(Tlφ) ⊆ im(Tlα).
Finally, if any of the lifts in (1)–(3) exist, then they are unique and Aut(Ω/K)-equivariant. In particular,
(φ′)tors = (φtors)′ and (Tlφ)

′ = Tl(φ
′).

Proof. The uniqueness and Aut(Ω/K)-equivariance of the lifts follows from Fact 1.1. Clearly (1)
implies (2), and (2) implies (3) by taking Tate modules. The equivalence of (3) and (4) is obvious
since Tlα is injective. Thus we will show (3) implies (1).

Let (T, t0) be a smooth pointed variety over Ω, and let Γ ∈ CHp(T ×Ω XΩ). Then we have a
commutative diagram

T
t 7→t−t0 //

wΓ; t 7→Γt−Γt0 $$

A0(T)
alb //

Γ∗
��

Alb(T)(Ω)

f
��

A′(Ω)

α
ww

Ap(XΩ)
φ

// A(Ω)

where the top row is the pointed Albanese, and the right vertical arrow f comes from the uni-
versal property of algebraic representatives, together with the facts that Albaneses are algebraic
representatives, and that φ ◦ Γ∗ can easily be confirmed to be a regular homomorphism.

On Tate modules we obtain a diagram

Tl A0(T) ∼
Tl alb

//

Γ∗

��

Tl Alb(T)

Tl f

��

Tl A′

Tlα

}}

Tl Ap(XΩ)
Tlφ

//

(Tlφ)
′

33

Tl A

(1.2)

where the lift (Tlφ)
′ is provided by assumption (3). The isomorphism on Tate modules for the

Albanese map comes from Roitman’s theorem (see, e.g., [ACMV21, Prop. A.29]). Since we assume
α is étale, by Lemma 1.2 we obtain a lift f ′ : Alb(T)→ A′ of f giving a commutative diagram

T(Ω)
t 7→[t]−[t0]

//

wΓ; t 7→Γt−Γt0 &&

A0(T)
alb //

Γ∗
��

Alb(T)(Ω)

f (Ω)
��

f ′(Ω)
// A′(Ω)

α(Ω)ww

Ap(XΩ)
φ

// A(Ω)

(1.3)

It follows immediately that if φ lifts to an abstract homomorphism φ′ : Ap(XΩ) → A′(Ω), then
φ′ is a regular homomorphism. Thus we have reduced the problem to showing that φ lifts as an
abstract homomorphism to a homomorphism φ′ : Ap(XΩ)→ A′(Ω).

Over an algebraically closed field, algebraically trivial cycles are parameterized by smooth pro-
jective curves [Ful98, Ex. 10.3.2]. In other words, Ap(XΩ) is covered by the images of Γ∗ : A0(T)→
Ap(XΩ), where T runs through pointed smooth projective curves over Ω and Γ over correspon-
dences in CHp(T ×Ω XΩ). Now since A0(T) is divisible, it follows that Γ∗(A0(T)) is divisible ;
therefore, by the uniqueness of lifts (Fact 1.1) it is enough to show that f ′ ◦ alb in (1.3) factors
through Γ∗(A0(T)) in the case where T is a smooth projective curve. In other words, taking T to
be a smooth projective curve over Ω, and given any γ ∈ A0(T) such that Γ∗(γ) = 0, we must
show that ( f ′ ◦ alb)(γ) = 0.

The first observation is that this is clear if Ω is the algebraic closure of a finite field. Indeed, in
that case A0(T) is a torsion group, since the Albanese map A0(T) → AlbT(Ω) is an isomorphism
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and closed points of an abelian variety over a finite field are torsion. Thus γ is torsion. Decompos-
ing torsion in A0(T) into a direct sum of l-power torsion, we can work one prime at a time. Now
we make the following elementary observation : given any homomorphism of groups h : D → G
where D is divisible, and any x ∈ D[l∞], we have that h(x) = 0 if for some lift xl of x to Tl D (which
exists since D is divisible), we have that (Tlh)(xl) = 0. Consequently, taking Tate modules in (1.3)
and using the lift (Tlφ)

′ (1.2), we see that alb(γ) = 0.

We now deduce the general case from the case of finite fields, via a specialization argument. For
this we use the terminology of regular homomorphisms from [ACMV19a], which is much better
suited to the relative setting. Since all objects considered here are of finite type, the data X, T, Γ,
A, A′, α and γ descend to a field L which is finitely generated over the prime field. A standard
spreading argument produces a smooth ring R, finitely generated as a Z-algebra and with fraction
field L, and smooth X , T , A, A′ over S = Spec(R), as well as γ ∈ A 1

T /S(S), whose generic fibers
are the corresponding original data. Let |S|cl be the set of points of S with finite residue fields ;
then |S|cl is topologically dense in S.

From [ACMV19a], there exists a diagram

A 1
T /S

alb //

ΓS∗
��

AlbT /S

fS

��

f ′S // A′

αS
zz

A
p
X/S

Φ // A

(1.4)

where Φ : A
p
X/S → A is a regular homomorphism, the Albanese homomorphism is the univer-

sal regular homomorphism for 0-cycles [ACMV19a, Lem. 7.5] and the remaining morphisms are
extensions of those in (1.3). Set a′ = ( f ′S ◦ alb)(γ) ∈ A′(S).

Now suppose s ∈ |S|cl. Then pullback of (1.4) yields a diagram of objects over s = Spec(κ(s)),
where specialization of cycles is provided by [Ful98, 20.3.5]. We have seen that for each such s,
a′s = 0 ∈ A′(s). Using the density of |S|cl, we see that a′ = 0, and in particular its generic fiber
( f ′ ◦ alb)(γ) is zero. �

Remark 1.4 (Regular homomorphisms and mini-versal cycle classes). Given a surjective Aut(Ω/K)-
equivariant regular homomorphism φ : Ap(XΩ)→ A(Ω), there is a cycle class Γ ∈ CHp(A×K X)
(which we call a mini-versal cycle class) such that the associated map ψΓ : A → A, induced on
Ω-points by a 7→ Γa − Γ0 7→ φ(Γa − Γ0), is given by multiplication by some non-zero integer r
[ACMV19a, Lem. 4.7]. One can immediately see from the definition that given any étale isogeny
α : A′ → A through which φ factors, one has (deg α) | (deg r · IdA) = r2 dim A. In particu-
lar, if there is a universal cycle class (i.e., r = 1), then φ does not factor through any non-trivial
isogeny A′ → A.

We obtain the following consequence of Proposition 1.3, establishing the existence of a universal
lifting of a surjective regular homomorphism along isogenies. Together with Corollary 1.6, this
extends [BF84, Thm. 0.1] to the case of arbitrary fields. Note also that the proof of [BF84, Thm. 0.1]
is incorrect. (On the bottom of [BF84, p.362], it is assumed that the map u : B(k) → Aq(X) is a
homomorphism, so that the image of u is a subgroup of Aq(X). There, X is a smooth projective
variety over an algebraically closed field k, B is an abelian variety over k, and u : b 7→ Z∗([u]−
[0]) is the map induced by a cycle Z ∈ CHp(B ×k X). However, this is not the case in general.
Indeed, consider the special instance where X = B is an abelian variety of dimension > 1 over an
uncountable algebraically closed field k and where Z = ∆B is the diagonal cycle class. Then the
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map u : B(k) → A0(B), b 7→ [b]− [0] is not a homomorphism since by [Blo76, Thm. 3.1(a)] there
exist b1 and b2 in B(k) such that [b1 + b2] 6= [b1] + [b2]− [0] in A0(B) ; see also [Mur00, p.309].)

Theorem 1.5 (Universal lift of surjective regular homomorphisms along étale isogenies). Let K be
a field, and Ω/K an algebraically closed extension. Let X/K be a smooth projective variety, let A/K be an
abelian variety over K, and let φ : Ap(XΩ) → A(Ω) be a surjective regular homomorphism. Then there
exist an étale isogeny α : Ã → AΩ, characterized by the condition im(Tlα) = im(Tlφ) for all primes l,
and a surjective regular homomorphism φ̃ : Ap(XΩ) → Ã(Ω) which is initial among all regular lifts of φ
along étale isogenies A′ → AΩ.

Moreover, if φ is Aut(Ω/K)-equivariant, then Ã admits a unique model over K such that φ̃ is Aut(Ω/K)-
equivariant, and the isogeny α descends to K.

Proof. Using a mini-versal cycle class as in Remark 1.4, one sees that (∏ Tlφ)(Ap(XΩ)) has finite
index in ∏ Tl A ' πét

1 (AΩ, 0). Consequently, it determines an étale isogeny Ã → AΩ over Ω ; by
Proposition 1.3(4), there is a surjective regular homomorphism φ̃ : Ap(X) → Ã(Ω) which lifts φ
and which is initial among all regular lifts of φ along étale isogenies A′ → AΩ over Ω.

Suppose now that φ is Aut(Ω/K)-equivariant, and briefly assume K perfect. The unicity of the
model over K follows from the elementary Fact 1.1. Its existence follows from the universality
of φ̃ : for all σ ∈ Aut(Ω/K), one obtains an isomorphism gσ : Ã → Ãσ over Ω, where Ãσ is the
pull-back of Ã along σ : Ω→ Ω, making the following diagram commute

Ã(Ω)

Ap(XΩ) AΩ(Ω)

Ãσ(Ω)

φ

φ̃σ

φ̃

gσ(Ω)

α

ασ

Here φ̃σ and ασ are obtained from the action of σ on Ap(XΩ) and on AΩ, and from the canonical
σ-morphism Ãσ → Ã. To conclude, one checks as in the proof of [ACMV17, Thm. 4.4] that the
isomorphisms g−1

σ for σ ∈ Aut(Ω/K) define a Galois-descent datum on the isogeny α : Ã→ AΩ.
If K is a non-perfect field, let Kperf be the perfect closure of K inside Ω. From what we have

seen, since Aut(Ω/Kperf) ⊆ Aut(Ω/K), Ã descends to Kperf. Because in fact Aut(Ω/Kperf) =

Aut(Ω/K), it suffices to show that α : Ã → AKperf descends to K. Now, by definition, the
homomorphism α factors through the Kperf/K-image Ã → imKperf/K(Ã)Kperf , which exists due
to [Con06, Thm. 4.3]. Since α : Ã → AKperf is étale and Kperf/K is primary, the canonical map
Ã → imKperf/K(Ã)Kperf , which always has connected kernel [Con06, Thm. 4.5(3)], is an isomor-
phism, and Ã and α descend canonically to K. �

We derive the following characterization of surjective regular homomorphisms that do not lift
along non-trivial isogenies in terms of their kernels :

Corollary 1.6. Let X be a smooth projective variety over an algebraically closed field Ω and let φ :
Ap(X)→ A(Ω) be a surjective regular homomorphism. Then the following statements are equivalent :

(1) ker φ is divisible.
(2) ker φtors is divisible.
(3) Tlφ is surjective for all primes l.
(4) φ does not factor through any non-trivial étale isogeny α : A′ → A.

9



Proof. The argument in the proof of Theorem 1.5 says that (3) and (4) are equivalent (recall from
Proposition 1.3 that a group-theoretic lift of a regular homomorphism along an isogeny is a reg-
ular homomorphism). The elementary commutative algebra Lemma 1.7 below gives the equiva-
lence of (1) and (3). Finally, since surjective regular homomorphisms are surjective on torsion (see
[ACMV20, Rem. 3.3]), Lemma 1.7 below also gives that Tlφ being surjective for all l is equivalent
to ker(φtors) being l-divisible for all primes l, i.e., that (2) is equivalent to (3). �

Lemma 1.7. Suppose that we have a short exact sequence of abelian groups

0→ H → D → G → 0

with D an l-divisible group. Then the left exact sequence

0→ Tl H → Tl D → TlG

is right exact if and only if H is l-divisible.
If in addition Dtors → Gtors is surjective, then this is also equivalent to Htors being l-divisible.

Proof. Since D is l-divisible, we have for all n > 0 exact sequences

0→ H[ln]→ D[ln]→ G[ln]→ H/lnH → 0.

Using that A/ln A = 0 and lim←−
1
n

A[ln] = 0 for any l-divisible abelian group A, we obtain by passing
to the inverse limit a short exact sequence

0→ Tl H → Tl D → TlG → 0.

Conversely, if H is not l-divisible, let us assume that H/lnH 6= 0 for all n ≥ n0. In particular
D[ln] → G[ln] is not surjective for every n ≥ n0. Now let gn0 ∈ G[ln0 ] be an element that is not
in the image of the map D[ln0 ] → G[ln0 ]. Since G is l-divisible (being the image of the l-divisible
group D), we can lift gn to an element (gn) ∈ TlG. Clearly (gn) is not the image of any element
(dn) ∈ Tl D, since then dn0 7→ gn0 . Thus Tl D → TlG is not surjective. This completes the proof of
the converse.

Finally assume that Dtors → Gtors is surjective. Then we can simply replace the short exact
sequence 0→ H → D → G → 0 with

0→ Htors → Dtors → Gtors → 0

and we have reduced to the previous case, since D divisible implies that Dtors is divisible, and
Tl A = Tl(Ators) for any abelian group A. �

Remark 1.8. Given a regular homomorphism φ, using that surjective regular homomorphisms are
surjective on torsion (see [ACMV20, Rem. 3.3]), one can in fact show that ker(φ)/N = ker(φtors)/N
for any non-zero integer N.

2. THE WALKER ABEL–JACOBI MAP

The aim of this section is to provide a new construction of the Walker Abel–Jacobi map (Theo-
rem A), based on our general lifting Proposition 1.3.

2.1. The Bloch map and the coniveau filtration. Recall that, for any smooth projective variety X
over an algebraically closed field and for any prime ` invertible in X, Bloch [Blo79] has defined a
map λp : CHp(X)[`∞] → H2p−1

ét (X, Q`/Z`(p)). In case X is a smooth projective complex variety,
we obtain by comparison isomorphism a map λp : CHp(X)[`∞] → H2p−1(Xan, Q`/Z`(p)). When
restricted to homologically trivial cycles, the Bloch map factors as (see, e.g., [ACMV21, §A.5])

CHp(X)hom[`∞] H2p−1(Xan, Z(p))⊗Q`/Z` H2p−1(Xan, Q`/Z`(p)),λp
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where the right-hand side arrow is the canonical inclusion coming from the universal coefficient
theorem. The following lemma is due to Suzuki [Suz20b] :

Lemma 2.1. Let X be a projective complex manifold. Then the restriction of the Bloch map λp to alge-
braically trivial cycles factors uniquely as :

Np−1 H2p−1(Xan, Z(p))⊗Q`/Z`

Ap(X)[`∞] H2p−1(Xan, Z(p))⊗Q`/Z` H2p−1(Xan, Q`/Z`(p)),
λp

λ
p
W

where the vertical arrow is induced by the inclusion Np−1 H2p−1(Xan, Z(p)) ⊆ H2p−1(Xan, Z(p)).

Proof. The factorization in the bottom row was given above. The rest is obtained in the proof of
[Suz20b, Lem. 2.2] as a consequence of [Ma17, Thm. 5.1]. The unicity of the factorization follows
from the elementary Fact 1.1, together with the divisibility of Ap(X) (e.g., [BO74, Lem. 7.10]) and
the finiteness of torsion in H2p−1(Xan, Z(p)). �

2.2. The Abel–Jacobi map on torsion and the Bloch map. Let X be a projective complex mani-
fold. We have the canonical identification

J2p−1(X)[`∞] = H2p−1(Xan, Z(p))⊗Q`/Z` (2.1)

which comes from the classical identification J(H)[N] = H1(J(H), Z/NZ) = Hτ ⊗Z/NZ for
a pure integral Hodge structure H of weight −1, and the elementary fact that the torsion-free
quotient map H � Hτ becomes an isomorphism after tensoring with a divisible group. After
making the identification (2.1), the Bloch map coincides with the Abel–Jacobi map on torsion.
Precisely :

Proposition 2.2 (Bloch [Blo79]). On homologically trivial cycles of `-primary torsion, the Bloch map
coincides with the Abel–Jacobi map, i.e., the following diagram commutes :

J2p−1(X)[`∞]

CHp(X)hom[`∞] H2p−1(Xan, Z(p))⊗Q`/Z`.λp

(2.1)
AJ[`∞]

Proof. This is due to Bloch [Blo79, Prop. 3.7] (see also [ACMV21, §A.2.1]). �

2.3. Proof of Theorem A. Let X be a projective complex manifold. As above in §2.2, we have a
canonical identification

J2p−1
W (X)[`∞] = Np−1 H2p−1(Xan, Z(p))⊗Q`/Z`. (2.2)

We are trying to construct a lift

J2p−1
W (X)(C)

α
��

Ap(X)
ψp

//

ψ
p
W

66

J2p−1
a (X)(C) �

�
// J2p−1(X)(C).

11



From Proposition 1.3 it suffices to construct for all primes ` a lift

J2p−1
W (X)[`∞]

α[`∞]
��

Ap(X)[`∞]
ψp[`∞]

//

ψ
p
∞

55

J2p−1
a (X)[`∞] �

�
// J2p−1(X)[`∞].

Using the identifications (2.1) and (2.2), we have a commutative diagram

J2p−1
W (X)[`∞]

α[`∞]
��

Np−1 H2p−1(Xan, Z(p))⊗Q`/Z`

��

Ap(X)[`∞]
ψp[`∞]

// J2p−1
a (X)[`∞] �

�
// J2p−1(X)[`∞] H2p−1(Xan, Z(p))⊗Q`/Z`

(2.3)

where, by Proposition 2.2, the composition of the bottom row is the Bloch map, and the right ver-
tical arrow is induced by the inclusion Np−1 H2p−1(Xan, Z(p)) ⊆ H2p−1(Xan, Z(p)). The desired
lift on `-power torsion is then an immediate consequence of Lemma 2.1, completing the proof of
the theorem. �

2.4. The Walker Abel–Jacobi map does not lift further along isogenies. The following result
was communicated to us by Fumiaki Suzuki.

Theorem 2.3 (Suzuki). Suppose X is a projective complex manifold. Then the kernel of the Walker Abel–
Jacobi map ψ

p
W : Ap(X) → J2p−1

W (X) is divisible. Consequently, the Walker Abel–Jacobi map ψ
p
W is

initial among all lifts of the Abel–Jacobi map ψp : Ap(X) → J2p−1
a (X) along isogenies ; in particular, if

ψ
p
W : Ap(X)→ J2p−1

W (X) factors through an isogeny f : A→ J2p−1
W (X), then f is an isomorphism.

Proof. By Theorem 1.5 and Corollary 1.6, it is equivalent to show that the kernel of the restriction
of ψ

p
W to `-primary torsion is divisible for all primes `. By the short exact sequence of [Suz20b,

Lem. 2.2], ker(ψp
W [`∞]) is a quotient of K⊗Q`/Z`, where K is the kernel of the surjection

f p : Hp−1(X,Hp(Z(p)))→ Np−1 H2p−1(X, Z(p)).

The divisibility of ker(ψp
W [`∞]) then follows from the divisibility of K ⊗Q`/Z`. (For any abelian

group A we have A⊗Q`/Z` is divisible.) �

Remark 2.4. For a complex projective manifold X, the kernel of the Abel–Jacobi map ψp : Ap(X)→
J2p−1
a (X) is not divisible in general for p > 2, as shown by the construction of [OS20, Cor. 4.2].

2.5. First proof of Theorem B. Recall from [ACMV20, Thm. A] that, given a smooth projective
variety X over a subfield K of C, the algebraic intermediate Jacobian J2p−1

a (XC) admits a unique
model over K such that the Abel–Jacobi map ψp : Ap(XC)→ J2p−1

a (XC) is Aut(C/K)-equivariant.
By Theorem 2.3, the Walker Abel–Jacobi map ψ

p
W : Ap(XC) → J2p−1

W (XC) is universal among
lifts of the Abel–Jacobi map along isogenies. We can conclude from Theorem 1.5 that the Walker
intermediate Jacobian J2p−1

W (XC) admits a unique model over K such that the Walker Abel–Jacobi
map ψ

p
W : Ap(XC)→ J2p−1

W (XC) is Aut(C/K)-equivariant. �

3. DESCENDING THE WALKER ABEL–JACOBI MAP

In this section we provide a second proof of Theorem B. It is based on a factorization of the Bloch
map restricted to algebraically trivial cycles. This approach will prove crucial for our applications
(Corollaries C and D). For that purpose, we start by recasting the results of §2 in the `-adic setting.
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3.1. The Bloch map and the coniveau filtration, `-adically. For lack of a suitable reference, we
start with a comparison between the analytic and `-adic coniveau filtrations :

Lemma 3.1. Let X be a smooth projective variety over a field K ⊆ C. We have canonical identifications

Ni H j
ét(XC, Z`) = Ni H j(Xan

C , Z)⊗Z`. (3.1)

Moreover, the natural action of Aut(C/K)-action on H j
ét(XC, Z`) induces an action on Ni H j

ét(XC, Z`).

Proof. We have the following commutative diagram :

0 Ni H j
ét(XC, Z`) H j

ét(XC, Z`) lim−→H j
ét(XC \ Z, Z`)

0 Ni H j(Xan
C , Z`) H j(Xan

C , Z`) lim−→H j((XC \ Z)an, Z`)

0 Ni H j(Xan
C , Z)⊗Z` H j(Xan

C , Z)⊗Z` lim−→H j((XC \ Z)an, Z)⊗Z`

' '

' '

Here the limits are taken over all closed subschemes Z of XC of codimension ≤ i. The top two
rows are exact by definition of the coniveau filtration, while the third is also exact by flatness of
the Z-module Z`. The bottom vertical arrows are isomorphisms by flatness of Z` and the fact
that lim−→ commutes with⊗. The top two vertical arrows are the isomorphisms provided by Artin’s
comparison theorem. Thus we obtain the desired identification.

The action of Aut(C/K) on Ni H j
ét(XC, Z`) comes from the fact that the coniveau filtration on XC

can be obtained using subvarieties defined over K (as can be seen by spreading out and by using
smooth base-change, followed by taking Galois-orbits). �

As an immediate consequence of Lemma 3.1, we obtain :

Lemma 3.2. Let X be a smooth projective variety over a field K ⊆ C. Then the restriction of the Aut(C/K)-
equivariant Bloch map λp : CHp(XC)[`

∞]→ H2p−1
ét (XC, Q`/Z`(p)) to algebraically trivial cycles factors

uniquely into the following commutative diagram of Aut(C/K)-modules :

Np−1 H2p−1
ét (XC, Z`(p))⊗Z`

Q`/Z`

��

Ap(XC)[`
∞]

λp
//

λ
p
W

33

H2p−1
ét (XC, Z`(p))⊗Z`

Q`/Z`
// H2p−1

ét (XC, Q`/Z`(p)),

where the vertical arrow is induced by the inclusion Np−1 H2p−1
ét (XC, Z`(p)) ⊆ H2p−1

ét (XC, Z`(p)).

Proof. The factorization as groups follows directly from Lemma 2.1 together with the identifica-
tion (3.1). Now, since H2p−1

ét (XC, Z`(p)) has finite rank and finite torsion, the elementary Fact 1.1
shows that the lift λ

p
W is uniquely determined by λp. In addition, still by Fact 1.1, since both λp

and the inclusion Np−1 H2p−1
ét (XC, Z`(p)) ⊆ H2p−1

ét (XC, Z`(p)) are Aut(C/K)-equivariant, then
so is λ

p
W . �

3.2. The Walker Abel–Jacobi map on torsion and the Bloch map, `-adically. From the identifi-
cation (2.2) and Lemma 3.1, we obtain the following canonical identification of abelian groups :

J2p−1
W (XC)[`

∞] = Np−1 H2p−1
ét (XC, Z`(p))⊗Z`

Q`/Z`, (3.2)
13



which is the `-adic analogue of the identification (2.2). In addition, by the comparison isomor-
phism in cohomology, Proposition 2.2 provides a commutative diagram :

J2p−1(X)[`∞]

CHp(X)hom[`∞] H2p−1
ét (XC, Z`(p))⊗Z`

Q`/Z`.λp

AJ[`∞]

The following lemma will play a crucial role in the proof of Theorem B. It shows that, via the
identification (3.2), the restriction of the Walker Abel–Jacobi map to `-primary torsion coincides
with the factorization of the Bloch map given in Lemma 3.2.

Lemma 3.3. Let X be a smooth projective variety over a field K ⊆ C. On algebraically trivial cycles of
`-primary torsion, the map λ

p
W coincides with the Walker Abel–Jacobi map ψ

p
W , i.e., the following diagram

commutes :

J2p−1
W (XC)[`

∞]

Ap(XC)[`
∞] Np−1 H2p−1

ét (XC, Z`(p))⊗Z`
Q`/Z`.

λ
p
W

ψ
p
W [`∞]

(3.2)

Proof. This follows directly from restricting the previous diagram to algebraically trivial cycles
and from the fact that λ

p
W (resp. ψ

p
W [`∞]) are the unique lifts of λp (resp. ψp[`∞]). �

3.3. Second proof of Theorem B. Let X be a smooth projective variety over a field K ⊆ C. Recall
that we showed in [ACMV20, Thm. A] (see also [ACMV19a, Thm. 9.1]) that J2p−1

a (XC) admits a
unique model over K such that the Abel–Jacobi map ψp : Ap(XC) → J2p−1

a (XC) is Aut(C/K)-
equivariant. We are going to show that α descends uniquely to K with respect to the above K-
structure on J2p−1

a (XC). The Aut(C/K)-equivariance of ψ
p
W : Ap(X) → J2p−1

W (X) then follows
from the unicity of ψ

p
W .

To that end, let C be a K-pointed, geometrically integral, smooth projective curve over K, to-
gether with a correspondence Γ ∈ CHp(C×K X) such that the induced homomorphism J(CC) →
J2p−1
a (XC) is surjective. The existence of such a C and Γ is provided by [ACMV20, Prop. 1.1]. We

thus obtain a commutative diagram

A1(CC) J(CC)(C)

Ap(XC) J2p−1
W (XC)(C) J2p−1

a (XC)(C),

ψ1=ψ1
W

Γ∗

ψ
p
W α

γ (3.3)

where the homomorphism γ, which is defined by the fact that the Jacobian of a curve together
with the Abel map is a universal regular homomorphism, is also induced by the correspon-
dence Γ∗ : H1(Can

C , Z(1)) → H2p−1(Xan
C , Z(p)) (which factors through Np−1 H2p−1(Xan

C , Z(p)) ;
see e.g., [ACMV21, Prop. 1.1]). We then show that, with respect to the K-structure on J(CC) given
by the Jacobian J(C) of C, the surjective homomorphism γ descends to K. (That α ◦ γ descends
to K was established in [ACMV20, §2].) For that purpose, by the elementary [ACMV20, Lem. 2.3],
it suffices to show that, for all primes `, the `-primary torsion in

P := ker
(
γ : J(CC)→ J2p−1

W (XC)
)
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is stable under the action of Aut(C/K) on J(C)(C).
For this we take `-primary torsion in the commutative diagram (3.3), then use the compatibil-

ity of the Bloch map with the Walker Abel–Jacobi map (Lemma 3.3) to obtain the commutative
diagram

0

��

P[`∞]

��

A1(CC)[`
∞]

λ1[`∞ ]

∼
//

Γ∗
��

ψ1[`∞ ]

''

H1
ét(CC, Z`(1))⊗Q`/Z`

Γ∗�� ��

J(CC)[`
∞]

γ
��

Ap(XC)[`
∞]

λ
p
W [`∞ ]

//

ψ
p
W [`∞ ]

55
Np−1 H2p−1

ét (XC, Z`(p))⊗Q`/Z` J2p−1
W (XC)[`

∞]

��

0

The only things that needs explaining is the middle vertical map : here we are using the fact that
the Bloch map is compatible with correspondences, and the fact mentioned above that the corre-
spondence Γ∗ : H1

ét(CC, Z`(1))→ H2p−1
ét (XC, Z`(p)) factors through Np−1 H2p−1

ét (XC, Z`(p)). (Al-
though we do not strictly need it for the argument, we note that the left hand square is Aut(C/K)-
equivariant due to Lemma 3.1.)

Therefore P[`∞] is identified with the kernel of

Γ∗ : H1
ét(CC, Z`(1))⊗Q`/Z` → Np−1 H2p−1

ét (XC, Z`(p))⊗Q`/Z`,

which, since Γ is defined over K, is stable under the action of Aut(C/K). We have thus showed
that γ descends to K. Combined with the fact [ACMV20, §2] that α ◦ γ also descends to K with
respect to the K-structure of J(CC) given by J(CC) = J(C)C, we readily obtain that α descends to K
(e.g., by the elementary [ACMV20, Lem. 2.4]). �

3.4. Further remarks.

Remark 3.4 (Base change of field). If X is a smooth projective variety over a field K ⊆ L ⊆ C, then
there is a canonical identification J2p−1

W,XL/L = (J2p−1
W,X/K)L.

Remark 3.5 (Independence of embedding of K in C). Let X be a smooth complex projective variety.
For a smooth projective complex variety Z and an automorphism σ ∈ Aut(C), we denote Zσ :=
Z⊗σ C the base-change of Z along σ. Arguing as in the proof of [ACMV19b, Prop. 3.1] shows the
following extension of Theorem B : for all σ ∈ Aut(C) there is a canonical identification

J2p−1
W (Xσ) = J2p−1

W (X)σ

and a commutative diagram

Ap(X) J2p−1
W (X)

Ap(Xσ) J2p−1
W (Xσ).

σ∗ σ∗

ψ
p
W,X

ψ
p
W,Xσ

As a consequence, for a smooth projective variety X over a field K of characteristic 0, the kernel of
the Walker Abel–Jacobi map associated to X and an embedding of K into C is independent of that
embedding.
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4. APPLICATIONS REGARDING THE CONIVEAU FILTRATION

4.1. Modeling coniveau – on a question of Mazur. In this paragraph, we show Corollary C stat-
ing that the model of the Walker intermediate Jacobian over K from Theorem B models the torsion-
free quotient of Np−1 H2p−1

ét (XK, Z`).

Proof of Corollary C. Let J2p−1
W,X/K be the model over K, provided by Theorem B, of the Walker in-

termediate Jacobian J2p−1
W (XC) making ψ

p
W an Aut(C/K)-equivariant homomorphism. By the

very construction of J2p−1
W,X/K, and the identification (3.2), we have for all primes ` an Aut(C/K)-

equivariant identification T` J2p−1
W,X/K = Np−1 H2p−1

ét (XC, Z`)τ, thereby concluding the proof of Corol-
lary C. �

Remark 4.1. Following on Remark 3.5, for X a smooth complex projective variety, the identifica-
tions of Corollary C more generally fit in the commutative diagram

T` J2p−1
W (X) Np−1 H2p−1

ét (X, Z`)τ

T` J2p−1
W (Xσ) Np−1 H2p−1

ét (Xσ, Z`)τ

σ∗ σ∗

for every σ ∈ Aut(C).

4.2. The image of the `-adic Bloch map. Following up on [ACMV21], Corollary D determines
exactly the image of the `-adic Bloch map in case the base field K has zero characteristic. Here is a
proof of that corollary :

Proof of Corollary D. By the Lefschetz principle we may and do assume K ⊆ C. By rigidity, it suf-
fices to establish the proposition after base-change to C. Taking Tate modules in the commutative
diagram of Lemma 3.3, we obtain a commutative diagram

T` J2p−1
W (XC)

T` Ap(XC) Np−1 H2p−1
ét (XC, Z`(p))τ.

T`λ
p
W

T`ψ
p
W

The proposition then follows from the fact that the Walker Abel–Jacobi map does not lift along
non-trivial isogenies (Theorem 2.3) and from the equivalence of (3) and (4) in Corollary 1.6. �

REFERENCES

[ACMV17] Jeffrey D. Achter, Sebastian Casalaina-Martin, and Charles Vial, On descending cohomology geometrically,
Compositio Math. 153 (2017), no. 7, 1446–1478.

[ACMV19a] , A functorial approach to regular homomorphisms, arXiv e-prints (2019), arXiv:1911.09911.
[ACMV19b] , Normal functions for algebraically trivial cycles are algebraic for arithmetic reasons, Forum Math. Sigma

7 (2019), Paper No. e36, 22.
[ACMV20] , Distinguished models of intermediate Jacobians, Journal of the Institute of Mathematics of Jussieu 19

(2020), 891–918.
[ACMV21] , On the image of the second l-adic Bloch map, Rationality of Algebraic Varieties, Progr. Math., vol. 342,

Birkhäuser, 2021.
[BF84] Mauro Beltrametti and Paolo Francia, A property of the regular morphisms, Nederl. Akad. Wetensch. Indag.

Math. 46 (1984), no. 4, 361–368.
[Blo76] Spencer Bloch, Some elementary theorems about algebraic cycles on Abelian varieties, Invent. Math. 37 (1976),

no. 3, 215–228.
16



[Blo79] , Torsion algebraic cycles and a theorem of Roitman, Compositio Math. 39 (1979), no. 1, 107–127.
[BO74] Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm.
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