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ABSTRACT. Albanese varieties provide a standard tool in algebraic geometry for converting ques-
tions about varieties in general, to questions about Abelian varieties. A result of Serre provides the
existence of an Albanese variety for any geometrically connected and geometrically reduced scheme
of finite type over a field, and a result of Grothendieck–Conrad establishes that Albanese varieties are
stable under base change of field provided the scheme is, in addition, proper. A result of Raynaud
shows that base change can fail for Albanese varieties without this properness hypothesis. In this pa-
per we show that Albanese varieties of geometrically connected and geometrically reduced schemes
of finite type over a field are stable under separable field extensions. We also show that the failure of
base change in general is explained by the L/K-image for purely inseparable extensions L/K.

1. INTRODUCTION

Consider a K-pointed scheme (V, v) of finite type over a field K. A pointed Albanese variety for
this object, if it exists, consists of an abelian variety AlbV/K over K and a pointed K-morphism

av : V // AlbV/K

taking v to 0AlbV/K , which is initial for pointed K-morphisms from V to abelian varieties. More
generally, if V is a scheme of finite type over a field K, an Albanese torsor for V, if it exists, is a
morphism a : V → Alb1

V/K to a torsor under an abelian variety AlbV/K, the Albanese variety of
V, which is initial for morphisms to torsors under abelian varieties. For complex projective man-
ifolds, Albanese varieties were a classical, and central, tool in algebraic geometry; they provide
a method of converting geometric questions about a variety into related questions about abelian
varieties, and extend the techniques used for studying smooth projective curves via the Jacobian
and the Abel map to varieties of higher dimension. In 1960, Serre showed such an Albanese
variety exists for any geometrically connected and geometrically reduced scheme of finite type
over any field [Ser60] (see Theorem 2.2 and Remark 3.3), thereby allowing for the extension of
these classical techniques to this setting. Other treatments were considered at about the same time
[NS52, Che60].

After existence, perhaps the most important structural question is base change. In the special
case where V is in addition assumed to be proper and geometrically normal over K, Grothendieck
[Gro62] identified AlbV/K with ((Pic0

V/K)red)
∨, the dual abelian variety of the reduction of Pic0

V/K.
In this setting, since the formation of the Picard scheme is compatible with base change, it follows
that if L/K is any field extension, then the canonical map βV,L/K : AlbVL/L → (AlbV/K)L is an
isomorphism. However, without the hypothesis that V be proper, it is known that base change
can fail:
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Example 1.1 (Raynaud: Albaneses are not stable under base change). Let L/K be a finite purely
inseparable field extension, and let A/L be an abelian variety. Let G = RL/K A be the Weil restric-
tion, which is a smooth connected commutative algebraic K-group with dim G = [L : K] · dim A
[DG70, Exp. XVII, App. II, Prop. 5.1]. There is a short exact sequence of L-groups [DG70, Exp. XVII,
App. II, Prop. 5.1]

1 // U // GL
u // A // 0,

where U is a smooth connected and unipotent linear algebraic L-group, exhibiting A as the Al-
banese of GL [Bri17, Ex. 4.2.7]. As we will see in Theorem 5.6, AlbG/K = imL/K A, the L/K-image
of A (see §5). If A is defined over K, then (AlbG/K)L = (imL/K A)L = A = AlbGL/L. However, if A
is not defined over K, then G is not an extension of an abelian variety over K by a smooth algebraic
K-group [DG70, Exp. XVII, App. II, Cor.(ii) to Prop. 5.1] 1; Brion uses this to show that in this case
(AlbG/K)L 6= A = AlbGL/L [Bri17, Ex. 4.2.7], providing an example where base change fails.

Despite this failure of base change, there are a few striking features of this example. First, the
field extension is purely inseparable, and second, it happens that AlbG/K

∼= imL/K AlbGL/L. The
main result of this paper shows that these observations about the Raynaud example represent the
general situation. In other words, it is the inseparability of L/K, and not the improperness of G,
that drives the failure of base change in the Raynaud example. Indeed, for a purely inseparable
extension, the Albanese is the L/K-image of the Albanese of the base change:

Theorem. Let V be a geometrically connected and geometrically reduced scheme of finite type over a field K,
and let L/K be an extension of fields.
(A) (Theorem 5.1) If L/K is separable, then AlbVL/L

∼= (AlbV/K)L.
(B) (Theorem 5.6) If L/K is a purely inseparable extension, then AlbV/K

∼= imL/K AlbVL/L.

Recall that any field extension L/K factors as L/L′/K with L′/K separable and L/L′ purely in-
separable (see, e.g., §4.1), so that the theorem above completely describes base change for arbitrary
field extensions. We note that our proof of Theorem (A) relies on Theorem (B), due to our use
of de Jong’s regular alterations, and the fact that these regular alterations are only smooth over a
purely inseparable extension of the base field. Theorem (A) generalizes the abelian (as opposed
to semi-abelian) case of [Wit08, Cor. A.5], which requires V to be an open subset of a smooth
proper geometrically integral scheme over K; it also generalizes [Moc12, Prop. A.3(i)] to the case
of non-perfect base fields, and non-algebraic field extensions. Theorem (B) completely explains
the behavior studied in [Bri17, Ex. 4.2.7]. Theorem (B) implies the weaker statement that, for a
purely inseparable extension L/K, AlbVL/L and (AlbV/K)L differ by a purely inseparable isogeny.
This, as well as Theorem (A), has also been secured by Schröer [Sch23, Thm. 6.1] for separated
schemes, under a hypothesis on the ring of global functions.

We note that the geometrically connected hypothesis for V in the theorem is necessary, as it is
necessary for the existence of an Albanese (Corollary 2.5). In contrast, the geometric reducedness
hypothesis in the theorem is more subtle (Example 2.7, Example 2.9, Example 3.4), although one
can at least say that the reducedness of Γ(V,OV) is necessary in Theorem (A), and the geometric
reducedness of Γ(V,OV) is necessary in Theorem (B), as the reducedness (but not geometric re-
ducedness) of Γ(V,OV) is necessary for the existence of an Albanese (Corollary 2.8, Example 2.11).
See also Proposition 2.12(i) where we summarize some necessary conditions for the existence of
an Albanese.

1Note that the statement of [DG70, Exp. XVII, App. II, Cor.(ii) to Prop. 5.1] has the implicit hypothesis that A not
be defined over K: the proof uses this hypothesis to conclude that the linear algebraic subgroup of G in the proof is
strictly larger than U when base changed to L; moreover, the hypothesis that A not be defined over K is required in the
statement of the corollary, as this example shows.
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In light of the modern treatment of Albaneses following Grothendieck, our definition of the
Albanese, and our subsequent focus on base change of field may seem slightly archaic. Indeed,
Grothendieck would require that the Albanese of (V, v) satisfy the stronger condition that for any
morphism of schemes S → K, and any pointed S-morphism f : VS → A to an abelian scheme
A/S sending vS to 0A, there exists a unique S-homomorphism g : (AlbV/K)S → A such that g ◦
aS = f . Such an Albanese would automatically satisfy arbitrary base change. Grothendieck and
Conrad show that for a pointed proper geometrically connected and geometrically reduced scheme
V of finite type over K, the Albanese as defined here satisfies this stronger condition. Because of
Theorem (B), the best possible result along these lines without the properness hypothesis is:

Theorem (C). (Theorem 6.3) Let (V, v) be a K-pointed (geometrically) connected and geometrically re-
duced scheme of finite type over a field K. Then for any (inverse limit of) smooth morphism of schemes
S→ Spec K, and any pointed S-morphism f : VS → A to an abelian scheme A/S sending vS to 0A, there
exists a unique S-homomorphism g : (AlbV/K)S → A such that g ◦ aS = f .

We refer to Theorem 6.3 for the Albanese torsor version of Theorem (C) valid for (not neces-
sarily K-pointed) geometrically connected and geometrically reduced scheme of finite type over a
field K.

We originally worked out these arguments as part of our development of a functorial approach
to regular homomorphisms [ACMV23]. Indeed, Theorem (A) originally appeared as an appendix
to op. cit.. However, since it seemed that these results on Albanese varieties might be useful to a
wider audience, we decided to make them available in a separate document. Since that preprint
originally appeared, Laurent and Schröer have studied the existence of a relative Albanese for
proper families [LS24]. Moreover, in the context of schemes over a field Schröer, using different
techniques, has extended some of our results under the further hypothesis that the scheme be
separated [Sch23]. Combining our Proposition 2.12(i) with [Sch23, Thm. p.2] provides necessary
and sufficient conditions for the existence of an Albanese for a separated scheme of finite type over
a field (Proposition 2.12(ii)). A formulation of Schröer’s base change result [Sch23, Thm. p.4] can
be found in Proposition 5.7.

Acknowledgements. We are indebted to Brian Conrad for helpful conversations and to David
Grant for explaining the proof of Proposition 2.14(b). We also thank Stefan Schröer for a detailed
reading and useful comments.

2. ALBANESE VARIETIES

2.1. Serre’s existence theorem. Let V be a scheme of finite type over a field K. Recall that an
Albanese datum for V consists of a triple

(AlbV/K, Alb1
V/K, aV/K : V → Alb1

V/K) (2.1)

with AlbV/K an abelian variety over K, Alb1
V/K a torsor under AlbV/K over K, and a : V → Alb1

V/K
a morphism of K-schemes which is initial, meaning that given any triple (A, P, f : V → P) with A
an abelian variety over K, P a torsor under A over K, and f : V → P a morphism of K-schemes,
there is a unique K-morphism g : Alb1

V/K → P making the following diagram commute:

V
aV/K

//

f
""

Alb1
V/K

∃! g
��

P
We will respectively call the three objects in this datum the Albanese variety, the Albanese torsor, and
the Albanese morphism of V/K (although of course the torsor is itself a variety, too).
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Remark 2.1. Recall that if A is an abelian variety over K and P is a torsor under A over K, then
there is a natural isomorphism A∨

∼=−→ Pic0
P/K (e.g., [Ols08, §2.1]). Moreover, if A and A′ are

abelian varieties over K, and P and P′ are torsors under A and A′, respectively, then for any K-
morphism g : P→ P′, there is a unique K-homomorphism φ : A→ A′ making g equivariant, and

moreover, g(P) is a torsor under φ(A); more precisely, φ is the composition A
∼=−→ (Pic0

P/K)
∨ (g∗)∨→

(Pic0
P′/K)

∨ ∼=−→ A′. In particular, in the definition of the Albanese data above, there is a unique
K-homomorphism AlbV/K → A making g : Alb1

V/K → P equivariant.

When V/K is equipped with a K-point v : Spec K → V over K, then one can define a pointed
Albanese variety and morphism, by requiring all the maps in the previous paragraph to be pointed.
This reduces to the following situation: a pointed Albanese datum for (V, v) is a pair

(AlbV/K, aV/K,v : (V, v)→ (AlbV/K, 0)) (2.2)

where AlbV/K is an abelian variety, and aV/K,v : V → AlbV/K is a morphism of K-schemes taking
v to the zero section 0 = 0AlbV/K , which is initial, meaning that given any K-morphism f : V → A
to an abelian variety A/K, taking v to the zero section 0A, there is a unique K-homomorphism
g : AlbV/K → A making the following diagram of pointed K-morphisms commute:

(V, v)
aV/K,v

//

f ''

(AlbV/K, 0AlbV/K)

∃! g
��

(A, 0A)

As we noted in the introduction, the existence of Albanese data in the case of complex projec-
tive manifolds is classical, while in the more general setting goes back essentially to Serre [Ser60].
We direct the reader to [Wit08, Thm. A.1 and p.836] for an exposition valid over an arbitrary field;
the assertion there is made for V/K a geometrically integral scheme2 of finite type over a field K,
although the argument holds under the slightly weaker hypothesis that V is a geometrically con-
nected and geometrically reduced scheme of finite type over K:

Theorem 2.2 (Serre). Let V be a geometrically connected and geometrically reduced scheme of finite type
over a field K. Then V admits Albanese data, and if V admits a K-point, then V admits pointed Albanese
data.

2.2. Necessity of geometric connectedness and geometric reducedness. We now briefly discuss
the hypotheses in Theorem 2.2 that V be geometrically connected and geometrically reduced. In
short, the geometric connectedness of V is necessary for V to admit Albanese data (Corollary 2.5),
while the geometric reducedness of V is not (Example 2.7). The situation is summarized in Propo-
sition 2.12(i).

The basic starting point is the following existence result, which states that given an abelian
variety and a zero-dimensional scheme, there is a second abelian variety containing the zero di-
mensional scheme as a closed subscheme, and which admits no non-trivial homomorphisms from
the first abelian variety:

Proposition 2.3. Given an abelian variety A/K and a finite dimensional K-algebra R with each residue
field a simple extension of K that is either separable or purely inseparable, there exists an abelian variety
A′/K such that there is a closed embedding of K-schemes Spec R ↪→ A′ and such that Hom(AK, A′K) = 0.

2Note that Wittenberg uses the term variety for a scheme of finite type over a field [Wit08, p.807].
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The proof of Proposition 2.3 is somewhat lengthy, and so to maintain the flow of the ideas in this
subsection, we postpone the proof until §2.3. As an immediate consequence of Proposition 2.3, we
have the following:

Theorem 2.4. Let V be a scheme of finite type over a field K, and suppose there exists a nontrivial finite
dimensional K-algebra R with R ⊆ Γ(V,OV). Then given an abelian variety A/K, a torsor P/K under A,
and a K-morphism f : V → P, there exists a torsor P′/K under an abelian variety A′/K and a K-morphism
f ′ : V → P′ that does not factor through f . In particular, V does not admit an Albanese datum.

Proof. The first claim is that R contains a nontrivial finite dimensional K-subalgebra R′ ⊆ R with
residue fields that are separable extensions of K or simple purely inseparable extensions of K.
Indeed, R being Artinian is a direct sum R = ⊕c

i=1Ri of finite local K-algebras (Ri,mi). For each i,
we may and do choose a sub-algebra R′i such that, if the residue field κi := Ri/mi is a nontrivial
extension of K, then κ′i := R′i/(mi ∩ Ri) is a nontrivial extension which is either separable or
simple and purely inseparable. Indeed, if κi is purely inseparable, let Ki ⊆ κi be a sub-K-extension
of degree char(Ki), and otherwise let Ki be the separable closure of K in κi. In either case, let
Ri = v−1

i (Ki), where vi : Ri → κi is the projection. If κi = K then we simply set R′i = Ri. Finally
we let R′ = ⊕c

i=1R′i.
By virtue of Proposition 2.3, let A′/K be an abelian variety such that Hom(A, A′) = 0, and such

that there is a closed immersion Spec R′ ↪→ A′. Since V → Spec Γ(V,OV) is scheme-theoretically
surjective (for any ring S we have Hom(V, Spec S) = Hom(Spec Γ(V,OV), Spec S)) and since the
inclusion R′ ⊆ Γ(V,OV) induces a scheme-theoretic surjection (for affine schemes the scheme-
theoretic image is determined by the factorization of a ring homomorphism into a surjection fol-
lowed by an inclusion), we have that V → Spec R′ is scheme-theoretically surjective.

Now let f ′ be the composition f ′ : V � Spec R′ ↪→ A′. We obtain a diagram

V
f ′

""

f
��

// // Spec R′
� _

��

P g
// A′,

(2.3)

so that if we had a factorization f ′ = g ◦ f , as indicated by the dashed arrow, then the morphism g
would be an equivariant morphism over a K-homomorphism φ : A→ A′ of abelian varieties. The
hypothesis that Hom(A, A′) = 0, would force φ to be the trivial map, so that g would be constant,
with image a K-point of A′. The commutativity of the diagram would then imply Spec R′ ∼=
Spec K, which we have assumed is not the case. �

Corollary 2.5 (Geometric connectedness is necessary). Suppose that V is a scheme of finite type over a
field K, and V fails to be geometrically connected. Then V does not admit an Albanese datum.

Proof. By Theorem 2.4, it suffices to show that Γ(V,OV) contains a nontrivial finite K-algebra.
Write V = äc

i=1 Vi as a disjoint union of connected K-schemes. Then there are idempotents ei ∈
Γ(V,OV) such that Γ(Vi,OVi) = Γ(Vi,OV) = eiΓ(V,OV). Therefore, if V is disconnected, then
c > 1 and R :=

⊕c
i=1 Kei

∼= K⊕c ⊆ Γ(V,OV) is a nontrivial finite K-algebra.
Otherwise, assume V is connected, but geometrically disconnected. Let L/K be a finite Galois

extension such that VL is disconnected (e.g., [GW20, Prop. 5.53]). As before, write VL = äc
i=1 Wi

as a disjoint union of c > 1 connected L-schemes, and let e1, . . . , ec ∈ Γ(VL,OVL) be the corre-
sponding idempotents. Then Gal(L/K) permutes the ei, and acts transitively because V itself is
connected. As before, we have

⊕c
i=1 Lei

∼= L⊕c ⊆ Γ(VL,OVL). In fact, letting H ⊆ Gal(L/K) be
the stabilizer of e1, then c = |Gal(L/K)|/|H|, and we can enumerate the components of VL by
the cosets g1H, . . . , gcH for some elements g1, . . . , gc ∈ Gal(L/K). In this notation, we can take
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e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc., and then the action of Gal(L/K) on L⊕c is given by

g · (`g1 H, `g2 H, ..., `gn H) = (g · `g−1g1 H, g · `g−1g2 H, . . . , g · `g−1gn H);

in other words, Gal(L/K) permutes the components according to its action on the cosets of H, and
then acts on the entries according to the action of the Galois group on L.

Now, because Gal(L/K) does not fix e1, it follows that H is a proper subgroup of Gal(L/K), and
its fixed field LH satisfies [LH : K] = |Gal(L/K)|/|H| > 1. From the description of the action of
Gal(L/K) on L⊕c, it follows that there is a copy of LH in

⊕c L ⊆ Γ(VL,OVL) given by

` 7→ (g1 · `, g2 · `, . . . , gn · `),
which is, by construction, invariant under the action of Gal(L/K). Thus Γ(V,OV), being the
Gal(L/K)-invariants of Γ(VL,OVL), contains a ring isomorphic to the finite nontrivial K-algebra LH.

�

Remark 2.6 (Geometric connectedness of Γ(V,OV) is necessary). We note that for a scheme V of
finite type over a field K, since V is disconnected if and only if Spec Γ(V,OV) is disconnected, we
have that V fails to be geometrically connected if and only if Spec Γ(V,OV) fails to be geometri-
cally connected.

We now turn our attention to the geometric reducedness hypothesis in Theorem 2.2, which is
more subtle. We first observe that since there are non-reduced schemes V of finite type over a field
K such that Γ(V,OV) does not admit any non-trivial finite K-subalgebra R (see e.g., Example 2.7),
the proof of Corollary 2.5 cannot be used to rule out the existence of an Albanese in the case where
V is non-reduced. In fact, there are non-reduced schemes that admit Albaneses:

Example 2.7 (Non-reduced scheme with an Albanese). Let K be a field, H ⊆ P2
K be a line, and take

V = 2H ⊆ P2
K. Then AlbV/K = Spec K, Alb1

V/K = Spec K, and a : V → Alb1
V/K is the structure

map (of V as a K-scheme). Indeed, observe first that taking the long exact sequence in cohomology
associated to 0→ OP2

K
(−2H)→ OP2 → OV → 0, one has that Γ(V,OV) = K. Therefore, as under

the standard identification Hom(V, Spec R) = Hom(R, Γ(V,OV)) for a ring R, every morphism
V → Spec R factors through the natural morphism V → Spec Γ(V,OV), then for any scheme-
theoretically surjective morphism V → Spec R, we have R = K. Now, since Vred = P1

K, then
given any K-morphism V → P to a torsor P under an abelian variety A/K, the composition
P1

K = Vred ↪→ V → P has set-theoretic image a K-point of P. Thus the scheme-theoretic image of
V in P is an affine scheme Z = Spec R where R is a finite K-algebra. Thus Z = Spec K and we are
done.

Nevertheless, Theorem 2.4 does give examples of non-reduced schemes that do not admit Al-
baneses:

Corollary 2.8 (Reducedness of Γ(V,OV) is necessary). Suppose that V is a scheme of finite type over a
field K, and Spec Γ(V,OV) fails to be reduced. Then V does not admit an Albanese datum.

Proof. If Spec Γ(V,OV) is non-reduced, then there exists a nilpotent element r ∈ Γ(VL,OVL) such
that rn 6= 0 and rn+1 = 0 for some natural number n. Then consider the subring K[x]/(xn+1) ∼=
R := K[r] ⊆ Γ(V,OV). We conclude using Theorem 2.4. �

Example 2.9 (Non-reduced scheme with no Albanese). Let K be a field, let L/K be a nontriv-
ial finite purely inseparable field extension, let Y be any scheme of finite type over L, and let
V = Y×K L. Then Γ(V,OV) contains L⊗K L and thus has nontrivial nilpotents; by Corollary 2.8,
V/L does not admit an Albanese datum. Similarly, if Y is any scheme of finite type over K and
V = YK[ε]/(ε2), then V/K does not admit an Albanese datum. As a consequence, in contrast with
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Example 2.7 where we saw that the nonreduced scheme V = 2H ⊆ P2
K admits an Albanese da-

tum over K, we have that the nonreduced scheme P1
K[ε]/(ε2)

does not admit an Albanese datum

over K, even as the reductions of both schemes are isomorphic to P1
K, assuming H is chosen with

a K-point.

Example 2.10 (Reduced but geometrically non-reduced scheme with no Albanese). Let K be a
field, let L/K be a nontrivial finite purely inseparable field exension, and let Y/L be a smooth
irreducible variety. As a K-scheme, Y is reduced but not geometrically reduced; and the presence
of the nontrivial finite K-algebra L in Γ(Y,OY) prevents Y from admitting an Albanese datum.

Allowing Y to be affine in Example 2.10 raises the possibility that the geometric reducedness of
Spec Γ(V,OV) is necessary. However, we have:

Example 2.11 (Geometric reducedness of Γ(V,OV) is not necessary). We use a well-known example
due to Maclane [ML39, p.384], which seems to be used frequently as an example of a geometrically
nonreduced variety with interesting properties. Let K = Fp(t1, t2), let S = K[x1, x2]/(t1xp

1 + t2xp
2 −

1), and define V := Spec S. Then V is integral and geometrically connected, but not geometrically
reduced. Indeed, setting L = Fp(t

1/p
1 , t1/p

2 ), we have VL = Spec L[x1, x2]/((t
1/p
1 x1 + t1/p

2 x2 − 1)p).
One can check that K is algebraically closed in S, so that S, being reduced, admits no non-trivial
finite dimensional K-subalgebras R ⊆ S. Differently put, one cannot use Theorem 2.4 to try to
show that V does not admit an Albanese datum. In fact, we claim that the structure morphism
V → Spec K is an Albanese datum. In other words, there are no nontrivial morphisms V → P
to a torsor under an abelian variety over K. This follows from the fact that the reduction of VL is
a rational curve. More precisely, given a morphism V → P to a torsor under an abelian variety
over K, if the image were zero dimensional, then since S admits no non-trivial finite dimensional
K-subalgebras R ⊆ S, the image of V in P would have to be isomorphic to Spec K. If the image
of V were 1-dimensional, then after base change to an algebraic closure K, and considering the
reduction of VK, one would have a non-trivial map from a rational curve to an abelian variety,
which is not possible. Since dim V = 1, we are done.

We summarize the situation in the following corollary, including the relation to Schröer [Sch23,
Thm. p.2], which has the additional separated hypothesis:

Proposition 2.12. Let V be a scheme of finite type over a field K.
(i) If V admits an Albanese datum, then

(a) V is geometrically connected,
(b) Spec Γ(V,OV) is geometrically connected,
(c) Spec Γ(V,OV) is reduced, and
(d) K is algebraically closed in Γ(V,OV).

(ii) (Schröer) If, moreover, V is separated, then the converse holds. More precisely, for a separated scheme
V of finite type over a field K, one has that V admits an Albanese datum if and only if Spec Γ(V,OV)
is connected and reduced, and K is algebraically closed in Γ(V,OV).

Remark 2.13. Note that if (d) holds in Proposition 2.12(i), then V (resp. Spec Γ(V,OV)) connected
implies V (resp. Spec Γ(V,OV)) is geometrically connected.

Proof. Assuming V admits an Albanese datum, (a) and (b) are Corollary 2.5 and Remark 2.6. (c)
is Corollary 2.8. The assertion (d) follows immediately from Theorem 2.4, since if K is not alge-
braically closed in Γ(V,OV), then Γ(V,OV) contains a finite nontrivial extension field of K.

Conversely, assume that V is a separated scheme V of finite type over a field K, Spec Γ(V,OV)
is connected and reduced, and K is algebraically closed in Γ(V,OV). The conclusion that V ad-
mits an Albanese datum is then is due to Schröer [Sch23, Thm. p.2], after one observes that for a
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separated scheme V of finite type over a field K, with Spec Γ(V,OV) connected and reduced, then
V is naturally endowed with a scheme structure over the essential field of constants K′ [Sch23,
p.19], which is by construction finite over K; i.e., there is a factorization V → Spec Γ(V,OV) →
Spec K′ → Spec K. Therefore, if K is algebraically closed in Γ(V,OV), then the essential field of
constants for V is K. The assertion is then exactly the statement of [Sch23, Thm. p.2]. �

2.3. Embedding zero-dimensional schemes in abelian varieties. While Proposition 2.3 is well
suited to proving Theorem 2.4, the following stronger existence result seems easier to verify:

Proposition 2.14. Let L/K be a finite simple extension.
(a) If L/K is separable, then there exists a collection of abelian varieties {Ai/K} of unbounded dimension

such that, for each i,
• Ai is absolutely simple;
• Ai has a closed point with residue field L; and
• #Ai(K) ≥ 2.

(b) If L/K is purely inseparable, then there exist a collection of abelian varieties {Ai/K} of unbounded
dimension and a collection of abelian varieties {Bi/K} such that, for each i,
• Ai is absolutely simple;
• (Bi)K

∼= (Ai ×K Ai)K if char(K) 6= 2, and (Bi)K
∼= (Ai ×K Ai ×K Ai)K if char(K) = 2;

• Bi has a closed point with residue field L; and
• #Bi(K) ≥ 2.

Before proving Proposition 2.14, we explain how it implies Proposition 2.3:

Proof of Proposition 2.3 (using Proposition 2.14). First assume that R is local, and set Z = Spec R for
simplicity of notation. By assumption Z ⊆ Spec K[x1, . . . , xn] for any sufficiently large n, and in
particular we may assume n > 3 dim A. Take A′ to be an abelian variety from Proposition 2.14
with dim A′ ≥ n, and replacing n with dim A′, we can and will assume that n = dim A′. Since
(A′)K is a product of at most 3 simple abelian varieties each of which, from our assumptions on n,
must have dimension greater than dim A, we have that Hom(AK, A′K) = 0. Therefore, we only
need to show that Z ⊆ A′.

For this, using the definition of smoothness, we have a commutative fibered product diagram
Zariski locally on A′:

Z′ �
�

//

ét
��

(A′, a′)

ét
��

(Z, z) �
�

// (An
K, a)

where we have marked each scheme with its respective L-point, having residue field L. The L-
points, and the commutativity of the diagram give an L-point we will call z′ on Z′. Let Z′′ be the
component of Z′ containing z′, and consider the pointed scheme (Z′′, z′). Note that the residue
field of z′must also be equal to L. Since all the morphisms above induce isomorphisms on the com-
plete local rings (they are étale and induce isomorphisms on residue fields [Gro67, Prop. 17.6.3]),
and since (Z′′, z′) and (Z, z) are affine pointed schemes associated to finite K-algebras (which are
therefore products of complete local K-algebras), we have that Z′′ and Z are isomorphic. This
completes the proof in the case where R is local.

In general, R, being Artinian, is a product of finitely many local rings. Now use the nontrivial
K-points and a product construction. (In more detail, if R ∼= ∏r

j=1 Rj is a product of local Artin
algebras, using the previous paragraph, let Aj/K be an absolutely simple abelian variety equipped
with an embedding αj : Spec Rj → Aj whose image is not supported at the identity element. Let
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A′ = ∏ Aj, and let ιj : Aj → A′ be the natural embedding. Define a morphism α : Spec R → A by
α|Spec(Rj) = ιj ◦ αj; then α is a closed embedding.) �

Proof of Proposition 2.14 when K is infinite and L/K is a finite separable extension. We suppose char(K) 6=
2, and indicate the necessary changes for even characteristic at the end. Using the separability hy-
pothesis, choose a polynomial f (s) ∈ K[s] such that L ∼= K[s]/ f (s); note that f is squarefree.

For each i, let hi(x) ∈ K[x] be a polynomial of degree i which factors completely over K, and
such that xhi(x) is squarefree. Let t be a parameter on A1

K, and let Ci → A1
K be the family of

curves whose fiber over t has affine model y2 = f (x)xhi(x)(x− t). Fix ` > 3 invertible in K. The
geometric mod` monodromy of this family is Sp2g(Z/`) [Hal08].

Let K0 ⊆ K be a subfield, finitely generated over the prime field, such that Ci → A1
K descends to

a model over K0. Since K0 is finitely generated over Q (if char(K) = 0) or Fp(s) (if char(K) = p >

0), K0 is Hilbertian. By Hilbert’s irreducibility theorem, there exists some t0 ∈ A1(K0) ⊂ A1(K)
such that, for Ci := Ci,t0 , the image of Gal(K0) acting on H1(Ci,K0

, Z/`) contains Sp2g(Z/`). In
particular, let Ai = Jac(Ci,t0)/K; a standard argument then shows End(Ai,K)

∼= Z. (Briefly, for
group-theoretic reasons, since ` > 3 and since the image of Gal(K0) in Aut(H1(Ci,K0

, Z`)) is an
`-adically closed group which contains a subgroup surjecting onto Sp2g(Z/`), it contains all of
Sp2g(Z`). Replacing K0 with a finite extension K′0 replaces the image of Gal(K0) with a subgroup
of finite index, but it is still Zariski dense in Sp2g,Q`

. Then EndK′0
(Ai)⊗Q`, being contained in the

commutant of Sp2g,Q`
in Aut(H1(Ci,K0

, Q`)), is just Q`, and thus EndK′0
(Ai) ∼= Z.) We use the base

point (0, 0) to embed Ci in Ai.
Let Zi ⊆ Ci be the vanishing locus of the function y. Then Zi is the spectrum of

Ri :=
K[x, y]

(y2 − xhi(x)(x− t0), y)
∼=

K[x]
f (x)

⊕ K⊕i+2 ∼= L⊕ K⊕i+2,

and we have Zi ↪→ Ci ↪→ Ai. In particular, Ai contains a subscheme isomorphic to Spec L, and
#Ai(K) ≥ i + 2 ≥ 2.

In fact, the same argument works if we replace y2 = xhi(x)(x − t) with yr = xhi(x)(x − t)
for any prime r [Kat19, §2]. Briefly, every K-rational fiber contains Spec L ⊕ Spec K as a closed
subscheme; the monodromy group of the family contains a special unitary group; Hilbert irre-
ducibility and an `-adic calculation show that the absolute endomorphism ring of the Jacobian of
any fiber outside a thin set is Z[ζr]; and such a Jacobian is an absolutely simple abelian variety. �

We now move to the case of a finite simple purely inseparable extension L/K, which we can
take to be of the form L = K[x]/(xpr − a) for some choice of a ∈ K. A natural approach (for
char K 6= 2) would then be to consider the family of hyperelliptic curves −y + y2 + xy + (xpr −
a)(xp − a1)(xp − a2) · · · (xp − as)(xp − t), or the family −ty + y2 + xy + (xpr − a)(xp − a1)(xp −
a2) · · · (xp− as), both of which give smooth affine curves containing Spec L as a closed subscheme.
We note that completing the square of the second family gives the family y2 − 1

4 (x− t)2 + (xpr −
a)(xp − a1)(xp − a2) · · · (xp − as). The complication in this approach is to determine if the general
member of the family has large mod` monodromy; i.e., whether the general curve in the family is
absolutely simple. To avoid this issue, we use an argument we learned from David Grant :

Proof of Proposition 2.14 when K is infinite and L/K is a finite simple purely inseparable extension. As in
the previous proof, we reduce to the case where K is finitely generated over the prime field, and
again, we explain the case where p := char(K) > 2 first. To begin, we fix for each i the curve Ci
over K from the previous proof, which is a smooth projective hyperelliptic curve of appropriately
large genus admitting a number of K-points, and which has absolutely simple Jacobian Jac(Ci),
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which we denote by Ai/K. Since L/K is assumed to be simple and purely inseparable, we can
take L to be of the form L = K[x]/(xpr − a) for some choice of a ∈ K. In particular, we have
Spec L ⊆ P1

K, and by changing Ci (moving the branch points) we may and will assume that Spec L
has support disjoint from the branch locus of the structure map Ci → P1

K. The pre-image of Spec L
in Ci is a closed subscheme Spec N ⊆ Ci, either consisting of two distinct L-points, or consisting
of a single point, in which case N/L is a degree 2 extension of fields, separable since char(K) 6= 2.
In the former case we can simply take Bi = Ai ×K Ai.

In the latter case, taking the separable closure of K in N, we obtain another subfield M/K of N,
necessarily of degree 2 over K, giving us a diagram of fields

N
sep

insep

L

insep

pr M
sep2

K

Using that [L : K] and [M : K] are coprime, we have that N = LM, and L and M are linearly
disjoint over K (N = L⊗K M).

Now since Ci is a smooth projective curve with a K-point, and therefore embeds in its Jacobian,
we have that Ai admits Spec N as a closed subscheme (and has a number of K-points). Then
Bi := ResM/K((Ai)M) has the property that (Bi)K

∼= (Ai ×K Ai)K (e.g., [FT15, Lem. 5]), and we
claim that Bi admits Spec L as a closed subscheme (as well as a K-point for each K-point of Ai). This
latter assertion follows from the fact that ResM/K Spec N contains Spec L as a closed subscheme,
and the fact that closed immersions are preserved by the Weil restriction [BLR90, §7.6, Prop. 2,
p.192].

To see that ResM/K Spec N contains Spec L as a closed subscheme one can argue as follows. We
have N = M[x1, . . . , xn]/( f1, . . . , fm). As for any affine scheme and any finite extension of fields,
we can write ResM/K Spec N as Spec K[yi,j]/(gl,r), where yi,j (1 ≤ i ≤ n, 1 ≤ j ≤ s) are new
variables, and gl,r (1 ≤ l ≤ m, 1 ≤ r ≤ s) are polynomials in yi,j given by taking a basis e1, . . . , es of
M over K and setting xi = yi,1e1 + · · ·+ yi,ses and ft = gt,1e1 + · · ·+ gt,ses. In our case, s = 2. Now
since L and M are linearly disjoint and [N : L] = 2, we have that e1, e2 form a basis of N over L.
So, if we write αi for the class of xi in N, then we can write αi = ai,1e1 + ai,2e2 for some elements
ai,j ∈ L. Therefore, by definition, taking yi,j = ai,j, we obtain an L-point of the Weil restriction.
Since not all of the ai,j can be in K (otherwise L = M), we have in fact an L-point of the Weil
restriction with residue field L. This completes the proof in the case where char(K) 6= 2.

In the case where char(K) = 2, we replace the family of curves y2 = xhi(x)(x − t) with the
family y3 = xhi(x)(x− t); the rest of the proof goes through identically. �

We now take up the task of dealing with finite fields.

Proof of Proposition 2.14 when K is finite. Let K = Fq and L = Fqr . There exist absolutely simple
abelian varieties over K of every dimension, and most of them (in particular, at least one in every
dimension) have at least two K-rational points [HZ02]. It thus suffices to to assume that r > 1 and
show that if A/K is a simple abelian variety then, with finitely many exceptions, A has a closed
point with residue field L. (In the case (q, qr) = (2, 4), we will prove a slightly weaker statement
which is still adequate for our purpose.)

Let X/K be any geometrically irreducible variety. If X does not contain a closed subscheme
isomorphic to Spec L, then every L-rational point P ∈ X(L) is actually defined over some sub-
field K′, where K ⊆ K′ ( L. It suffices to consider points defined over maximal proper subfields
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of L. Crudely estimating, we have the criterion that if

#X(Fqr) > ∑
`|r

#X(Fqr/`)

(where ` ranges over prime divisors of r), then X has a closed subscheme isomorphic to Spec L.
Let A/K be an abelian variety of dimension g. Weil’s theorem on the eigenvalues of Frobenius

of an abelian variety easily yields, for any extension Fqd of Fq, that

(qd + 1− 2
√

qd)g ≤ #A(Fqd) ≤ (qd + 1 + 2
√

qd)g.

(In fact, each occurrence of 2
√

qd can be replaced by b2
√

qdc [AHL13, §1].) In particular, let `0 be
the smallest prime divisor of r. We have the coarse estimate

#
⋃

K′(L A(K′)
#A(L)

≤
∑`|r #A(Fqr/`)

#A(Fqr)

≤ (# {` : `|r}) (qr/`0 + 1 + 2qr/2`0)g

(qr + 1− 2
√

qr)g

≤ log(r)
(

qr/`0 + 1 + 2qr/2`0

qr + 1− 2
√

qr

)g

.

For sufficiently large g, this quantity is less than one, unless

(qr/`0 , qr) ∈ {(2, 4), (3, 9), (4, 16), (2, 8)}.
Consider one of these remaining cases. Then Fqr/`0 is the unique maximal proper subfield

of Fqr . If the abelian variety A/Fq fails to have a closed subscheme isomorphic to Spec Fqr , then
A(Fqr/`0 ) = A(Fqr). Except for the case (qr`0 , qr) = (2, 4), this cannot happen if A is simple of di-
mension at least three. Indeed, the case (qr`0 , qr) = (2, 8) literally follows from [Ked22, Lem. 3.1],
while the other two cases follow from its proof and [Ked22, Lem. 2.1(b)].

We now address the remaining case K = F2 and L = F4 by adapting Kedlaya’s argument to
our needs. Assume that A/K is an absolutely simple ordinary abelian variety of dimension g with
#A(K) ≥ 2. (Again, this is possible by [HZ02].) Let A′ be its nontrivial quadratic twist; it, too, is
absolutely simple. We will show that if A(K) = A(L), then A′(K) ( A′(L). Let B = RL/K(AL);
then B is isogenous to A ×K A′. Since B(K) = A(L), if A(K) = A(L), then #A′(K) = 1. For g
in the complement of a thin set of natural numbers – in particular, for infinitely many g – this
uniquely determines the isogeny class of A′ [Ked22, Lem. 2.1(c)]. If A′ also has the property that
A′(K) = A′(L), then the quadratic twist A′′ of A′ also satisfies A′′(K) = 1. Since A′′ ∼= A,
we find in particular that A and A′ are isogenous; but this is impossible for a simple ordinary
abelian variety (e.g., [AC15, Ex. 1.7]). Consequently, at least one of A and A′ admits a subscheme
isomorphic to Spec L. �

As is clear from the proofs above, given a simple extension of fields L/K one can quickly
write down an abelian variety with Spec L as a closed subscheme. The difficulty is finding such
an abelian variety that is absolutely simple (or, whose base change to the algebraic closure is
a product of simple abelian varieties of sufficiently large dimension). In order to shorten the
proofs above, one might hope that given any abelian variety A/K, and any simple extension of
fields L/K, there exists a closed subscheme of A isomorphic to Spec L. The following example
shows that this is not the case :

Example 2.15. Let E be the elliptic curve over F2 with affine model y2 + y = x3 + x2. One can
check that #E(F2) = #E(F4) = 5. In particular, there is no point of E with residue field F4.
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3. BASE CHANGE FOR ALBANESE VARIETIES

Let V be a geometrically connected and geometrically reduced scheme of finite type over a
field K, and let (AlbV/K, Alb1

V/K, aV/K) be Albanese data for V (2.1). Recall that this includes the
Albanese morphism

V
aV/K

// Alb1
V/K

to the Albanese torsor. If L/K is any field extension, then after base change we obtain a diagram

VL
aVL/L

// Alb1
VL/L

β1
V,L/K
��

VL
(aV/K)L

// (Alb1
V/K)L

(3.1)

where β1
V,L/K is induced by the the universal property of the Albanese. Via the dual of the pull-

back morphism on line bundles (see Remark 2.1), this is equivariant with respect to a base change
morphism of abelian varieties

βV,L/K : AlbVL/L // (AlbV/K)L . (3.2)

A diagram similar to (3.1) holds in the pointed case, as well.
We say that the Albanese data of V is stable under (separable) base change of field if the Albanese

data exists and βV,L/K and β1
V,L/K are isomorphisms for all (separable) field extensions L/K. Note

that in particular, this means that ((AlbV/K)L, (Alb1
V/K)L, (aV/K)L) gives Albanese data for VL.

There is an analogous notion for pointed Albanese data (2.2) to be stable under (separable) base
change of field. A before, when this holds, the suitable base change of pointed Albanese data is
again pointed Albanese data.

Initially, we remark that in the unpointed case, βV,L/K is an isomorphism if and only if β1
V,L/K is

an isomorphism:

Lemma 3.1. Let V/K be a geometrically connected and geometrically reduced scheme of finite type over a
field K, and let L/K be an extension of fields. Then βV,L/K is an isomorphism if and only if β1

V,L/K is an
isomorphism.

Proof. On one hand, let T be a torsor under an abelian variety A over K; then A ∼= (Pic0
T/K)

∨

(Remark 2.1). Consequently, if Alb1
VL/L and (Alb1

V/K)L are isomorphic via β1
V,L/K, then so are

AlbVL/L and (AlbV/K)L via βV,L/K.
On the other hand, suppose βV,L/K is an isomorphism. Then β1

V,L/K is a nontrivial map of
torsors over an isomorphism of abelian varieties. Since βV,L/K and β1

V,L/K agree up to translation
after base change to the algebraic closure of L, β1

V,L/K is an isomorphism. �

The Raynaud example (Example 1.1) shows that, in general, Albanese varieties are not stable
under base change of field. There are two possible issues to focus on in this example. First, the
variety G/K is not proper, and second, the extension L/K is not separable. Regarding the former,
it has been understood that if one assumes V is proper, then the Albanese variety is stable under
base change:

Theorem 3.2 (Grothendieck–Conrad). Let V be a proper geometrically connected and geometrically
reduced scheme over a field K. Then Albanese data for V (2.1) is stable under base change of field, and if V
admits a K-point v, then pointed Albanese data for (V, v) (2.2) is stable under base change of field. �

12



Remark 3.3 (References for Theorem 3.2). Recall that Grothendieck provides an Albanese torsor
(resp. pointed Albanese variety) for any proper geometrically connected and geometrically nor-
mal scheme V (resp. pointed proper geometrically connected and geometrically normal scheme
(V, v)) over a field K in the following way. As V/K is proper and geometrically normal, one has
that Pic0

V/K is proper [Gro62, Thm. VI.2.1(ii)]; then by [Gro62, Prop. VI.2.1], one has that (Pic0
V/K)red

is a group scheme (i.e., without the usual hypothesis that K be perfect and the group scheme be
smooth). It then follows from [Gro62, Thm. VI.3.3(iii)] that ((Pic0

V/K)red)
∨ is an Albanese vari-

ety, and using that V/K is geometrically connected, that there exists an Albanese torsor. Con-
rad has generalized Grothendieck’s argument to show that any proper geometrically connected
and geometrically reduced scheme V over a field K admits an Albanese torsor, and a pointed
Albanese variety if V admits a K-point. For lack of a better reference, we direct the reader to
[Con17, Thm.]. His argument is to show that the Albanese variety is the dual abelian variety
to the maximal abelian subvariety of the (possibly non-reduced and non-proper) Picard scheme
PicV/K. Grothendieck’s theorem can then be summarized in this context by saying that his addi-
tional hypothesis that V be geometrically normal implies that the maximal abelian subvariety of
PicV/K is Pic0

V/K. That Grothendieck’s and Conrad’s Albanese varieties are stable under arbitrary
field extension is [Gro62, Thm. VI.3.3(iii)] and [Con17, Prop.], respectively. In fact, the Albanese
variety enjoys an even stronger universal property; see §6 below.

While the hypothesis in the theorem that V be geometrically connected is necessary (Corol-
lary 2.5), we point out here that it is possible for geometrically non-reduced schemes to admit
Albanese data that is stable under base change of field:

Example 3.4 (Albanese base change for a non-reduced scheme). Let V be the non-reduced scheme
defined in Example 2.7. Then the Albanese torsor (and the pointed Albanese variety) of V is stable
under base change of field.

The second potential difficulty in Example 1.1, namely, the inseparability of the field exten-
sion L/K, shows that in the absence of properness, something like the separability hypothesis in
Theorem (A) is necessary.

4. EXTENSIONS OF FIELDS

We briefly detour from our development of the Albanese to gather some results on separable
and primary extensions of fields.

4.1. Separable extensions. The following elementary results on separable extensions will ulti-
mately be used to extend the standard Lemma 5.4 below to arbitrary separable extensions (as
opposed to separable algebraic extensions).

For clarity with the terminology, we recall that a (not necessarily algebraic) field extension L/K
is separable if for every extension of fields M/K, one has that M⊗K L is reduced. Setting p to be
the characteristic exponent, this is equivalent to the condition that Lp and K be linearly disjoint
over Kp; i.e., that the natural map Lp ⊗Kp K → LpK be injective [Bou81, Rem., p.V.119]. We say
that a field K is separably closed if it admits no separable algebraic field extensions. We say an
extension of fields L/K is purely inseparable if for every x ∈ L, there is an integer n such that
xpn ∈ K, or equivalently [Bou81, Prop. 13, p.V.42], if it is an algebraic extension and there are no
nontrivial separable subextensions.

Note that if char(K) = 0 then any field extension of K is separable [Bou81, Thm. 1, p.V.117].
In general, any field extension L/K factors as L/L′/K with L′/K separable and L/L′ purely in-
separable; indeed, taking any transcendence basis T for L/K [Bou81, Thm. 1, p.V.105], one has
K(T)/K is separable [Bou81, Prop. 6, p.V.116], and then the algebraic extension L/K(T) factors
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as a separable extension L′/K(T) followed by a purely inseparable extension L/L′. Here we are
using that the composite of two separable extensions is separable [Bou81, Prop. 9, p.V.117].

Lemma 4.1. Let Ω/k be an extension of separably closed fields. Then Ω/k is separable if and only if
ΩAut(Ω/k) = k.

Proof. Without any assumptions on K, if Ω/K is any field extension, then Ω is separable over
ΩAut(Ω/K); see e.g. [Bou81, §15.3, Prop. 7]. In particular, if ΩAut(Ω/K) = K, then Ω/K is separable.

Conversely, assume that Ω/k is a separable extension of separably closed fields. Since k is
separably closed and since any sub-extension Ω/K/k satisfies K/k separable [Bou81, Prop. 8,
p.V.116], in order to show that ΩAut(Ω/k) = k, it is enough to show that ΩAut(Ω/k)/k is algebraic.
Let α ∈ Ω be a transcendental element over k. Since α extends to a transcendence basis of Ω/k,
the map α 7→ α + 1 extends to an automorphism of Ω which fixes k. Consequently, no element of
Ω transcendental over k is fixed by all of Aut(Ω/k), and ΩAut(Ω/k)/k is algebraic, as desired. �

Recall that if L′/L/K is a tower of field extensions, then on the one hand, if L′/L is separable
and L/K is separable, then L′/K is separable [Bou81, Prop. 9, p.V.117]. On the other hand, if L′/K
separable, then L/K is separable [Bou81, Prop. 8, p.V.116], but L′/L may not be separable (e.g.,
Fp(T)/Fp(Tp)/Fp). Nevertheless, we have:

Lemma 4.2. Suppose that L/K is a separable extension of fields. Then Lsep/Ksep is separable.

Proof. In characteristic 0 there is nothing to show. So let p = char K > 0. We start with a small
observation [Bou81, Exe. 4 p.V.165]: If F/E/K is a tower of field extensions, with F/K separable,
then if EpK = E, then F/E is separable. To prove this, it suffices to show that the natural map
Fp ⊗Ep E→ FpE is injective. By the assumption E = EpK, we therefore must show Fp ⊗Ep EpK →
Fp(EpK) is injective. Since Ep/K is separable [Bou81, Prop. 8, p.V.116], we have that Ep ⊗Kp K ↪→
EpK is injective. Since field extensions are (faithfully) flat, tensoring by Fp ⊗Ep (−) we obtain

Fp ⊗Ep (Ep ⊗Kp K) ↪→ Fp ⊗Ep EpK → Fp(EpK). (4.1)

The composition is identified with the map Fp ⊗Kp K → FpK ⊆ Fp(EpK), which is injective since
F/K is assumed to be separable. However, since EpK is the field of fractions of Ep ⊗Kp K under
the inclusion Ep ⊗Kp K ↪→ EpK, we see that the right hand map Fp ⊗Ep EpK → Fp(EpK) in (4.1)
is injective, as claimed, since it is obtained from the composition Fp ⊗Ep (Ep ⊗Kp K) → Fp(EpK)
in (4.1) by localization.

To prove the lemma, we apply the observation in the previous paragraph with F = Lsep and
E = Ksep. Thus we just need to show that (Ksep)pK = Ksep. Thus we have reduced to the following:
if E/K is a separable algebraic extension, then EpK = E. Indeed, we have a tower of extensions
E/EpK/K. The extension E/EpK is purely inseparable (the p-th power of every element of E
belongs to EpK) while the extension E/K is separable. This implies E = EpK. �

4.2. L/K-images. Let L/K be a primary extension of fields, i.e., the algebraic closure of K in L is
purely inseparable over K, or equivalently, K equals its separable closure in L. Suppose A/L is
an abelian variety. The L/K-image of A is a pair (imL/K(A), λ) consisting of an abelian variety
imL/K(A) over K and a homomorphism λ : A → (imL/K A)L of abelian varieties over L that is
initial for pairs (B, f ) consisting of an abelian variety B over K and a homomorphism f : A→ BL:

A

f
$$

λ // (imL/K A)L

∃!
��

BL

(4.2)
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The idea of such an image (and the complementary notion of the trace, which is final for pairs
(B, f ) consisting of an abelian variety B over K and a homomorphism f : BL → A) goes back
to Chow, but we appeal to [Con06] as a modern and comprehensive reference. The existence of
imL/K(A) is proven in [Con06, Thm. 4.1].

For later reference, given a separable extension M/K, and an algebraically disjoint extension
L/K ([Bou81, Def. 5, p.V.108]), we have that LM/L is separable [Bou81, Prop. 5, p.V.131]. Similarly,
given a purely inseparable extension L/K and an arbitrary extension M/K, we have that LM/M
is purely inseparable. In other words, if M/K is separable, and L/K is purely inseparable (and
therefore algebraic, so that L is algebraically disjoint from M), then we have a tower:

LM

sep

insep

M

sepL
insep K

(4.3)

where “insep” means “purely inseparable”.
One fact we will use later is that formation of the image is insensitive to separable field exten-

sions. Indeed, a special case of [Con06, Thm. 5.4] states:

Lemma 4.3. If L/K is purely inseparable, if M/K is separable, and A/L is an abelian variety, then

imLM/M(ALM) ∼= (imL/K(A))M. �

In fact, we will want a small strengthening of this lemma (Proposition 4.8). To obtain this
strengthening, we will first need a few more small results. First, we will need a slight varia-
tion on Mumford’s Rigidity Lemma [MFK94, Prop. 6.1(1)]. If V is a scheme, we use |V| to denote
the underlying topological space.

Lemma 4.4 (Rigidity Lemma). Given a diagram

X
f

//

p

��

Y
q

��

Sε

QQ

where S is a Noetherian scheme and:
(a) p∗OX ∼= OS;
(b) ε is a section of p, and |S| consists of a single point, s; and
(c) the set-theoretic image f (|Xs|) is a single point of |Y|;

Then there exists a section η : S→ Y of q such that f = η ◦ p:

X
f

//

p

��

Y
q

��

Sε

QQ

η

MM

Proof. This is almost verbatim [MFK94, Prop. 6.1(1)]. Indeed, Mumford’s hypotheses in [MFK94,
Prop. 6.1(1)] are the same, except that our assumption (a) is replaced in [MFK94, Prop. 6.1(1)] by
the assumption that p be flat and that H0(Xs,OXs)

∼= κ(s). However, these two hypotheses are
only used in the proof of [MFK94, Prop. 6.1(1)] at the top of [MFK94, p.116], where the reader is
invited to verify that these conditions imply that p∗OX ∼= OS; but this is our hypothesis (a). �
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Chow’s rigidity theorem for abelian varieties (e.g., [Con06, Thm. 3.19]) implies that a morphism
of abelian varieties which is defined after a purely inseparable extension is already defined over
the base field. Here, we use Mumford’s rigidity lemma to prove an analogous statement when the
source of the morphism is an arbitrary geometrically integral variety.

Proposition 4.5. Let L/K be a purely inseparable extension of fields. Let (U, u)/K be a pointed ge-
ometrically integral separated scheme of finite type, let A/K be an abelian variety, and suppose that
g : (UL, uL)→ (AL, 0AL) is a pointed L-morphism. Then g descends to K.

Proof. Since U and A are of finite type over K, so is g. Therefore, there is a subextension L0 ⊆ L,
finite over K, over which g is defined. Replacing L by L0 if necessary, we may and do assume L/K
is finite and purely inseparable. Then Spec(L⊗K L) is a Noetherian scheme with a single point.
This point has residue field L; let s : Spec L ↪→ Spec(L⊗K L) be its inclusion.

Let pi : Spec(L⊗K L) → Spec L be the two projections. As usual, since UL is the base change
of a K-scheme, there is a canonical isomorphism p∗1(UL) ∼= p∗2(UL), and we simply call this object
UL⊗K L . We similarly define the pullback of u, A and 0A to L⊗K L. We want to use fpqc descent to
show that g : UL → AL descends to K; for this we need to show an equality of morphisms

p∗1 g ?
= p∗2 g : UL⊗K L // AL⊗K L. (4.4)

This equality will follow from the Rigidity Lemma (Lemma 4.4), as we will see. At the moment,
however, we have a diagram

UL⊗K L
p∗1 g−p∗2 g

//

&&

AL⊗K L

xx

Spec L⊗K LuL⊗K L

WW
(4.5)

If U/K were proper, one could easily check that the hypotheses of the Rigidity Lemma held for the
diagram (4.5) (see the proof below), and then it would follow quickly from the Rigidity Lemma
that equality holds in (4.4) (again, see the proof below). But, since we are not assuming that U/K
is proper, we must do a little work first to get around this issue.

To begin, let v : X → Spec K be a (Nagata) compactification of U [Con07]. Since X is proper
over K and contains the geometrically integral scheme U as an open dense set, X is geometrically
integral (e.g., [GW20, Prop. 5.51(iii)]) and so (e.g., [Sta22, Lem. 0FD2]) v∗OX ∼= OSpec K. We now
base change to Spec L. Using [Lüt93, Lem. 2.2] or [Con07, Rem. 2.5], there is a UL-admissible
blowup

X̃ v′ //

ṽ ""

XL

vL
||

Spec L

such that g : UL → AL extends to a morphism

g̃ : X̃ → AL.

Moreover, using the same argument as before, i.e., that X̃ is proper over L and contains the geo-
metrically integral scheme UL as an dense open subset, we have that X̃ is geometrically integral
so that ṽ∗OX̃

∼= OSpec L.
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We now base change to L⊗K L and obtain a diagram

X̃L⊗K L
v′L⊗K L

//

ṽL⊗K L &&

XL⊗K L

vL⊗K L
xx

Spec L⊗K L

Via cohomology and base change for flat base change, and using that ṽ∗OX̃
∼= OSpec L, we have

that (ṽL⊗K L)∗OX̃L⊗K L
∼= OSpec L⊗K L.

Our goal now is to show that

p∗1 g̃ ?
= p∗2 g̃ : X̃L⊗K L // AL⊗K L , (4.6)

as this will establish (4.4), and we will be done. For this, we will want to apply the Rigidity Lemma
(Lemma 4.4) to the diagram

X̃L⊗K L
p∗1 g̃−p∗2 g̃

//

ṽL⊗K L

&&

AL⊗K L

xx

Spec L⊗K LuL⊗K L

WW
(4.7)

However, to apply the Rigidity Lemma we still need to check that (p∗1 g̃− p∗2 g̃)(|(X̃L⊗K L)s|) is set-
theoretically a single point of |(AL⊗K L)s|. To see this, we start with the observation that the fiber
(UL⊗K L)s = s∗UL⊗K L is canonically isomorphic to UL, and p∗i g|(UL⊗K L)s = g. Similarly, |(AL⊗K L)s| =
|AL|. Our next claim is that |(UL⊗K L)s| is dense in |(X̃L⊗K L)s|, but this just follows since UL is dense
in X̃ by construction. Now, moving forward, we know that (p∗1 g− p∗2 g)(|(UL⊗K L)s|) = |0(AL⊗K L)s |,
where here we are denoting by |0(AL⊗K L)s | the support of the image of 0(AL⊗K L)s : (Spec L⊗K L)s →
(AL⊗K L)s. This is only an equality on |(UL⊗K L)s|. However, we know that s∗(p∗1 g̃ − p∗2 g̃), as a
continuous map |(X̃L⊗K L)s| → |(AL⊗K L)s|, must take the closure of |(UL⊗K L)s| to the closure of the
point |0(AL⊗K L)s |. But, since |0(AL⊗K L)s | is a closed point of |(AL⊗K L)s| and |(X̃L⊗K L)s| is the closure

of |(UL⊗K L)s|, we see that s∗(p∗1 g̃− p∗2 g̃)(|(X̃L⊗K L)s|) = 0(AL⊗K L)s ∈ |(AL⊗K L)s| is a single point.
Consequently, we can apply the Rigidity Lemma to diagram (4.7), and we find that p∗1 g̃ and p∗2 g̃

differ by a section η of AL⊗K L over Spec L⊗K L. It remains to show that this section η coincides
with 0AL⊗K L . For this it suffices to show that p∗1 g̃ and p∗2 g̃ are equal along a section of X̃L⊗K L over
Spec L⊗K L, and of course, it therefore suffices to check equality along a section of UL⊗K L ⊆ X̃L⊗K L
over Spec L⊗K L; we will use the section uL⊗K L. Since g takes uL to 0AL , we have that p∗1 g and p∗2 g
both take the section p∗1uL = p∗2uL = uL⊗K L of UL⊗K L to 0AL⊗K L , and thus η = 0AL⊗K L . Note that
here we have used that u is defined over K, to identify p∗1uL = p∗2uL = uL⊗K L. �

To implement this descent result in the setting we want to use it, we need one more result,
which states that rational maps that extend to a morphism after base change of field, extend to a
morphism over the ground field, as well.

Lemma 4.6. Let V be a reduced scheme of finite type over a field K, let T/K be a separated scheme of finite
type, let U ⊆ V be a dense open subset, and let L/K be an arbitrary extension of fields. Given a morphism
f : U → T over K, such that fL : UL → TL extends to a morphism VL → TL, we have that f : U → T
extends to a morphism V → T over K.
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Proof. To fix some notation, write Γg : X → X ×K Y for the graph of a K-morphism g : X → Y,
which is a closed embedding if Y is separated, and denote by g(X) the scheme-theoretic image of
X under g. Now, considering the graph Γ f : U → U ×K T and the inclusion ι : U ↪→ V, we wish
to show that the first projection (ι× 1T)(Γ f (U)) → V is an isomorphism, so that the composition

V
∼=−→ (ι× 1T)(Γ f (U)) → T gives an extension of f : U → T. We are given that fL extends to

f̃L : VL → TL. Recalling that the scheme-theoretic image is stable under flat base change (e.g.,
[EH00, Prop. V-8, p.217]), we have (ι× 1)((Γ f (U))L) = (ι× 1)(Γ fL(UL)) = Γ f̃L

(VL), where the
last equality holds since VL is reduced. Finally, since Γ f̃L

(VL) → VL is an isomorphism, we can

deduce that (ι× 1T)(Γ f (U)) → V is an isomorphism, since isomorphisms satisfy fpqc descent
(e.g., [GW20, p.583]). �

Lemma 4.7. Suppose L/K is a purely inseparable extension of fields, A/L is an abelian variety, (V, v)/K
is a K-pointed (geometrically) connected and geometrically reduced scheme of finite type over K, and f :
(VL, vL)→ (A, 0) is a pointed K-morphism. Then the composition λ ◦ f of pointed L-morphisms

(VL, vL)
f
// (A, 0) λ // ((imL/K A)L, 0) (4.8)

is initial for compositions of pointed L-morphisms (VL, vL)→ (A, 0)→ (BL, 0), where B/K is an abelian
variety over K.

If, moreover, V admits an open cover {(Ui, ui)} by separated (geometrically) connected and geometrically
reduced schemes Ui of finite type over K, with each irreducible component of the Ui being geometrically
integral and admitting a smooth K-point ui, then the composition λ ◦ f , descends to a unique pointed
K-morphism

f : (V, v) −→ (imL/K A, 0).

Proof. The universal property of (4.8) follows from the definition of the L/K-image. All that is left
is to show the descent. It suffices to show descent on restriction to each of the Ui. Let U be any of
the Ui.

In fact, it suffices to show descent on the normalization Uν of U. Indeed, since U is geometrically
reduced, it is generically smooth (smoothness may be verified fpqc locally on the base, and the
base change to the algebraic closure is generically smooth), and therefore, there is a dense open
subset U′ ⊆ U that is normal, so that the normalization ν : Uν → U is an isomorphism over U′.
If we show that the morphism from (Uν)L descends, then the morphism from U′L descends. Then
we use Lemma 4.6.

So we can and will assume that U is normal. We can then focus on one irreducible component
at a time, and we can assume that U is integral, and therefore geometrically integral from our
assumptions. Since each irreducible component of U was assumed to have a smooth K-point, this
gives a K-point on each of the irreducible components of the normalizations. Now use Proposi-
tion 4.5. �

Proposition 4.8. In the situation of Lemma 4.7, if in addition M/K is a separable field extension, then the
pointed LM-morphisms fLM and λLM obtained by base change of (4.8) along LM/L factor as

(VLM, vLM)
fLM

// (ALM, 0)

λLM

**

// ((imLM/M ALM)LM, 0) // ((imL/K A)LM, 0). (4.9)

If, moreover, V admits an open cover {(Ui, ui)} by separated (geometrically) connected and geometrically
reduced schemes Ui of finite type over K, with each irreducible component of the Ui being geometrically
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integral and admitting a smooth K-point ui, then, excluding morphisms with source or target ALM, the
morphisms in (4.9) descend uniquely to M to give pointed M-morphisms

(VM, vM) //

f
M

))

(imLM/M ALM, 0)
∼= // ((imL/K A)M, 0) (4.10)

where the morphism on the right in (4.10) is the isomorphism in Lemma 4.3.

Proof. The factorization (4.9) follows from the universal property in the first part of Lemma 4.7

applied to the composition (VLM, vLM)
fLM

// (ALM, 0) // ((imLM/M ALM)LM, 0) , and the ob-
servation that (imL/K A)LM = ((imL/K A)L)LM = ((imL/K A)M)LM is obtained by pull back of an
abelian variety over M.

The descent in (4.10) comes from applying Lemma 4.7 to (4.9). The fact that the composition
in (4.10) is identified with f

M
comes from the fact that the pull back of the composition in (4.10)

to LM is by definition λLM ◦ fLM, and, also by definition, we have f
LM

= ( f
L
)M = (λ ◦ f )LM =

λLM ◦ fLM, so that the uniqueness of the descent shows that f
M

is the composition in (4.10).
That the second morphism in (4.10) is the isomorphism in Lemma 4.3 follows from the fact that

this is the same descended morphism constructed by Conrad [Con06, Thm. 5.4]. �

5. PROOF OF THEOREM (A)

We state a more precise version of Theorem (A) here:

Theorem 5.1 (Separable base change). Let V be a geometrically connected and geometrically reduced
scheme of finite type over a field K. Then the Albanese data (AlbV/K, Alb1

V/K, aV/K) for V (2.1) is stable
under separable base change of field (§3), and if V admits a K-point v ∈ V(K), then pointed Albanese data
(AlbV/K, aV/K,v) for (V, v) (2.2) is stable under separable base change of field (§3).

For finite separable extensions, an easy argument shows:

Lemma 5.2. Let V/K be a geometrically connected and geometrically reduced scheme of finite type over a
field K. If L/K is finite and separable, then the base change morphisms β1

V,L/K (3.1) and βV,L/K (3.2) are
isomorphisms.

Proof. By virtue of Lemma 3.1, it suffices to show that β1
V,L/K is an isomorphism, and therefore, by

the universal property, it suffices to show that if A/L is any abelian variety, T is a torsor under A,
and α : VL → T is a morphism, then α factors through aL : VL → (Alb1

V/K)L.
Since L/K is finite and separable, the Weil restriction RL/K(A) is an abelian variety (e.g., [Mil72,

§1]) and RL/K(T) is a torsor under RL/K(A). Since HomK(V, RL/K(T)) = HomL(VL, T) (i.e., the
adjoint property of the Weil restriction, e.g., [BLR90, p. 191, Lem. 1]), there is associated to α a
K-morphism V → RL/K(T). By the universal property of AlbV/K, this factors over K as

V //

""

Alb1
V/K

��

RL/K(T)
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Again by the adjoint property of RL/K, this induces a diagram over L

VL //

α
$$

(Alb1
V/K)L

��

T

and so (Alb1
V/K)L is the universal torsor receiving a map from VL. �

For clarity, recall that a normal Noetherian scheme is irreducible if and only if it is connected.
In particular, if a scheme over K is smooth, then it is geometrically reduced and geometrically
connected if and only if it is geometrically integral.

Lemma 5.3. Let V/K be a smooth geometrically integral scheme over a field K. If ι : U ↪→ V is an open
immersion, then the universal morphism indicated with the dashed arrow in the diagram below:

U� _

ι

��

// Alb1
U/K

∼=
��

V // Alb1
V/K

is an isomorphism, equivariant with respect to a canonical isomorphism

AlbU/K
∼= AlbV/K .

In particular, pre-composing with the inclusion U ↪→ V converts Albanese data (resp. pointed Albanese
data) for V into Albanese (resp. pointed Albanese data) for U.

Proof. It suffices to show that, if f : U → T is a morphism to a torsor under an abelian variety, then
f extends to a morphism f̃ : V → T. If T is an abelian variety, this is a special case of [BLR90, §8.4,
Cor. 6, p.234]. The general case then follows from this since if fL : UL → TL extends to a morphism
VL → TL for some field extension L/K, then f : U → T extends to a morphism f̃ : V → T
(Lemma 4.6), and so one reduces to the previous case by base change to a field L/K over which TL
admits an L-point. �

The next two lemmas establish that for a variety V that admits a smooth alteration, formation
of the Albanese torsor commutes with separable base change:

Lemma 5.4. Let V/K be a geometrically connected and geometrically reduced scheme of finite type over a
field K. Suppose that there is a diagram

U �
� ι //

π
��

X

V

of K-schemes with π dominant, ι a dense open immersion, and X a smooth proper scheme over K each con-
nected component of which is geometrically integral. Let L/K be any field extension such that LAut(L/K) =
K. Then βV,L/K and β1

V,L/K are isomorphisms.

Proof. Let us write tiιi :
⊔

i Ui →
⊔

i Xi for ι : U ↪→ X, with the Xi being the connected components
of X. Note that, by Lemma 5.3 and Theorem 3.2, β1

Ui ,L/K and βUi ,L/K are isomorphisms for all i. By
20



the universal property, each Albanese morphism ai : Ui → Alb1
Ui/K induces a diagram

Ui
ai //

πi
��

Alb1
Ui/K

δ1
i��

V a // Alb1
V/K

and each δ1
i is equivariant with respect to the induced morphism δi : AlbUi/K → AlbV/K of abelian

varieties. Let δ : ∏i AlbUi/K → AlbV/K be the homomorphism induced by the δi. We claim that δ

is surjective and that, for any field extension L/K such that LAut(L/K) = K, we have that

ker
(
δL : ∏

i
Alb(Ui)L/L → AlbVL/L

)
is invariant under Aut(L/K), so that ker δL descends to ker δ.

The surjectivity of δ can be seen as follows. Choose a finite field extension M/L such that each
(Ui)M acquires an M-point. Since the image of VM in its Albanese variety AlbVM/M generates
AlbVM/M and since the disjoint union

⊔
i(Ui)M dominates VM, we see that AlbVM/M is generated

by certain translates of the images of the induced homomorphisms Alb(Ui)M/M → AlbVM/M and
it ensues that δM, and hence δ, is surjective (as surjective morphisms satisfy fpqc descent; e.g.,
[GW20, p.584]).

For the Aut(L/K)-invariance of ker δL, we argue as follows. Let σ ∈ Aut(L/K), and for an
L-scheme Y, denote by Yσ the pull-back of Y along σ : Spec L→ Spec L. We want to show there is
a canonical L-isomorphism (ker δL)

σ = ker δL. For this, consider the diagram

VL
aL // AlbVL/L

��

∏i Alb(Ui)L/L
δLoooo ker δLoo

(VL)
σ

(aL)
σ

// (AlbVL/L)
σ ∏i

(
Alb(Ui)L/L

)σ(δL)
σ

oooo (ker δL)
σoo

where the dashed arrow is induced by the universal property of the Albanese. One concludes
from a diagram chase that there is a scheme-theoretic inclusion

ker δL ⊆ (ker δL)
σ.

Applying the same argument to σ−1, we see that ker δL ⊆ (ker δL)
σ−1

, and then applying σ to both
sides, we have (ker δL)

σ ⊆ ((ker δL)
σ−1

)σ = ker δL, so that (ker δL)
σ = ker δ, as claimed.

Now, since we have established that (ker δ)L = ker δL, we have, for any field extension L/K
such that LAut(L/K) = K, a commutative diagram:

AlbVL/L

βV,L/K

��

(
∏i Alb(Ui)L/L

)
/ ker δL

∼=oo

∏i βUi ,L/K∼=
��

(AlbVK/K)L
(

∏i AlbUi/K
)

L/(ker δ)L
∼=oo

showing that βV,L/K is an isomorphism. By Lemma 3.1, β1
V,L/K is then also an isomorphism. �

Lemma 5.5. Suppose U, V, and X are as in Lemma 5.4. If L/K is any separable extension, then βV,L/K is
an isomorphism.
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Proof. Let Ksep and Lsep be separable closures of, respectively, K and L, and consider the diagram
of separable (thanks to Lemma 4.2) field extensions

Lsep

L

Ksep

K

As we have (Ksep)Aut(Ksep/K) = K, (Lsep)Aut(Lsep/L) = L, and by Lemma 4.1 we also have the
identification (Lsep)Aut(Lsep/Ksep) = Ksep, we can apply Lemma 5.4 to all three extensions with solid
segments in the diagram above. Together with the universal property of the Albanese morphism,
we therefore obtain the diagram:

AlbVLsep /Lsep ∼=

βVL ,Lsep/L
//

∼=βV,Lsep/Ksep

��

(AlbVL/L)Lsep

(βV,L/K)Lsep

��

(AlbVKsep /Ksep)Lsep

∼=(βV,Ksep/K)Lsep

��

((AlbV/K)Ksep)Lsep ((AlbV/K)L)Lsep

It follows that βV,L/K becomes an isomorphism after base-change to Lsep, and hence that it is an
isomorphism. �

In the case of a purely inseparable extension L/K, it turns out that the L/K image explains the
Raynaud Example 1.1:

Theorem 5.6 (Theorem (B)). Let V/K be a geometrically connected and geometrically reduced scheme
of finite type over a field K. Suppose L/K is a purely inseparable extension. Then there is a commutative
diagram

AlbVL/L
βV,L/K

//

λ ((

(AlbV/K)L

∼=
��

(imL/K AlbVL/L)L,

(5.1)

induced by an isomorphism AlbV/K
∼= imL/K AlbVL/L, where λ is the universal morphism in the definition

of the L/K-image (4.2).
If V admits a K-point v, then the composition of pointed L-morphisms

(VL, vL)
aVL/L

// (AlbVL/L, 0) λ // ((imL/K AlbVL/L)L, 0) (5.2)

is initial for pointed L-morphisms (VL, vL) → (AL, 0), where A/K is an abelian variety over K, and (5.2)
descends to K to give a pointed K-morphism

(V, v)
aVL/L

// (imL/K AlbVL/L, 0) (5.3)

providing Albanese data for (V, v); i.e., (imL/K AlbVL/L, aVL/L) is pointed Albanese data for (V, v).
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Proof. We wish to establish (5.1), first. To this end, let V =
⋃n

i=1 Ui be an affine open cover. Since
V is geometrically reduced, each Ui admits a point over some finite separable extension M/K,
which can be chosen to be independent of i. By Lemmas 4.3 and 5.2, it suffices to verify the lemma
after base change to M. Thus, we may and do assume in particular that V admits a K-point, and
consequently that the Albanese torsor and the Albanese abelian variety coincide. Moreover, each
of the Ui is separated, being affine, and geometrically reduced, being contained in V. Moreover,
we can take the Ui to be connected, and then, since we are allowed to take finite separable base
changes, we may take the Ui to be geometrically connected, as well. In other words, we may
assume that V admits an open cover {(Ui, ui)} by separated (geometrically) connected and geo-
metrically reduced schemes Ui of finite type over K, with each irreducible component of the Ui
being geometrically integral and admitting a smooth K-point ui. Moreover, we have reduced to
proving, under these hypotheses, the second assertion of the lemma, namely that (5.2) descends
to (5.3), and that this gives pointed Albanese data.

Let a be the composite map (5.2)

a : VL
aVL/L

// AlbVL/L
λ // (imL/K AlbVL/L)L.

From Lemma 4.7, it is initial for pointed maps from VL to the base change to L of abelian varieties
defined over K (establishing one of the claims of Theorem 5.6), and descends to a pointed K-
morphism a : V → imL/K AlbVL/L over K. We claim that this implies that a : V → imL/K AlbVL/L is
a pointed Albanese. Indeed, given a pointed morphism V → A to an abelian variety A, we obtain
a unique morphism making the following diagram commute:

VL
a //

''

(imL/K AlbVL/L)L

��

AL

Then, from Chow rigidity [Con06, Thm. 3.19], one has a unique morphism making the following
diagram commute:

V
a
//

&&

imL/K AlbVL/L

��

A
showing that a : V → imL/K AlbVL/L is the pointed Albanese. �

Finally, we can prove our main result.

Proof of Theorem 5.1. By Lemma 5.2, after possibly base-changing along a finite separable field ex-
tension, we may and do assume that the irreducible components of V are geometrically integral.
We will identify a finite purely inseparable extension L/K such that V admits a smooth alteration
relative to L, and chase Albanese varieties along the diagram of fields (4.3).

Let Vi be the irreducible components of V and for each i choose an open affine (and so sep-
arated) subset V ′i ⊆ Vi. Using Nagata compactification [Con07], embed V ′i ↪→ Yi into a proper
geometrically integral variety. Using [dJ96, Thm. 4.1], there is a diagram

Ui

��

� � // Xi

��

V ′i
� � // Yi
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in which the vertical arrows are alterations; moreover, there is a finite, purely inseparable exten-
sion Li/K such that the structural morphism Xi → Spec K factors through Spec Li, and Xi →
Spec Li is smooth [dJ96, Rem. 4.2]. The composition Ui ↪→ Xi → Spec Li together with the map
Ui → V determine a unique morphism Ui → VLi over Li, giving the following diagram over Li:

Ui

��

� � // Xi

VLi

Letting L/K be the (purely inseparable) composite of the Li (in some algebraically closed field
containing the Li), base changing to L, and then taking unions, i.e., U :=

⊔
i Ui ×Li L and X :=⊔

i Xi ×Li L, and we obtain a diagram over L:

U

��

� � // X

VL

(5.4)

satisfying the hypotheses of Lemma 5.4 over L. Indeed, the only thing to check is that VL is geomet-
rically reduced over L, and that U → VL is dominant. The former holds, as for any extension L′/L
we have (VL) ×L L′ = (V ×K L) ×L L′ = (VK) ×K L′. For the latter, we started with

⊔
i Ui → V

dominant. It follows that the composition U → ⊔
i Ui → V is dominant. Moreover, this morphism

factors through VL → V. From say [GW20, Prop. 4.35, p.111] one has that VL → V is injective by
virtue of the fact that L/K is purely inseparable, and one can conclude that U → VL is dominant.

Now, let M/K be a separable extension of fields, and consider the tower of field extensions
in (4.3). We then compute canonical isomorphisms:

VM
aVM/M

// AlbVM/M

VM

aVLM/LM
// imLM/M(AlbVLM/LM) (Theorem 5.6)

VM

(aVL/L)LM
// imLM/M((AlbVL/L)LM) (Lemma 5.5, (5.4))

VM

(
aVL/L

)
M // (imL/K AlbVL/L)M (Proposition 4.8)

VM
(aV/K)M // (AlbV/K)M (Theorem 5.6)

completing the proof. �

We note that under the separated hypothesis, combining Proposition 2.12 with [Sch23, Thm. p.4]
one has the following base change result:

Proposition 5.7 (Schröer). If V is a separated scheme of finite type over a field K that admits an Albanese
datum (see Proposition 2.12(ii)), then the Albanese datum is stable under separable base change of field. For
purely inseparable field extensions, if Γ(V,OV) is in addition geometrically3 reduced then the base change
morphism is a universal homeomorphism.

3The hypothesis that Γ(V,OV) be geometrically reduced is implicit in [Sch23, Thm. p.4] for field extensions that are
not separable;̇ the necessity of this assumption is made clear by Example 2.11.
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Proof. Proposition 2.12(ii) implies that V satisfies the hypotheses of Schröer [Sch23, Thm. p.4]. �

6. THE UNIVERSAL PROPERTY OF ALBANESE VARIETIES

In fact, Theorem 3.2 as stated above is weaker than what Grothendieck [Gro62, Thm. VI.3.3(iii)]
and Conrad [Con17, Thm.] actually prove:

Theorem 6.1 (Grothendieck–Conrad). Let V/K be a proper geometrically connected and geometrically
reduced scheme over a field K. Then for any morphism of schemes S → Spec K, and any S-morphism f :
VS → P to a torsor under an abelian scheme A/S, there exists a unique S-morphism g : (Alb1

V/K)S → P
such that g ◦ aS = f . If V admits a K-point v, then for any morphism S → Spec K, and any pointed S-
morphism f : VS → A to an abelian scheme A/S taking vS to 0A, there exists a unique S-homomorphism
g : (AlbV/K)S → A such that g ◦ (av)S = f . �

Remark 6.2. Recall (similarly to Remark 2.1) that if A and A′ are abelian schemes over a scheme S,
and P and P′ are torsors under A and A′, respectively, then for any S-morphism g : P → P′,
there is a unique S-homomorphism φ : A → A′ making g equivariant, and moreover, g(P) is
a torsor under φ(A). In particular, in the theorem above, there is a unique S-homomorphism
(AlbV/K)S → A making g : (Alb1

V/K)S → P equivariant.

If one is willing to restrict to base change by smooth morphisms, one can derive a similar state-
ment without a properness hypothesis.

Theorem 6.3 (Arbitrary separable base change). Let V be a geometrically connected and geometrically
reduced scheme of finite type over a field K. Then for any (inverse limit of) smooth morphism of schemes
S → Spec K, and any S-morphism f : VS → P to a torsor under an abelian scheme A/S, there exists a
unique S-homomorphism (AlbV/K)S → A and a unique equivariant S-morphism g : (Alb1

V/K)S → P
such that g ◦ aS = f .

If V admits a K-point v, then for any (inverse limit of) smooth morphism S → Spec K, and any pointed
S-morphism f : VS → A to an abelian scheme A/S taking vS to 0A, there exists a unique S-homomorphism
g : (AlbV/K)S → A such that g ◦ (av)S = f .

Proof. We give the proof for the Albanese torsor; the case of the pointed Albanese variety is similar.
It suffices to consider the case where S is irreducible. By assumption on the morphism S→ Spec K,
the extension κ(S)/K is separable. Consider then the restriction fηS of f : XS → P to the generic
point ηS of S. By Theorem 5.1, fηS factors through (alb1

V/K)ηS . This gives a canonical ηS-morphism
of torsors (Alb1

V/K)ηS → PηS over (AlbV/K)ηS . Let U ⊆ S be an open dense subscheme to which
these morphisms extend as g1 : (Alb1

V/K)U → PU over g : (AlbV/K)U → AU . By Raynaud’s
extension theorem [FC90, I.2.7], g extends to a morphism of abelian schemes over S. Let S′ → S
be an fpqc morphism such that (Alb1

V/K)S′ → S′ and TS′ → S′ admit sections. Then (Alb1
V/K)S′

and PS′ are trivial torsors under abelian schemes over S′, and so g1
U×SS′ extends to a morphism

(g1)′ : (Alb1
V/K)S′ → PS′ . By fpqc descent (Lemma 6.4 below), (g1)′ descends to a morphism

g1 : (Alb1
V/K)S → T, as desired. �

Lemma 6.4. Let S be a scheme and let X and Y be schemes over S, with Y/S separated. Let U ⊆ S be
an open dense subscheme, and let S′ → S be faithfully flat and quasicompact. Suppose f : XU → YU is a
morphism of schemes over U. If fS′ : XU ×S S′ → YU ×S S′ extends to a morphism f̃ ′ : XS′ → YS′ , and
XU ×S S′ is dense in XS′ , then f̃ ′ descends to a morphism f̃ : X → Y over S, and f̃ |U = f .

Proof. Let S′′ = S′ ×S S′, equipped with the two projections pi : S′′ → S′. Let Γ f̃ ′ ⊆ XS′ ×S′ YS′

be the graph of f̃ ′ (since the graph morphism Γ f̃ ′ : XS′ → XS′ ×S′ YS′ is a closed embedding, as
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Y/S is assumed to be separated, we are identifying the graph morphism with its scheme-theoretic
image). By Grothendieck’s theory of fpqc descent (e.g., [BLR90, §6.1] or [Con06, Thm. 3.1]), it
suffices to demonstrate an equality of closed subschemes p∗1(Γ f̃ ′) = p∗2(Γ f̃ ′). However, p∗i (Γ f̃ ′)

contains p∗i (Γ fS′
) as a dense set (here we are using that XU ×S S′ is assumed to be dense in XS′ and

that the scheme-theoretic image is stable under flat base change, e.g., [EH00, Prop. V-8, p.217]); and
p∗1(Γ fS′

) = p∗2(Γ fS′
), because fS′ descends to f . �
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